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Abstract

In object recognition problems a two-stage system is usu-
ally adopted composed of a fast and simple detector and
a more complex classifier. This paper studies a design of
the second stage classifier based on the recently proposed
trainable similarity measure which is specifically designed
for supervised classification of images. Common global
measures such as correlation suffer from uninformative pix-
els and occlusions. The proposed measure is based on lo-
cal matches in a set of regions within an image which in-
creases its robustness. The configuration of local regions
is derived specifically for each prototype by a training pro-
cedure. The paper compares the classifiers built using the
trainable similarity to the state-of-the-art AdaBoost classi-
fiers on a real-world pedestrian recognition problem. The
paper illustrates that for a given range of sample sizes the
trainable similarity represents a better solution for second-
stage classification than the AdaBoost algorithm which re-
quires significantly larger training sets.

1. Introduction
Recognition of objects in images is typically carried on

in two stages. First, the objects in an image are localized
by a detector [8, 7]. In the second stage, the identified can-
didate regions are processed by a more elaborate classifier
performing the possible multi-class discrimination and re-
jecting the false alarms inevitably introduced by the detec-
tor [5]. This setup allows for a simpler/faster detector and
more complex classifier. This study focuses on the develop-
ment of the second-stage classifier for object recognition.

There are two basic methods for construction of
a data representation, namely the feature-based and
(dis)similarity-based approaches. While the feature-based
approaches derive a a set of characteristics (features) di-
rectly from an input image patch, the similarity-based meth-
ods compare an input patch to the stored prototype patches.

A common similarity-based approach to image classi-

fication is based on the normalized cross-correlation. Al-
though compelling due to its statistical interpretation, it suf-
fers from presence of uninformative pixels and occlusions
and is computationally expensive. In [5], we have proposed
to compute the similarity to a prototype based on multiple
matches in local sub-regions, rather that using the entire
candidate region. This approach improves robustness of the
similarity measure. Because our objective is the construc-
tion of a similarity measure facilitating supervised classifi-
cation, we proposed to derive the appropriate set of local
sub-regions optimizing the informativeness of the resulting
similarity in terms of class separation. The proposed simi-
larity measure is therefore trained specifically for each pro-
totype so that the class of the prototype is separated as good
as possible from all other classes in the labeled training set.
Hence, we call this measure the trainable similarity.

The proposed measure combines advantages of the
similarity-based and feature-based approaches. Because it
derives a similarity-based data representation, it allows for
easier rejection of unseen (dissimilar) examples. By using
multiple prototypes the handling of multi-modal problems
is also simplified. On the other hand, the proposed compu-
tation of similarity using local image matches resembles the
feature-based approach extracting localized features from
an image. However, extracting the local features specifi-
cally for each prototype might result in an overtrained sys-
tem. In this paper, we therefore study the generalization
behavior of classifiers based on the trainable similarity over
a range of sample sizes on a pedestrian recognition dataset.

For the sake of comparison, we include the state-of-
the-art AdaBoost classifier of Viola and Jones [8] which
also leverages the local image information. Contrary to the
trainable similarity where image content in local regions is
matched to the stored prototype example, AdaBoost identi-
fies a set of simple region features computed by summation
and subtraction of image intensities. Each feature is turned
into a possibly weak classifier by thresholding. Gradually
focusing on more problematic examples, the AdaBoost al-
gorithm derives a generalizing classifier ensemble.
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In the following section, we introduce the proposed
trainable similarity measure. Section 3 describes the pedes-
trian recognition problem and the experimental setup. Sec-
tion 4 provides discussion on results and short note on com-
putational complexity. Conclusions are given in Section (5).

2. Trainable similarity measure

In order to formally derive the trainable similarity, let
us first introduce a similarity measure Sr(I, J) based on
the correlation coefficient computed between equally-sized
images I and J :

Sr(I, J) =
∑

i(I
i − Ī)(J i − J̄)√∑

i(Ii − Ī)2
∑

i(J i − J̄)2
. (1)

The symbols Ii and J i represent intensities of the i-th pixel
of the corresponding images and Ī and J̄ denote the corre-
sponding means of image intensities.

Note that this measure is a global and symmetric. In
order to avoid impact of uninformative pixels, we aim at the
similarity based on local information which is specific to
the prototype and thereby asymmetric.

The proposed similarity S(I, J, R) is based on local im-
age matches in a set of local image regions R. Each local
region r ∈ R is defined in the coordinate system of the im-
age I . The local match s(I, J, r) between the correspond-
ing pixel values r(I) and r(J) may be measured, for exam-
ple, by the correlation coefficient (1). The overall similarity
S(I, J, R) is a function of a set of local matches. We adopt
here the arithmetic mean which increases robustness of the
overall similarity measure to local disturbance:

Smean(I, J, R) =
1
|R|

|R|∑
j=1

s(I, J, rj). (2)

A set of regions R is determined specifically for each
prototype during the training process considering a labeled
training dataset Tr = {(I1, ω(I1)), ..., (IN , ω(IN ))} with
N images, where ω(I) denotes a class of the image I .

The process of training the similarity measure with re-
spect to a prototype image Pr proceeds as follows. Starting
from an initial set of admissible regions Rinit a subset R is
selected optimizing the separability of the class of the pro-
totype object ω(Pr) from all the remaining classes in the
training set Tr. Formally, the Fisher separability criterion
is adopted

C(Tr, Pr, R) =
(µ̂T − µ̂NT )2

σ̂2
T + σ̂2

NT

, (3)

expressing the separation between target and non-target
training objects based on the similarity S(I, Pr,R). The

symbols T and NT denote the sets of target and non-target
training objects, respectively:

T = {Ii ∈ Tr : ω(Ii) = ω(Pr)}
NT = {Ij ∈ Tr : ω(Ij) 6= ω(Pr)}. (4)

The µ̂T (µ̂NT ) and σ̂2
T (σ̂2

NT ) denote mean and vari-
ance of the similarity values S(Ii, P r,R), Ii ∈ T
(S(Ij , P r,R), Ij ∈ NT ).

A set of regions, maximizing the criterion (3) is derived
using a search over a large set of randomly positioned re-
gions Rinit. Similarly to [5], we adopt here the sequential
forward search. Alternatives, such as individual and back-
ward search algorithms are discussed in [4]. Note that the
number of local regions is not a user-specified parameter but
is optimized automatically due to the multi-variate nature of
the criterion (3).

In order to build a classifier based on the trainable simi-
larity a set of prototype objects must be first selected. This
may be achieved, for example, using a clustering procedure.
For each prototype a separate similarity measure is derived
by the training procedure. There exist different classifier-
building strategies for similarity data representations. We
adopt here the similarity-space approach [1, 6] where sim-
ilarities to prototypes are considered dimensions of a new
metric space in which all training objects may be repre-
sented. A general-purpose classifier such as Fisher linear
discriminant (FLD), trained in the similarity space, there-
fore leverages the correlations between similarities to pro-
totypes, unlike the frequently-used nearest-neighbor rule.

3. Experiments

In this section, we describe a set of experiments with
a dataset originating from a pedestrian recognition prob-
lem. The dataset comprises of 7302 candidate regions iden-
tified in video sequences by a detector as pedestrians. Typ-
ical video sequence consists of 100 examples. The regions
are scaled into fixed size and hand-labeled into two classes
as true pedestrians (3502 examples) and non-pedestrians
(3800 examples), respectively. Our goal is to design a
second-stage classifier processing an incoming candidate
region (image patch) and identifying it as a true pedestrian
or rejecting it as a falsely-detected non-pedestrian.

Multiple images, originating from a single video se-
quence, often bear only minor differences (see Figure 1).
In order to avoid that such almost identical images appear
both in training and testing, we adopt the following evalua-
tion scheme. The available dataset is split into two disjoint
sets of image sequences used for algorithm design (4500
images) and evaluation (2802 images), respectively. The
learning curves for the studied algorithms are constructed
simulating the real-world scenario where images from a
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Figure 1. Examples of candidate regions
used in experiments. The pedestrian im-
ages in the upper row originate from two se-
quences.

growing number of image sequences are utilized (from 2 to
25 sequences). The algorithm, trained on the desired num-
ber of sequences, is evaluated using the independent test set
of image sequences. In order to assess the significance of
estimated performances, the training is repeated 20 times
varying the training sequences. The test set remains fixed.

The following similarity-based and feature-based algo-
rithms are considered in this study:

TrSim1 The trainable similarity using one prototype per
class, selected by the k-center clustering algorithm [3].
Similarity measure Smean uses local regions 6×6 pix-
els, selected by a sequential forward search from the
initial pool of 300 regions randomly positioned over
the candidate region. Similarities of all training ob-
jects to the two prototypes are computed. FLD is built
in the resulting similarity space.

TrSim10 The trainable similarity with 10 prototypes per
class selected by the k-center algorithm. FLD classi-
fier is built in the similarity space.

CrossCorr10 The correlation coefficient Sr(I, J) to 10
prototypes, selected using k-centers; FLD is trained in
the similarity space.

AdaBoost The feature-based classifier of Viola and Jones
using four types of region features based on an inte-
gral image representation [8]. The total considered
set comprises 800 randomly sized and positioned re-
gion features. Analogously to [8], the base classifiers
are constructed by identifying the optimal thresholds
and classifier polarities over all training examples. The
AdaBoost ensemble is trained until the weighted error
used for the base classifier selection reaches zero.

PCA Principal Component Analysis (PCA) preserving
99% of overall variance is applied directly to the pixel
intensities. The supervised PCA is used based on the
pooled class covariance matrices [2]. FLD is trained in
the resulting linear subspace.

Figure 2 depicts classifier performances varying the
training sample sizes. We adopt the area under ROC mea-
sure (AUC) which summarizes the classifier performance
over all possible operating points.
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Figure 2. Performance of classifiers (area un-
der ROC curve) for the increasing number
of training image sequences/examples. Each
point is a result of 20-fold cross-validation.

4. Discussion
It is interesting to compare the learning curves of the al-

gorithm TrSim10 and CrossCorr10. While the CrossCorr10
is better for very small sample sizes, this difference gradu-
ally narrows. Eventually CrossCorr10 is significantly out-
performed by TrSim10 for large sample sizes. This behav-
ior is to be expected as the TrSim10 is the more complex
classifier than CrossCorr10 due to training of individual
similarity measures. More elaborate derivation of the data
representation gradually becomes an advantage given suf-
ficient training data. Figure 3 shows local regions trained
with respect to several prototypes. The number of extracted
local regions ranges between 5 and 11 over all training set
sizes.

Figure 3. Local regions derived by training of
the similarity measure Smean to eight proto-
types (four pedestrians on the left and four
non-pedestrians on the right)
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The PCA/FLD classifier provides better solution than the
TrSim10 for small sample sizes but its does not improve
with a growing number of samples. Interestingly, the Ad-
aBoost algorithm yields the worst AUC performances with
very large variances. It is outperformed even by the train-
able similarity TrSim1 with a single prototype per class.
Trying to understand the reasons for AdaBoost poor per-
formance, we investigated the eventual ensemble sizes. It
appears that for the smallest number of samples (two video
sequences, 355 images) on average only 4.5 classifiers are
used. For five sequences it is only 16 classifiers and even
for the largest sample size of 25 sequences (4500 samples)
only 130 classifiers are derived on average.

This suggests that the simple thresholded intensity sum-
mations and subtractions, used as weak learners, quickly
find zero error solution on the training set. This effect is
probably still emphasized by the low effective sample size
of the datasets originating from image sequences (pedes-
trians occur in clusters with minor variations). In order to
counter the effect of overtraining, we limit the number of
classifiers to 50. This significantly improves performance –
see the curve AdaBoost 50 in Figure 2.

4.1. Computational complexity

The trainable similarity exhibits the highest training
complexity amongst the studied algorithms. Its training
time is in order of minutes on a common PC (Matlab im-
plementation). In order to assess the execution complexity,
we estimate the number of operations spent by an ideal al-
gorithm implementation based on the parameters obtained
in the experiments. For each algorithm, we assume that
all quantities that may be precomputed during the training
stage are precomputed. Estimated execution speeds for al-
gorithms trained in three points on the learning curve are
given in Table 1.

method 2 seq 10 seq 25 seq
TrSim1 3 879 2 818 2 686
TrSim10 37 020 35 163 33 904
CrossCorr10 34 702 34 702 34 702
AdaBoost 467 952 1 788
PCA/FLD 46 483 73 044 81 594

Table 1. Average number of operations re-
quired for processing of a single candidate
region for three points on the learning curve.

We observe that AdaBoost provides the fastest solutions.
Because the CrossCorr10 algorithm uses a fixed number of
prototypes its computational complexity in execution re-
mains constant. The speed of both the TrSim1 and Tr-
Sim10 algorithms increases with the growing sample size

as the number of automatically extracted regions decreases.
PCA/FLD classifier exhibits the opposite effect where the
larger training sets lead to increase of the problem complex-
ity consequently to higher subspace dimensionality.

5. Conclusions

In this paper we to tried to understand possible bene-
fits and shortcomings of employing the trainable similarity
measure in building second-stage image classifiers. We fo-
cused on two points, namely its sensitivity to overtraining
and the comparison with the AdaBoost classifier.

We have found out that the effect of overtraining of
trainable similarity is apparent only for very small sample
sizes. With a growing number of samples, the complexity of
trained similarity measure starts to be paying off in terms of
performance improvement. An interesting outcome of our
study is realization that the AdaBoost algorithm overtrains
very easily on the investigated dataset. A possible remedy
might be employing even weaker type of learners. With a
given set of available training examples, several alternative
methods outperform the AdaBoost algorithm.
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