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Abstract—Dissimilarities can be a powerful way to represent
objects like strings, graphs and images for which it is difficult
to find good features. The resulting dissimilarity space may
be used to train any classifier appropriate for feature spaces.
There is, however, a strong need for dimension reduction.
Straightforward procedures for prototype selection as well as
feature selection have been used for this in the past. Compli-
cated sets of objects may need more advanced procedures to
overcome local minima. In this paper it is shown that genetic
algorithms, previously used for feature selection, may be used
for building good dissimilarity spaces as well, especially when
small sets of prototypes are needed for computational reasons.
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I. INTRODUCTION

Data preparation and representation are usually required
steps before an automatic analysis of the data is performed.
From the pattern recognition point of view it is possible
to have supervised (generalization) as well as unsupervised
analyses on the basis of some representation of the patterns.
Widely extended is the use of vector spaces to represent
patterns, where statistical classifiers can be used and are
theoretically justified by the metric or Euclidean properties
assumed beforehand. More complex representation have
also been studied, e.g. structural representations [1], where
patterns are encoded in graphs, strings or grammars. Another
way to encode patterns is by dissimilarities derived from
pairwise comparisons between objects. It is possible to com-
pute dissimilarities between vectors or structures [2], [3], and
also from original data without intermediate representations
(e.g. dissimilarities derived from a matching process of
images directly).

If we are dealing with dissimilarities instead of distances,
where an exact metric embedding is not possible, the alterna-
tives for the classification of this data are [4]: classification
by the k Nearest Neighbour (k-NN) rule, classification
in dissimilarity spaces and classification after embedding
the data in pseudo-Euclidean spaces. The computation of
dissimilarities can be computationally demanding as in case
of comparisons of images and graphs, then a reduction of

the number of dissimilarities to be measured is of interest.
One way to do this is by prototype selection. In dissimilarity
spaces prototype selection aims at finding small sets of ob-
jects in order to decrease the dimension of the dissimilarity
vectors but for the generalization step all the training objects
are included. In the case of the k-NN rule and the pseudo-
Euclidean spaces the prototype selection will determine the
number of training samples.

For dissimilarity representations some prototype selection
techniques have been investigated showing good results [5],
specially when used with linear and quadratic classifiers.
In [5] various techniques were compared such as Kcentres,
mode seeking, forward feature selection, linear program-
ming, editing-condensing, and a mixture of Kcentres with
linear programming. It showed that forward selection is one
of the best, especially for small sets of prototypes. Other
prototype selection methods have been proposed in the graph
and string domain [2], [3]. The methods tackle the question
of how to select a small representation set for constructing
the dissimilarity space. In this paper it is of our interest to
study a selective scheme and not a creative scheme since
one goal is to work with a given dissimilarity matrix that
could have been computed directly from the initial data, and
an intermediate space for creating artificial prototypes may
not exist.
Genetic algorithms (GAs) have been used for feature se-
lection [6] as well as for prototype selection [7]. In these
cases, each specimen is represented by a binary chromosome
whose genes are associated either to features or prototypes.
However, in almost all studies where GAs have been used
for prototype selection, the aim is reducing computational
demands of the nearest neighbor classifier as conceived for
feature spaces but not for choosing appropriate prototypes
in order to build a dissimilarity space.
Fitness functions employed in the above-mentioned studies
made possible to emphasize either on the maximization of
the classification accuracy or on penalizing the cardinality of
the representation set. Kuncheva and Jain [8] compare the
GA-based selection against the sequential forward feature
selection (SFS) method as well as against two classic rules
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of condensing [9]. In general, these studies conclude that the
use of GAs for feature/prototype selection is suggested in
spite of its non-optimality; nonetheless, others such as [10]
point out that simpler feature selection methods should be
preferred because GA-based results might not be always as
good as expected.

In this paper, we will show that GA-based selection
can overcome local minima thus outperform the sequen-
tial forward selection of prototypes for dissimilarity space
classification. Both procedures are compared on the basis
of the same selection criterion, the optimization of class
separability by the minimization of the leave one out (LOO)
1-NN error in the training set.

II. PROTOTYPE SELECTION BY A GENETIC ALGORITHM

FOR DISSIMILARITY SPACES

The dissimilarity space was proposed by Pekalska et al.
[4]. It was postulated as a Euclidean vector space. For
its construction a representation set R = {r1, r2, ..., rk}
is needed, where objects belonging to this set are chosen
adequately based on some criterion. Let X be the training
set, R may or may not overlap with X . Once we have R,
the dissimilarities of objects in X to the objects in R are
computed. Any object is now represented by a vector of
dissimilarities dx to the objects in R as shown in (1).

dx = [d(x, r1)d(x, r2)...d(x, rk)]. (1)

The dissimilarity space is defined by the set R. Each
set of coordinates of a point in that space corresponds
to the dissimilarities to the prototypes and the dimension
of the space is determined by the number of prototypes
selected. A good selection of R allows one to decrease the
computational complexity at the cost of slightly increased
error rates. Finding good criteria and algorithms for
prototype selection is still an open issue. One of the best
methods in [5], forward selection, used the minimization of
the LOO 1-NN error as criterion. The computation of this
criterion is fast as it relies on the given distances. No other
computation than minimum operations are needed.

GAs are inspired in natural systems where species
evolve by selection, reproduction, and mutation, ensuring
better organisms as well as diversity. They are classified
as global search heuristics. One drawback of the methods
is that some parameters should be set by the user. Another
drawback is that solutions are sensitive to initialization, and
a satisfactory solution may or may not have been reached
when the method stops.

In the GA vocabulary, a gene is a part of a candidate
solution, a chromosome is a string of genes that represents
a candidate solution, and a population is the available set
of chromosomes to be explored. An important component
of a GA is the fitness function that evaluates the candidate
chromosomes, the GA minimizes or maximizes the value
returned by this function and the best candidate is selected

in each evolution cycle according to its fitness. The simplest
way to encode the candidate solutions is by strings over the
alphabet

∑
= {0, 1}. For example a set of strings of size

two over this alphabet is
∑2 = {00, 01, 10, 11}.

The GA for prototype selection has as input parameters
the dissimilarity dataset and the desired number of
prototypes k. Solutions are encoded by binary strings. The
first chromosome is chosen as the best, and we iterate in
an evolution cycle while the fitness value of the new best
chromosome improves in a new iteration. The solutions or
chromosomes will evolve by the reproduction, mutation
and selection operations.

The heuristic search strategy of the GA tries to avoid the
local minima by introducing the random mutations. The
forward search from the R initial candidates for prototypes,
evaluates first each individual prototype and the one that
leads to the best classification performance is kept, then
the second prototype that combined with the first leads to
the best classification performance is added and so on, this
way of finding the solutions can cause the convergence to
local minima.

III. EXPERIMENTS

In order to evaluate our hypothesis on the benefits of the
GA search strategy over the forward search for the problem
of prototype selection for dissimilarity space classification
we conducted some experiments on different dissimilarity
datasets. The methods are compared in terms of classifi-
cation errors of the Linear Discriminant Analysis (LDA)
in the dissimilarity space while varying the number of
prototypes. We compared the GA and the forward selection
of prototypes using as selection criterion the LOO 1-NN
error. The parameters for the GA were: 50 chromosomes
for the initial population, 0.5 of mutation and reproduction
probability, and 3 generations without change as stopping
criterion. As a baseline we also computed the results for the
random selection and for the 1-NN classifier applied directly
on the total dissimilarity matrix and not in the dissimilarity
space. Learning curves are used to illustrate the changing
rate of learning for the LDA classifier while varying the
number of prototypes.

Four different dissimilarity datasets were used for the
experiments, the CatCortex, Chickenpieces-20-60, CoilYork
and CoilDelftDiff datasets [11]. All of them are multiclass
problems. The datasets were split randomly into training and
test sets taking approximately 50 percent of the objects in
each set. A comparison of different properties of the datasets
can be found in Table I.
The smallest dataset is the CatCortex [12], the 65x65
dissimilarity matrix is measured in an ordinal scale and
describes the connection strengths among 65 cortical areas
of a cat from four regions (classes): auditory (10 samples),
frontolimbic (19), somatosensory (18) and visual (18).
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The dissimilarity dataset Chickenpieces-20-60 is com-
puted from the chickenpieces image dataset [13]. From
these images the edges are extracted and approximated by
segments of length 20, and a string representation of the
angles between the segments is derived. The dissimilarity
matrix is composed by edit distances between these strings.
The cost function between the angles is defined as the
difference in case of substitution and as 60 in case of
insertion or deletion.

The CoilYork dataset is composed by dissimilarities
between graphs derived from four objects of the COIL
database, the graphs are the Delaunay triangulations derived
from corner points of the images [14]. The dissimilarity
matrix is constructed by graph matching, using the algorithm
of [15].

The CoilDelftDiff dissimilarity dataset is also computed
from a set of graphs derived from four objects of the COIL
database. The graphs are the Delaunay triangulations derived
from corner points of the images [14]. Graphs are compared
in the eigenspace with a dimensionality determined by the
smallest graph in every pairwise comparison by the JoEig
approach [16].

Average classification errors over 40 repetitions of the 1-

Table I
PROPERTIES OF DATASETS.

Datasets # classes # objects per class symmetric metric
CatCortex 4 10,19,18,18 yes no

ChickenPieces-20-60 5 117,76,96,61,96 no no
CoilYork 4 4x72 no no

CoilDelftDiff 4 4x72 yes no

NN in the dissimilarity matrix and LDA in the dissimilarity
space for the random, forward and GA selection as a
function of the number of prototypes, are presented in Figs.
1, 2, 3, and 4.

It was observed that in a number of cases for small sets of
prototypes the GA search can find better solutions than the
forward search as it can be seen in the CoilYork, CatCortex
and CoilDelftDiff datasets. But in other cases as in the
ChickenPieces-20-60 dataset the GA cannot improve the
solution found by the forward selection. In the CatCortex
and CoilDelftDiff with prototype selection it is possible to
reach or improve the 1-NN classification results at a lower
computational cost since the 1-NN needs to measure all
the dissimilarities to the training objects, and with proto-
type selection only the dissimilarities to the prototypes are
measured. In the other datasets the 1-NN has a smaller error
but at the cost of a superior computational demand.

IV. DISCUSSION AND CONCLUSION

The problem of prototype selection for building
dissimilarity spaces is related to that of feature selection
for feature spaces. There are, however, a few significant
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Figure 1. Classification results of LDA in the dissimilarity space and
1-NN on the CatCortex dataset.
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Figure 2. Classification results of LDA in the dissimilarity space and
1-NN on Chickenpieces-20-60 dataset.
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Figure 3. Classification results of LDA in the dissimilarity space and
1-NN on the CoilYork dataset.

differences. In contrast to feature sets, the set of candidate
prototypes (the training set of objects) constitutes a
homogeneous field: neighboring object have similar
properties as prototypes. There is not really a scaling
issue because all dissimilarities are in the same range.
As given dissimilarities may result from clustered sets of
objects and are often non-Euclidean, the search for good
sets of prototypes may be hampered by local minima. On
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Figure 4. Classification results of LDA in the dissimilarity space and
1-NN on the CoilDelftDiff dataset.

the positive side it should be mentioned that the given
dissimilarities may be used for a fast computation of
separability criteria. This makes the use of GAs desirable
as well as feasible.

In this paper we have shown by a set of experiments
on given dissimilarity matrices that GAs may be used
successfully to construct good dissimilarity spaces. There is
not always a need to do this. Forward search procedures as
well as even random selection may also do well. For some
problems, of which we have given clear examples, GAs
perform better, especially when small sets of prototypes
(e.g. one to twenty) are needed and also when training
sets are small and complicated. It is of importance when
fast classifiers have to be built in dissimilarity spaces
maximizing the classification accuracy. For larger training
and prototype sets, GAs might need a careful selection of
their parameter values.
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