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Abstract

Application-specific dissimilarity functions can be
used for learning from a set of objects represented by
pairwise dissimilarity matrices in this context. These
dissimilarities may, however, suffer from various de-
fects, e.g. when derived from a suboptimal optimization
or by the use of non-metric or noisy measures. In this
paper, we study procedures for refining such dissimilar-
ities. These methods work in a representation space,
either a dissimilarity space or a pseudo-Euclidean em-
bedded space. On a series of experiments we show that
refining may significantly improve the nearest neighbor
classifications of dissimilarity measurements.

1. Introduction

Proximity measures have become popular in statisti-
cal learning as they naturally encode commonality be-
tween pairs of objects or groups of objects (e.g. clus-
ters). Proximity measures can be used for deriving a nu-
merical representation in which every element encodes
similarity between pairs of objects. Such a measure is
defined on raw or preprocessed measurements or task-
specific features.

Learning from proximity data usually relies on ei-
ther kernel methods for specifically designed kernels or
on the nearest neighbor (NN) rule. Kernels are posi-
tive definite functions, interpreted as generalized inner
products, hence similarity functions, in a Hilbert space
induced by the kernel [15]. Kernel methods are power-
ful, but cannot handle arbitrary proximity data without
necessary corrections. The NN rule can work well in
such cases, but suffers from local decisions. In prac-
tice, many proximity measures used for matching and
object comparison [2, 8] are neither positive definite
nor proper distances in Hilbert spaces. As a result,
other dissimilarity-based learning techniques have be-
come important. This led to the development of indefi-

nite kernel methods [10, 6, 11] and learning in embed-
ded spaces [11].

Here we consider learning procedures applied to an
n-element training set X for which all pairwise dissimi-
larities are given or can be computed by a known proce-
dure. Such dissimilarities may result from suboptimal
optimization (as in template matching) or by incorpora-
tion of invariance [8, 7]. The n×n dissimilarity matrix
D(X ,X ) is non-Euclidean if it cannot be isometrically
embedded into a Euclidean space. This often occurs
when the measure is based on min or max operations.
D(X ,X ) is non-metric if any metric requirement is dis-
obeyed, e.g. symmetry or the triangle inequality.

The quality of a dissimilarity measure determines
the speed of learning: the number of objects needed
to reach a desired performance. We will discuss meth-
ods to refine a dissimilarity matrix for a given training
set. These procedures are based on improving the inter-
nal consistency within the dissimilarity matrix. They
thereby implicitly improve the dissimilarity measure.
First, the objects are embedded in a vector space, next
this space is transformed, and finally the dissimilarity
matrix is reconstructed from the distances in the trans-
formed space. We will study both unsupervised and su-
pervised transformation procedures. Examples will be
analyzed that either improve or deteriorate the NN clas-
sification based on the dissimilarity matrix.

2. Refining procedures

Fig. 1 illustrates that the dissimilarity matrix might
be refined for a suboptimal dissimilarity measure. It
shows a set of clusters in a Euclidean space with the dis-
similarity that measures the distance between the two
most neighboring points in the corresponding clusters
(the single-linkage distance). Some are shown on the
plot. Due to the local emphasis of the chosen dissim-
ilarity measure, the resulting dissimilarity matrix does
not properly encode the information on the relative po-
sitions of the cluster centers and their shapes. E.g. the
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Figure 1. Single-linkage distance may be small
for clusters which differ in position and shape.

clusters A and B have a small measured dissimilarity,
but their centers and shapes are very different. This may
be refined by considering the dissimilarity vectors rep-
resenting dissimilarities from a particular cluster to all
other ones. Such vectors differ for A and B, but are
similar for C and D, which have a larger single-linkage
distance, but are more similar in position and shape.

This intuitive example shows that a non-adequate
dissimilarity measure may be improved by analyzing its
behavior in the context of a set of objects. As a criterion
for improvement we use the NN error on a test set in
the final evaluation. Both supervised and unsupervised
methods are considered for refining methods. A general
procedure we use for this purpose is:

1) Given a dissimilarity matrix D(X ,X ), mapX into
a representation (feature) vector space.

2) Consider a set of possible transformations there.
3) Optimize a chosen criterion in either a supervised

or unsupervised way.
4) Reconstruct the dissimilarity matrix for the opti-

mal transformation.
5) Evaluate the result.

Two representation spaces are considered in step 1),
in which additional transformations will be considered.
These are the pseudo-Euclidean embedded space (Sec-
tion 2.1) and dissimilarity space (Section 2.2). As a cri-
terion to optimize the transformations we use the leave-
one-out NN error on the training set.

Re-scaling is used as a transformation of the repre-
sentation space. First the dimensions are ranked accord-
ing to some criterion, which is different for the two rep-
resentation spaces we will discuss. Next, the scaling of
every feature is optimized in a sequential procedure us-
ing the leave-one-out NN error of the training set as a
criterion. This procedure is rather time consuming.

2.1. Pseudo-Euclidean embedding

A symmetric dissimilarity matrix D :=D(X ,X ) can
be embedded in a pseudo-Euclidean space E by an iso-
metric mapping [4, 11]. E =R

(p,q) =R
p ⊕ R

q is a vec-
tor space with a non-degenerate indefinite inner product

〈·, ·〉E such that 〈·, ·〉E is positive definite on R
p and neg-

ative definite on R
q . So, we have 〈x,y〉E = xTJpqy,

where Jpq =[Ip×p 0; 0 −Iq×q] and I is the identity ma-
trix. As a result, d2

E(x,y) = (x−y)TJpq(x−y). The
embedding relies on the indefinite Gram matrix G, de-
rived as G := − 1

2JD�2J , where D�2 = (d2
ij) and J =

I− 1
n11T is the centering matrix. The eigendecomposi-

tion of G leads to G=QΛQT =Q|Λ| 12 [Jpq; 0]|Λ| 12 QT ,
where Λ is a diagonal matrix of eigenvalues, first de-
creasing p positive ones, then increasing q negative
ones, followed by zeros. Q is the matrix of eigenvec-
tors. Since G= XJpqX

T by definition of a Gram ma-
trix, X∈R

n is found as X =Qn |Λn| 12 , where Qn con-
sists of n eigenvectors ranked according to their eigen-
values Λn. Note that X has a zero mean and is un-
correlated. The eigenvalues λi encode variances of the
extracted features in R

(p,q).
The following distance measures between x,y∈R

n

may be considered for refining the dissimilarity matrix:

ρPES (x, y) = (
p∑

i=1

[xi − yi]2 −
p+q∑

i=p+1

[xi − yi]2)1/2

= (
n∑

i=1

δ(i, p)[xi − yi]2)1/2,

where δ(i, p) = sign(p− i+0.5). Since the complete
pseudo-Euclidean embedding is perfect, D(x, y) =
ρPES (x, y) holds. Contributions from the q negative
directions might be neglected (when assumed to reflect
noise) and only the first p eigenvectors can be used:

ρPES+ (x, y) = (
p∑

i=1

[xi − yi]2)1/2 (1)

We may also compute distances in the associated Eu-
clidean space by neglecting the minus-sign in Jpq:

ρAES (x, y) = (
n∑

i=1

[xi − yi]2)1/2 (2)

As also discussed, a transformation may be optimized
for the training set by re-scaling eigenvectors. We there-
fore consider the following measure:

ρα PES (x, y) = (
p∑

i=1

αiδ(i, p)[xi − yi]2)1/2 (3)

αi is optimized by using the NN criterion over the train-
ing set. This is done in a sequential procedure applied
to the eigenvectors sorted according to the decreasing
magnitudes of the corresponding eigenvalues.

2.2. Dissimilarity space

Let X = {x1, . . . , xn} be a training set. Given a
dissimilarity function and/or dissimilarity data, we de-
fine a data-dependent mapping D(·, R) : X → R

k



from X to the so-called dissimilarity space [3, 5, 13].
The k-element set R consists of objects representative
for the problem. This set is called the representation
or prototype set and it may be a subset of X . In the
dissimilarity space each dimension D(·, pi) describes
a dissimilarity to a prototype pi from R. In this paper,
we initially choose R := X . As a result, every object
is described by an n-dimensional dissimilarity vector
D(x,X ) = [d(x, x1) . . . d(x, xn)]T . The resulting
vector space is endowed with the traditional inner prod-
uct and the Euclidean metric.

Any dissimilarity measure ρ can be defined in this
dissimilarity space. For the Euclidean distance, one has:

ρDS (x, y) = (
n∑

i=1

[d(x, xi) − d(y, xi)]2)1/2 (4)

In order to apply the earlier discussed re-scaling trans-
formations the dimensions (features) of the dissimilar-
ity space are ranked such that the sum of all distances
to the corresponding objects is maximized for the next
object to be selected.

ρα DS (x,y) = (
n∑

i=1

αi[d(x, xi) − d(y, xi)]2)1/2 (5)

αi is optimized by using the NN criterion over the train-
ing set in a sequential procedure over the dissimilarity
features sorted as mentioned above.

The dissimilarity space is not directly affected
by non-Euclidean characteristics of the data. The
question is whether this still can make a difference.
A simple correction is to add 2|λmin| to all off-
diagonal elements of the squared dissimilarity matrix
as dc(xi, xj) = (d2(xi, xj)+2|λmin|)1/2, i �= j, where
λmin is the smallest negative eigenvalue found in the
pseudo-Euclidean embedding. This results in a refined
Euclidean-embeddable dissimilarity matrix [12]:

ρcDS (x, y) = (
n∑

i=1

[dc(x, xi) − dc(y, xi)]2)1/2 (6)

3. Experiments

The above refinement procedures are applied to a se-
ries of datasets. Due to space limits we mention just a
few characteristics and a reference. Most of them are
also used in [11].

• Chicken, dissimilarities based on the weighted
edit distances between 446 shapes representing
five classes of chicken pieces. They depend on
two parameters [12]. We used Chicken 10 45,
Chicken 29 45 and Chicken 40 45.

• Zongker, dissimilarities between 2000 handwritten
digits in 10 classes based on deformable template
matching [9]. We used a randomly selected subset
of 400 digits, 40 out of every class.

• Polydistm57, modified Haussdorff distances be-
tween two classes of artificially generated poly-
gons. A subset of 400 objects is used.

• WoodyPlants, dissimilarities between the shapes
of 7634 leaves of 245 different species [1]. We
used a subset of 400 leaves from 100 species.

• Cat-cortex, 65 objects in four classes represented
by ordinal dissimilarity values [14].

• Newsgroups, 600 messages in four newsgroups re-
lated by a non-metric correlation measure [11].

• Protein, 213 protein sequences represented by the
pairwise dissimilarities based on the concept of an
evolutionary distance [5].

• Sonar, vectorial data based on 208 sonar sig-
nals represented by 60 features and two classes
(http://www.ics.uci.edu/ m̃learn/MLRepository.html).
In the feature space we compute three distance
matrices based on the l1-norm, l2-norm and on
D2 - squared Euclidean distances.

All experiments are based on 2-fold cross-validation,
repeated 5 times. Representation spaces are defined by
all data examples. The training sets are used in these
space to optimize the supervised refinement procedures,
indicated by a ’*’ in Table 1. This table shows the aver-
age NN errors on the test objects for the reconstructed
dissimilarity matrices. In brackets the standard devia-
tions of the mean estimates are given. The first column
(NEC) provides an index of non-Euclidean behavior of
the data, derived from the pseudo-Euclidean embed-
ding; NEC =

∑p+q
j=p+1 |λj |/

∑p+q
i=1 |λi| ∈ [0, 1] and

0 indicates Euclidean distances. The second column is
the error found for the original dissimilarity matrix. Re-
finements results that improve more than the sum of the
standard deviations are underlined.

4. Discussion and Conclusion

As observed in Table 1, the NN performance can be
improved for almost all non-vectorial dissimilarity mea-
sures. In these experiments, the results do not depend
on the possible non-Euclidean characteristics of the
data. The refinement of non-Euclidean dissimilarities
defined by l1-norm or D2 on the vectorial Sonar data
does not lead to NN improvements, while the almost
Euclidean Protein data can be improved significantly. It
is also interesting that the refinements based on either
the straightforward neglection of negative directions in
the pseudo-Euclidean embedding (ρPES+) or by using
the associated Euclidean space (ρAES) hardly improve
and sometimes even significantly deteriorate the result.
It is encouraging that the unsupervised and thereby fast
procedures in the dissimilarity space (ρDS and ρcDS)
lead to very good results. The dissimilarity space seems



Table 1. Classification errors based on 5 times 2-fold cross-validation. Listed are the size, the NEC, the mean
errors*1000 for the original data and for all refinement procedures (1)-(6) and their standard deviations*1000.

Data #obj/class NEC Original ρPES+ ρAES ρα PES∗ ρDS ρα DS∗ ρcDS

Cat-cortex 65 / 4 0.208 166( 6) 74(13) 98( 6) 139(13) 111(14) 98(14) 105(11)
News groups 600 / 4 0.202 299( 8) 324( 7) 363( 5) 301( 8) 308( 5) 299( 6) 306( 5)
Protein 213 / 4 0.001 32( 5) 29( 4) 24( 4) 7( 4) 6( 1) 7( 4) 5( 3)
Sonar l2 208 / 2 0.000 218( 9) 218( 9) 218( 9) 225( 9) 237( 8) 224( 9) 227( 8)
Sonar D2 208 / 2 0.288 218( 9) 225( 5) 223( 3) 240(15) 250( 8) 258(15) 248(12)
Sonar l1 208 / 2 0.166 197( 8) 200( 8) 210(10) 208( 6) 226( 8) 228( 9) 225(12)
Chicken 10 45 446 / 5 0.282 223( 3) 417( 3) 514( 6) 141( 5) 183( 9) 174( 8) 157( 9)
Chicken 29 45 446 / 5 0.351 78( 8) 185( 8) 388( 6) 62( 7) 71( 3) 64( 4) 61( 6)
Chicken 40 45 446 / 5 0.365 98( 3) 223( 7) 411(11) 97( 4) 87( 7) 80( 4) 86( 4)
Polydistm57 400 / 2 0.279 77( 4) 75( 6) 73( 7) 64(11) 73( 4) 71( 2) 73( 4)
Zongker 400 / 10 0.340 115( 4) 139( 6) 314(12) 69( 6) 84( 6) 85( 5) 41( 4)
WoodyPlants 400 / 100 0.192 501( 9) 531( 7) 583( 9) 504( 8) 643( 7) 639( 9) 583(11)

thereby a very good representation for refining dissim-
ilarities by relating the dissimilarity vectors in the con-
text of a large data set.

It has to be remarked that all our experiments include
the test set in the definition of the representation spaces.
This slows down the classification, but is an interesting
procedure to make use of partially unlabeled data sets
(semi-supervised learning).

In summary, we draw the following conclusion. Dis-
similarity measurements can be improved in the context
of a larger data set, but it is not yet clear when this is
possible. Results have to be related to the characteris-
tics of the dissimilarity measures that produce the orig-
inal data. The next step is to describe the characteristics
formally and derive the proper refinement procedures.

Acknowledgements. We thank colleagues for the data.
See the references related to the data description.
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