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Abstract—The ways distances are computed or measured
enable us to have different representations of the same objects.
In this paper we want to discuss possible ways of merging
different sources of information given by differently measured
dissimilarity representations. We compare here a simple av-
eraging scheme [1] with dissimilarity forward selection and
other techniques based on the learning of weights of linear
and quadratic forms.
Our general conclusion is that, although the more advanced
forms of combination cannot always lead to better classification
accuracies, combining given distance matrices prior to training
is always worthwhile. We can thereby suggest which combina-
tion schemes are preferable with respect to the problem data.

I. INTRODUCTION

One of possible representations of data that differs from a
feature based description is based on pair-wise comparisons
of objects namely distances or dissimilarities. In many cases,
distances are obtained directly from raw or pre-processed
measurements. Dissimilarities may be chosen when feature
representations cannot be helpful in discriminating different
classes of objects, in case the experts are not able to define
proper features, or if the data lies in high-dimensional spaces
(too many features). But also the intrinsic nature of the
problem at hand is quite relevant: for instance measures
of curves and shapes are good examples of cases in which
a dissimilarity representation might be more suitable than
classic feature representations in recognition tasks. Although
dissimilarity representations can already be seen as a form
of classifier combination namely a combination of nearest
neighbour (NN) classifiers, in this paper we want to focus
our study on possible (feasible) techniques designed in order
to gain from the combination of different dissimilarities.
Combining dissimilarity representations (and kernels) has al-
ready received some attention in the literature as researchers
realized that different dissimilarity measures may emphasize
different types of information of objects and classes to be
distinguished. [2] and [3] studied combination of kernels
for use by support vector machines. [4] and [5] studied the
optimization of distance measures in feature space. A combi-
nation of differently measured (or computed) dissimilarities
can occur at different stages of a pattern recognition system.
For example, using the outputs of classifiers built on each
dissimilarity separately, but also by combining the various

dissimilarities directly. In this paper however we focus on
given dissimilarity matrices, as they may arise in practical
applications, and study combinations of them judged by the
performance of the linear SVM [6] in dissimilarity space.
In a previous study on this topic [1] we compared different
ways of combining dissimilarities obtained from different
measurements of the same underlying data. The method that
did show the best classification accuracy (with respect to the
linear normal density based classifier) was based on the sum
of normalized matrices. This is the equivalent of a weighted
sum where the weights are the normalization factors. The
experimental results of [1] triggered the following questions:
• Is averaging dissimilarity matrices always helpful, and

if not, is it possible to define conditions (on the mea-
sured data, on the distance metrics involved, on the
combining weights) to be fulfilled in order to increase
the accuracy of our designed classification system?

• Is it possible to define a general optimization procedure
in order to select sets of weights that maximize our
performance measure?

This work sets out to address these issues.

II. COMBINING DISSIMILARITIES

In a weighted sum of different dissimilarities as:

Dsum = ΣK
i=1ωiD

(i) (1)

where K is the total number of available matrices D(i)

and ωi the related weights. In the simplest approach these
weights are the inverse of the maximum distance of the cor-
responding matrix. This scaling procedure has been applied
to avoid that the combining method used might be biased
by representations with larger distances. This simple aver-
aging scheme (NS) has been compared with other methods
used to determine the weights of a linear combination of
dissimilarity matrices as eq. (1).

A. Optimization procedures

In this section we will give an overview of the techniques
used to find the weights of a combination of distance
matrices.
Forward selection (FS)
The dissimilarity forward selection approach can be seen as a
greedy combinatorial optimization scheme that gives binary
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weights as output. All the given matrices are normalized
beforehand, dividing each one by the mean of its distances.
The first matrix is selected with respect to the leave-one-out
NN error computed on the training set (the entire square
matrix), the following matrix is the one that summed to the
first minimizes the criterion (NN error). The procedure stops
when the criterion on the obtained summed matrix starts
rising.
Fisher
This procedure makes use of a kind of Fisher criterion in
the dissimilarity space that resembles a method that is often
used in kernel combination: the kernel alignment [7]. The
objective function to be minimized is given by the following
expression:

F (ω1, ω2, ..., ωK) = log
(

Σ(xi,xj)∈SΣkωkd2
k(xi, xj)

Σ(xi,xj)∈DΣkωkd2
k(xi, xj)

)
(2)

where S = {(xi, xj)|ci = cj} and D = {(xi, xj)|ci 6= cj},
ci is the class to which the object xi belongs, and K is
total number of available matrices and therefore weights
to be found. From equation (2) it is possible to see how
this criterion resembles the Fisher criterion in a dissimilarity
space where the objective function we want to minimize is
the log of the ratio between the sum of distances “within”
class and the sum “between” class. This method emphasizes
the compactness of within class distributions and therefore
tends to suffer from multimodal data distributions.
MCML and NCA
In the optimization procedures MCML (Maximally Collaps-
ing Metric Learning)[8] and NCA (Neighbourhood Com-
ponent Analysis) [9] the elements of the matrix of a Ma-
halanobis distance between the given ones are determined.
The approaches used in this work are instead based on
the computation of the weights of a linear combination of
squared distances, therefore these are the diagonal versions
of the mentioned methods. This variation leads to a much
lighter computational load and it has also been proven to
provide sufficiently good results [10].
Both methods make use of a conditional distribution such
that the probability of selecting an object xj as a neighbour
of the given xi (with ci turning to be cj) is p(j|i). This
distribution p(j|i) is computed as the following function of
the weighted sum of squared distances:

p(j|i) =
exp (−Σkωkd2

k(xi, xj))
Σt 6=i exp (−Σkωkd2

k(xi, xt))
, p(i|i) = 0 (3)

Since p0(j|i) = 1 if (xi, xj) ∈ S and p0(j|i) = 0 if
(xi, xj) ∈ D represents the ideal distribution, the MCML
algorithm minimizes the KullbackLeibler divergence [11]
between these two distributions (p(j|i) and p0(j|i) ) given
the semi-positive definiteness of weight matrix (in our
setting: weights larger or equal to zero).

F (ω1, ω2, ..., ωK) = ΣiKL[p0(j|i)|p(j|i)] (4)

NCA is based on the maximization of the following function:

F (ω1, ω2, ..., ωK) = Σi log (pi) (5)

where pi = Σj∈ci
p(j|i). This method optimizes a continu-

ous version of leave one out kNN error (on the training set),
and as MCML is non parametric. But it is not convex as
MCML and therefore there is no guarantee that a gradient
method (like the conjugate gradient) will converge to a
global solution. In order to solve the last three optimization
problems (Fisher, MCML and NCA) the conjugate gradient
method [12] has been employed.

III. DATA AND EXPERIMENTS

We have conducted our experiments using the following
four datasets:
Chicken pieces silhouettes dataset (446 objects belonging to
five classes: 76, 96, 96, 61, 117) [13] (chicken pieces 44);
reduced sets of 11 distance matrices (chicken pieces); Bi-
ological data (Bio data lkc) set of 5 matrices each con-
stituted of 2400 objects belonging to two classes [14];
Flowcytometry 833 ( three classes of: 335, 131, 146)
histograms described by 252 features, measured with 4 tubes
(set of 4 matrices) [15] ; M-feat: this dataset consists of
features of handwritten digits (‘0’–‘9’, 200 per digit). Six
different feature sets are extracted [16], therefore 6 euclidean
distances have been computed.
We have applied five different combination techniques (the
four mentioned before: FS, NCA, MCML, Fisher and the
simple NS approach) compared to the best performing
individual ones (BIO). The performance measure used in
our experiments has been the classification error of a linear
support vector machine [6] in the obtained dissimilarity
space. For each one of the four datasets used we have
applied a two fold crossvalidation repeated 40 times, in
each run of this process we have splitted our data in a
training and a test set, the weights have been determined
using the optimization procedures (and the binary weights
of the Forward selection approach) on the training set. It is
important to underline that in the case of the optimization
procedures (NCA, MCML and Fisher) the weights have been
internally (in the routines) normalized with the Froebenious
norm. The mentioned partitioning of the datasets has been
carried out consistently for all the used methods, this means
that in each run of our procedure the same data has been
used as train set and the remaining for testing for each of the
six settings. It is very important to underline that the best
individual ones have not been selected on the basis of the test
set error but on a 40 times 2-fold crossvalidation employed
on the training set used also for the other described settings.
This gives a less optimistic but definititely more realistic
error estimation with respect to the individual matrices.

IV. RESULTS

Our experimental results are provided in table I. They
show the classification errors using a linear support vector
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Table I
CLASSIFICATION ERRORS (STANDARD DEVIATIONS) FOR THE FOUR DATASETS USING SIX METHODS, THE FIRST ONE BIO (BEST INDIVIDUAL ONES)

IS ONLY MEANT TO SHOW THE PROPERTY OF THE ANALYZED DATASETS.

Combining methods
Datasets BIO FS NS NCA MCML Fisher
m feat 3.6 (0.6) 2.3 (0.4) 2.1 (0.5) 1.9 (0.5) 1.9 (0.5) 3.2 (0.6)
flow cyto 31.3 (2.2) 13.9 (2.4) 12.3 (1.5) 11.8 (1.4) 12.0 (1.4) 16.7 (2.1)
chicken pieces 8.1 (2.1) 5.5 (2.2) 5.3 (1.8) 5.5 (1.8) 5.5 (1.8) 5.8 (2.2)
chicken pieces 44 8.3 (2.1) 5.7 (1.9) 5.8 (2.1) 5.7 (2.1) 5.8 (2.2) 7.1 (2.8)
Bio data lkc 7.9 (1.7) 7.2 (1.4) 5.9 (1.1) 7.0 (1.2) 7.0 (1.1) 6.8 (1.3)

machine (libsvm [6] with default parameters), the given
values are the means (and standard deviations) of the classi-
fication errors computed as described previously making use
of six different procedures. These results show that for all the
studied datasets the five methods that involve combinations
of the given matrices outperform the BIO error for the best
dissimilarity matrix (with respect to the test set).
The binary weights computed by the forward selection lead
to classification accuracies very close to the best ones. In the
case of the chicken pieces (table I) and in particular for the
full collection of 44 chicken pieces matrices [13] this proce-
dure scores even not particularly different from the best one.
For the cases of the mfeat and the flowcytometer datasets the
NCA and MCML optimization methods are outperforming
the NS while this does not happen for the chicken pieces and
bio datasets. For these two cases the Fisher method scores
equivalent to NCA and MCML. This suggests that the data
distributions suffer less from multimodality. For the first two
datasets the accuracy of the Fisher technique appears to be
much worse than for the other methods. These results might
therefore suggest that for multimodal data distributions the
NS approach can be a better (and faster) choice than more
sophisticated (and computationally expensive) optimization
tasks.
In order to test further the performances of the studied
optimization techniques we have added a magnified (with a
factor of 200) random distance matrix to the previous ones
for each dataset and run our experiments with the same
settings as before (due to the space constraint the results
table has not been provided). The NS performances are (as
expected) in this case heavily deteriorated. It is also clear
that the NCA and MCML techniques are always better than
the other approaches (with the sole exception of BIO); at
the same time we can see that the Fisher method is always
the worse. In this noisy setting the simple Forward selection
based on the leave one out NN error is leading to results
characterized by a very high variance.

V. DISCUSSION AND CONCLUSION

Previous works in the field of combining dissimilarity
representations ([1], [17], [18]) suggest that a simple
averaging of the matrices can lead to classification
performances that outperform the results of the individual
ones. This was reported with respect to linear and quadratic

classifiers (in some cases also regularized) on dissimilarity
representations obtained with different prototype selection
methods.
In this paper we presented a further analysis, considering
weighted averages of dissimilarity matrices. A SVM
was used so that regularization and dimension reduction
effects could be avoided. It was found that the original
conclusions are still valid: averaging of different
dissimilarity representations of the same objects may
show considerable improvements of the classification
performances. Optimizing the weights may improve the
results further. A fast and simple procedure to select
the most significant dissimilarity matrices hardly ever
outperforms averaging all matrices.
The main aim in this work was to compare the simple
procedure of averaging matrices with other more
sophisticated techniques based on the learning of weights in
linear and quadratic forms using optimization algorithms.
We have seen that a normalized sum of given matrices can
be outperformed by optimization techniques like NCA and
MCML. From the experimental results it appears that this
might in particular hold for multi-modal data distributions,
or at least that lead to worse classification accuracy with
respect to the Fisher approach.
The learning of kernel [19] or dissimilarity weights (or
metric learning [10], [8], [5], [4]) have been widely studied,
but with this paper we wanted to focus in particular on
combining different sources of information. These are
namely dissimilarity matrices mainly originating from
different measurements of the problem data. We have
shown that combining before the training stage generally
helps and that using techniques previously used for metric
learning [10] these linear combinations can lead to even
better results. In the future we will further investigate the
influence of data with a multi-modal distribution, and in
particular procedures to determine a priori, on the basis of
the given distances, which might be the most suitable way
to combine.
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