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Abstract—Multi-way data analysis is a multivariate data
analysis technique having a wide application in some fields.
Nevertheless, the development of classification tools for this
type of representation is incipient yet. In this paper we study
the dissimilarity representation for the classification of three-
way data, as dissimilarities allow the representation of multi-
dimensional objects in a natural way. As an example, the
classification of seismic volcanic events is used. It is shown
that in this application classification based on 2D spectrograms,
dissimilarities perform better than on 1D spectral features.
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I. INTRODUCTION

Multi-way data analysis [1], [2], is the extension of
multivariate analysis when the analyzed data is arranged in
higher order arrays; several sets of variables measured on
different samples can be used. The most common is the
three-dimensional array, but it is even possible to generate
higher dimensional data i.e. multi-way array. The analysis of
such data is often used for extracting hidden structures and
exploring the interrelations in the data. It has been shown
that this information may not be analyzed accurately by a
two-way analysis, because it does not respect the multi-
way design of the data. Nowadays, most of the applications
of multi-way analysis are for exploratory and regression
purposes. Classification has been studied much less. This
might be caused by the lack of appropriate classification
tools.

In recent studies [3], [4], the advantage of learning from
dissimilarities between the objects instead of traditional
features has been shown, in what is known as Dissimilarity
Representation (DR) [5]. This representation was mainly
designed for classification. It is based on the important
role that is played by the pairwise dissimilarities between
objects. Classifiers may be built in the dissimilarity space
generated by a representation set. In this way, the geometry

and the structure of a class are determined by the user de-
fined dissimilarity measure, in which application background
information may be expressed. Any traditional classifier
that operates in feature spaces can also be used in the
dissimilarity space.

The automatic classification of seismic volcanic signals
is an essential task nowadays, with the goal of discovering
the interaction between volcanic earthquakes and volcanic
processes. Traditionally, signals are naturally represented in
the time domain. Although this representation has been used
for automatic analysis, they are usually represented by a
spectrum in terms of energy spread over its frequency com-
ponents, from their Fourier transform (See Fig. I) [6], [7].
Recent studies have also shown that training the classifiers
on the space generated by the dissimilarities between the ob-
jects, is a feasible and more reliable alternative for automatic
classification of seismic signals than the frequency-based
one [3]. Nevertheless, time or frequency representations
alone may not be optimal for seismic signal analysis, since
spectral energy changes in time. This relation is not consid-
ered in any of the previously mentioned representations [6].
Due to this limitation, the use of a time-frequency represen-
tation like spectrograms, showing frequency changes in time,
may be advantageous. So far, the spectrograms have just
been averaged to obtain the spectral representation [8]. The
2D object representations has not intensively been exploited
as such in automatic classification systems. Examples are the
use of Hidden Markov Models for continuous seismic-event
classification [9] or dynamic time warping.

In this paper we study the DR based on the time-
frequency information in three-way volcanic seismic data. It
is generated from the spectrograms of the signals measured
by the Olleta crater station of the Nevado del Ruiz Volcano
in Colombia. Two classes of events are analyzed: Volcano-
Tectonic (VT) earthquakes and Long-Period (LP) earth-
quakes. A 2D dissimilarity measure is proposed. Results
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Figure 1. Time signals and frequency spectra for two classes, VT (left),
LP (right)

are compared with 1D feature representation using the time
integrated spectra.

II. THREE-WAY VOLCANIC DATA

The seismic signals to be analyzed belong to the ice-
capped Nevado del Ruiz volcano in the Colombian Andes.
This volcano is currently studied by the Volcanological and
Seismological Observatory at Manizales. Signals from the
Olleta crater station (reference station) were selected for the
experiments. Signals were digitized at 100.16 Hz sampling
frequency by using a 12 bits analogue-to-digital converter.
Automatic detection/segmentation stages are based on the
short-term average to long-term average ratio (STA-LTA)
algorithm, with a captured sample offset of 2048. It is a
classical algorithm used as standard in seismic detection
[10]. The a-priori classification of the signals is done by
visual inspection. The dataset is composed of 12032 points
signals of two types of volcanic activities: 235 of LP events,
and 235 of VT earthquakes.

The differences in spectral content of these signals allow
the discrimination between the events. That is why spectral-
based classification is often used for this type of data.
However, due to the frequency content changes in time, this
should also be taken into account in the analysis.

An intuitive way to represent this time-frequency rela-
tionship for all the signals would be what is known as a
three-way array Y(l,m,n) ∈ R

I1×I2×I3 . In the different
research areas, unlike three-way array configurations can be
found. The most common design is defined as “profile data”
[1], and it has the form (objects× variable1× variable2).
This is the kind of design we propose to use for the
seismic volcanic data. In this seismic volcanic three-way
array configuration (signals × time × frequency), the
signals are organized in the vertical (first dimension) axis.
The second dimension corresponds to the time (horizontal)
axis.The third dimension corresponds then to the frequency
(depth) axis. To obtain the time-frequency representation of
each signal we used spectrograms.

Figure 2. Spectrograms of two events: VT class (left), LP class (right).

While a spectrum (1D) represents the signal in terms of
energy spread over its frequency components (in a given
interval in time), a spectrogram also displays the changes
that occur over time. This technique allows to extract a
matrix of frequency spectra corresponding to a sequence
of windowed Fourier transforms of the original data trace.
Spectral amplitudes are then displayed as a function of time
in a 2D way.

III. DISSIMILARITY REPRESENTATION FOR THREE-WAY

DATA

Using the Dissimilarity Representation (DR) [5] classifiers
are trained in the space of the proximities between objects,
instead of the traditional feature. Thus, instead of the feature
matrix X(l,m), where l runs over the objects (signals) and
m over the measured variables e.g. frequencies, the set of
objects is represented by the matrix D(X,R). This matrix
contains the dissimilarity values d(xl, rp) between objects
x ∈ X and the objects of the representation set R(r1, ..., rp).
We build from this matrix a dissimilarity space. Objects
are represented in this space by the column vectors of
the dissimilarity matrix. Each dimension corresponds to
the dissimilarities with one of the representation objects.
Classifiers are built in this space using a training set.

The elements of R are called prototypes, and have prefer-
ably to be selected by a prototype selection method [5].
These prototypes are usually the most representative objects
of each class, R ⊆ X or X itself, resulting in a square
dissimilarity D(X,X). R and X can also be chosen as
completely different sets. As dissimilarities are computed
to the representation set R, a dimensionality reduction is
reached if a good, small set can be found, resulting in
less computationally expensive classifiers. Any traditional
classifier that operates in feature space can be used in the
dissimilarity space.

For the three-way data Y(l,m,n) we are dealing with,
the theory of the DR is the same. The issue we have to
address here is how to obtain the dissimilarities from this
three-way representation, in which each object is defined
by a 2D matrix of measurements. As a first approach, we
propose to take each object (matrix) y ∈ Y of the three-way
data, and compute the dissimilarities between them by a 2D
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dissimilarity measures.

A. 2D dissimilarity measure

An important issue (and opportunity) of the DR is the
selection of a suitable dissimilarity measure for the problem
at hand. In the time-frequency three-way representation, we
need to analyze shape changes in the spectral (frequency) di-
rection and connectivity in the time direction. Hence, based
on the results obtained with the shape measure for simple
spectra [4], we propose to make use of the derivatives into
the AMD measure, introduced previously for the 2DPCA
algorithm [11]. In such a way, we can take the ordering into
account as well as the shape of the spectra, resulting in a
2DShape dissimilarity measure:

1) D1(y1, y2) =
(∑m

j=1

(∑l
i=1(y

σ
1ij − yσ

2ij)
2
)p/2

)1/p

on the spectral direction with yσ
i = d

di
G(i, σ) ∗ yi

2) D2(y1, y2) =
(∑l

i=1

(∑m
j=1(y

σ
1ij − yσ

2ij)
2
)p/2

)1/p

on the time direction with yσ
j = d

dj
G(j, σ) ∗ yj

3) Combine both dissimilarities D = 1
ω1

D1 + 1
ω2

D2

The weight p is used to emphasize either small or large
differences between the elements, in dependence of the
problem at hand. If p ≤ 1, all the differences will be reduced,
thus the larger ones will not interfere much in the measure.
On the other hand, if p ≥ 1, the larger differences will
be more pronounced, resulting in a heavy influence on the
measure.

In the combination step, we included a weight for scaling.
In this study we defined ωk = var(Dk), to scale each
dissimilarity matrix by its variance.

IV. EXPERIMENTAL RESULTS

To show the advantages of time-frequency (spectral)
based classification over the spectral-based classification,
we make a comparison of the classification results on the
dissimilarity space derived from both representations. For
the experiments, a dataset with 235 objects per class (VT
and LP) is considered. For the 1D (spectral) representation
we have computed the spectrum by using a 12032-point Fast
Fourier Transform (FFT). Thus, the hole signal is analyzed
in both 1D and 2D representations. For the 2D (spectrogram)
representation, trying to make a trade-off between time and
frequency resolution, a 256 short time Fourier transform was
calculated using time-windows of 256 points with 50% of
overlap. The parameterization values lead to 470×129×93
three-way data. Before computing both representations, the
raw signals were normalized to zero-mean and unit-variance.

A Fisher Linear classifier was computed on the dissimilar-
ity space. Experiments were repeated 10 times. Training and
test objects were randomly chosen from the total data set, in
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Figure 3. ACE on the 1D (left) and 2D (right) representations for different
numbers of prototypes

a 10-fold cross-validation process. Different sizes of the rep-
resentation set [10, 20, 50, 75, 100, 125, 200, 250, 300] were
randomly selected. For the generation of the dissimilarity
space, we computed the Manhattan (MD), Euclidean (ED)
and Shape measures on the spectral representation. These
measures have shown to perform well for spectral data [3],
[4]. In a 5-times 10-fold cross-validation from a range of
values [1− 50], the best results were achieved with σ = 15.
The proposed measure in Sec. III-A was used for the three-
way data, with values of p = [0.5, 1, 2]. For the spectral
direction we selected σ = 3 and for the time direction
σ = 2. The dissimilarity matrices were computed on the
whole spectrograms. Each seismic event has a different start
time, and so the spectrograms. In the following figures, the
Average Classification Errors (ACE) for the DR on both
spectral and three-way data are shown, using different sizes
of the representation set.

V. DISCUSSION AND CONCLUSIONS

We studied the use of the Dissimilarity Representation for
classifying three-way volcanic data. This way, the relation-
ship between the different dimensions is analyzed i.e. change
of frequency content in time. Besides, information about the
data that is missing in the actual representation e.g. shape
and connectivity, can be taken into account in the dissim-
ilarity measure. A 2D dissimilarity measure was proposed
for this purpose. It takes into account the spectral shape
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and continuity in time direction. The relations between the
objects are analyzed in the dissimilarity space.

It can be observed in Fig. III-A that, the ACE on the
dissimilarity space generated from the spectral data is around
25% and 30%. The error values for the Manhattan measure
are slightly better than those of the Euclidean and Shape
measures. Nevertheless, if the standard deviation is taken
into account, the values for the three measures are very
similar. The results with the Shape measure (derivative-
based) are not as expected (based in previous works). Hence,
these results could suggest that there is not more information
to be captured from this representation. It is also possible
that these measures are not robust enough for this problem,
which somehow contradicts the previous studies [3], [4].
Further studies may be done to find a more proper measure
for this type of data. However, when we analyze the error
of the DR from the three-way data (15 − 20%) we see a
significant improvement. This ratifies the fact that the time-
frequency relation is more discriminative than the spectra.
Besides, the proposed 2D measure is capable of capturing
this information.

If we analyze the ACE on the DR from the spectral data,
we can see that for 20 or more prototypes it is approximately
stable. The explanation we give to this phenomenon, is that
there is not more discriminating information to be found
in more prototypes. On the other hand, if we analyze the
ACE on the DR from the three-way data, we can see that
the behavior is different. While increasing the number of
prototypes, the ACE decreases. The more prototypes we
add, the more information we have to discriminate between
the classes. Nevertheless, due to what is called the peaking
phenomenon, when the number of prototypes starts reaching
the size of the training set, the errors will increase.

The good performance of classifiers by the proposed
approach, compared with the traditional one, shows that our
proposal can be a good solution for this kind of problems.
The analysis of the prototype selection helps to corroborate
it. The inclusion of more information in the three-way
data, increases the chances of a better discrimination in
this kind of problems. However, a study of the influence of
different overlaps and more precise techniques to obtain the
time-frequency representation, could improve the three-way
analysis results.
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