
ROC analysis and cost-sensitive optimization for hierarchical classifiers

Pavel Paclı́k∗, Carmen Lai∗, Thomas C.W. Landgrebe†, Robert P.W. Duin‡
∗PR Sys Design, Delft, The Netherlands, Email: pavel@prsysdesign.net

†University of Sydney, Sydney, Australia, Email: thomas.landgrebe@sydney.edu.au
‡PRLab, TU Delft, Delft, The Netherlands, Email: r.duin@ieee.org

Abstract—Instead of solving complex pattern recognition
problems using a single complicated classifier, it is often
beneficial to leverage our prior knowledge and decompose
the problem into parts. These may be tackled using specific
feature subsets and simpler classifiers resulting in a hier-
archical system. In this paper, we propose an efficient and
scalable approach for cost-sensitive optimization of a general
hierarchical classifier using ROC analysis. This allows the
designer to view the hierarchy of trained classifiers as a system,
and tune it according to the application needs.

Keywords-Hierarchical classifiers, ROC analysis, cost-
sensitive optimization

I. INTRODUCTION

Pattern recognition problems often exhibit high complex-
ity. A powerful approach to tackle complexity employs
problem decomposition. Instead of building one compli-
cated classifier in a large feature space, we may design
a hierarchical classifier focusing on separate sub-problems.
Each sub-problem classifier may leverage specific features
and hence a simpler model. The benefits of hierarchical
classifiers have been demonstrated for problems with large
number of classes in remote sensing [1], target detection [2]
or pose estimation [3].

Although hierarchical classifiers provide much needed
simplification, they are difficult to optimize. Receiver Op-
erating Characteristic (ROC) analysis became the standard
tool for tuning of trained two- and multi-class classifiers
according to performance requirements [4]. The benefits of
joint ROC optimization of a two-stage detector/classifier
system have been also demonstrated [5]. However, in case
of general classifier hierarchies, the designer currently faces
a dilemma: Either to decompose the system in parts and
optimize each step independently or to build a monolithic
classifier.

In this paper, we propose an algorithm for cost-sensitive
optimization of an apriori-defined hierarchical classifier.
It allows the designer to view the entire hierarchy of
individually-tuned classifiers as a system, and optimize it
using the system-wide tools.

II. HIERARCHICAL CLASSIFIERS

For the sake of this research we consider the hierarchical
classifier as a tree with nodes representing the classifiers, and
edges the flow of data samples during execution. We focus

on a sub-class of decoupled hierarchical classifiers that are
constructed based on problem prior knowledge. We assume
that the training and test data sets for each node classifier
are known apriori and do not depend on setting of a decision
operating point anywhere in the system.

Decoupled systems naturally arise, for example, in two-
stage recognition applications where the detector is de-
signed using low-level image processing techniques while
the second-stage multi-class classifier is trained with statisti-
cal pattern recognition approach. Other candidates for apri-
ori decomposition are the medical diagnostic or industrial
sorting problems with known sub-classes such as tissues,
materials or varieties. While the separation of sub-class
groups may often be performed with apriori-known simple
features, the finer discrimination of similar materials may
require more sophisticated data representations.

PR Sys Design ROC hierarchy research10

classifier 2

fruit

non-fruit

banana

round fruit

classifier 3

fruit detector

apple lemon

input

Figure 1. Hierarchical fruit classifier. Terminal decisions are in boldface,
meta-class decisions in italics.

On the contrary, an example of a coupled hierarchical
system is a cascade of AdaBoost detectors widely used in
computer vision applications [6]. Each stage in the AdaBoost
cascade is trained on the training data containing the false
positives of the preceding stage which was tuned using ROC
analysis not to loose target examples.

An example of a decoupled hierarchical classifier is
presented in Figure 1. This fruit sorting system consists of

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.729

2969

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.729

2981

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.729

2977

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.729

2977

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.729

2977

a fruit detector rejecting outlier objects on the conveyor
belt such as stones. Only examples labeled as fruit by
this detector are passed on to the classifier discriminating
between the round fruit and bananas. Defining the round fruit
meta-class permits the use of simple shape-based features in
this step. The objects labeled as round-fruit are passed on to
the last stage, the discriminant separating apples and lemons
which may leverage informative color features.

III. ROC ANALYSIS FOR HIERARCHICAL CLASSIFIERS

We consider a statistical classifier as a composition of a
model returning soft output such as estimated class posteri-
ors, and a decision function converting this soft output into
a decision. The classifier operating point φ is defined by
the parameters of its decision function such as the per-class
weights for a discriminant or the threshold for a detector [7].
ROC analysis derives a set of relevant operating points
from a labeled test set and estimates desired performance
measures at these points [8].

In order to perform ROC analysis for a hierarchical clas-
sifier with N nodes, we need to define the operating point of
such system. Because our hierarchical system is decoupled,
we can estimate an ROC for each node classifier separately.
We define the system operating point as a tuple of per-
node operating point indices φsys = {φn}Nn=1. Therefore, the
hierarchical classifier ROC is composed of a set of system
operating points representing the N -ary Cartesian product
between per-node sets of operating points.

We propose the ROC analysis scheme for hierarchical
classifiers using a two-step procedure. In the first step,
individual node ROCs are estimated using the design data
set. In the second step, the operating point of the hierarchi-
cal classifier is optimized according to application-specific
costs.

1) Per-node ROC estimation (arbitrary node order)

• Define the node data set using specific features
and subsets of classes or meta-classes.

• Define the node model training and validation
sets.

• Train the model on the node training set.
• Estimate model soft outputs on the val.set.
• Estimate ROC from the soft outputs.

2) Optimization of the system operating point using the
system ROC optimizer

IV. ROC OPTIMIZER FOR HIERARCHICAL SYSTEMS

In the proposed algorithm, we do not evaluate entire
ROC of a hierarchical system explicitly. Instead, we use an
ROC optimizer identifying the system operating point φsys

minimizing the loss L of the hierarchical classifier on a given

test set:

L(φsys) =
C∑

i=1

P (ωi)
C∑

j=1,i6=j

CMi,jMi,j

−
C∑

k=1

P (ωk)CMk,kMk,k,

(1)

where CM represents normalized confusion matrix at the
system operating point φsys, M the cost matrix of the same
dimension, and P (ω) the prior probability of the class ω.

Algorithm 1 System ROC greedy optimizer
1: Input: Trained hierarchical classifier with per-node

ROCs, labeled data set, cost matrix M .
2: Find initial system operating point φinit by minimizing

the loss for a set of K randomly selected system
operating points.

3: Cycle through nodes.
4: Compute the set of system loss values L for all

operating points at the node n while fixing the operating
points at remaining nodes.

5: Update φsys minimizing L.
6: Repeat until φsys does not change.
7: Output: System op.point φsys and its loss L.

The proposed optimizer first selects a suitable initial
system operating point using random sampling. Then it per-
forms a node-per-node greedy search evaluating the system
loss on all operating points of a given node while fixing the
operating points at remaining nodes.

V. EXPERIMENTS

To demonstrate the proposed algorithm we use the artifi-
cial Fruit data set with four classes, namely apple, banana,
lemon and outlier. The Fruit problem imitates a typical
sorting application where objects on the conveyor belt need
to be classified while rejecting possible outliers. The outlier
class is not well represented during classifier design stage
as arbitrary unseen outlier objects may appear in production.
We simulate this by separating the training set and the test
set used only for performance evaluation, see Figure 2. All
classes in the training set are generated using bi-variate
Gaussian distributions. The outlier class in the test set is
composed of a Gaussian mode and additional uniformly-
distributed examples.

A. Optimizing hierarchical classifier

The hierarchical classifier is constructed according to
the scheme depicted in Figure 1. It comprises the Parzen-
window based fruit detector, the quadratic discriminant
assuming normal densities (QDC) for the banana/round-
fruit classifier, and the linear discriminant assuming normal
densities (LDC) for the last node.

29702982297829782978

!10 !5 0 5 10
!2

!1

0

1

2

3

4

5

6

7

1: Feature 1

2
:

F
e

a
tu

re
 2

apple

banana

lemon

outlier

(a) Training set

!10 !5 0 5 10
!2

!1

0

1

2

3

4

5

6

7

8

1: Feature 1

2
:
F

e
a
tu

re
 2

apple

banana

lemon

outlier

(b) Test set

Figure 2. Training and test sets in the Fruit problem.

The hierarchy is trained using a random subset with 200
samples per class drawn from the training distribution. To
avoid bias, the node models and ROCs are estimated on
different 50% of the training data. The system operating
point is then optimized using the proposed greedy scheme
employing the complete training set. The node ROCs of
the trained hierarchical classifier contain 400, 238, and 166
operating points, respectively. In all experiments, the search
algorithm was initialized using K = 2000 randomly selected
points.

We first optimize the system using the cost matrix with
equal costs. The decisions at the resulting system operating
point are shown in Figure 3(a). The system confusion matrix
on the test set is:

True | Decisions
Labels | apple banana lemon outlier | Totals
--
apple | 0.793 0.046 0.118 0.043 | 1.00
banana | 0.155 0.593 0.201 0.051 | 1.00
lemon | 0.107 0.038 0.715 0.140 | 1.00
outlier | 0.087 0.037 0.045 0.832 | 1.00

To illustrate the cost-sensitive system optimization, we
define the second cost matrix increasing the costs for fruit
rejection and for the banana/lemon entry:

1 1 1 5
1 1 5 5
1 1 1 5
1 1 1 1

Invoking the cost optimization algorithm with the updated
specification, we obtain the new system operating point
resulting in the following confusion matrix:

True | Decisions
Labels | apple banana lemon outlier | Totals
--
apple | 0.879 0.083 0.022 0.016 | 1.00
banana | 0.197 0.737 0.052 0.014 | 1.00
lemon | 0.260 0.073 0.606 0.061 | 1.00
outlier | 0.187 0.050 0.040 0.723 | 1.00

Figure 3(b) shows the corresponding decisions. We may
see that the detector decision boundary expanded and both
discriminant boundaries shifted. Note that the banana/lemon
error is not intrinsically handled by any of the three node
classifiers. This illustrates how the hierarchical classifier
ROC allows us to work at the system level.

Finally, Figure 3(c) shows the decisions of the monolithic
discriminant trained on all available classes including the
known outliers. Naturally, it accepts unexpected outliers in
the test set into one of the fruit classes.

B. Learning curves

In the second experiment, we investigate classifier be-
haviour. We attempt to answer two questions. Firstly, is it
beneficial to train the node models and estimate the node
ROCs on different subsets of training data? In addition
to the algorithm performing 50/50 split of node training
data, we also include the algorithm re-using the entire node
training set for both model training and ROC estimation.
Secondly, we compare the hierarchical system to two types
of monolithic classifiers. The first one trains QDC on four
classes including outliers. The second one is training QDC
only on the three fruit classes and adds a reject option with
the threshold set to reject 1% of fruit samples. This effec-
tively approximates optimal (Bayes) solution for our test set.
The ROC analysis and the cost-sensitive optimization of all
algorithms was performed in Matlab 7.5 using PRSD Studio
package1.

Figure 4 shows the learning curves with mean loss and
standard deviation of mean loss computed over 30 exper-
iments. We observe that the four-class QDC provides the
worst solution. This was expected as it cannot cope with the
additional outliers in the test set. Although the hierarchical
classifiers do not train a model on the outlier class, they
provide better protection for the fruit distribution due to the

1http://prsdstudio.com

29712983297929792979

(a) Hierarchical classifier, Cost spec.1 (constant) (b) Hierarchical classifier, Cost spec.2 (to lower
fruit rejection and banana/lemon errors)

(c) Monolithic classifier, Cost spec.2

Figure 3. Decisions of a hierarchical system and of a monolithic discriminant

dedicated detector stage. It appears that estimating unbiased
node ROCs using 50/50 node data split is a slightly better
strategy.

10 20 30 40 50 60 70 80 90 100
!0.55

!0.5

!0.45

!0.4

!0.35

!0.3

!0.25

!0.2

Training set size (per class)

S
y
s
te

m
 l
o
s
s
 f
o
r

c
o
n
s
ta

n
t
c
o
s
t
s
p
e
c
.

4!class QDC

3!class QDC + reject 1%

hierarchy (ROC on tr.set)

hierarchy (50/50 split)

Figure 4. Learning curves for constant cost matrix (smaller loss is better).

We have also compared the proposed greedy optimizer
with the full search varying the training set sizes for the
constant cost specification. In total, more than 15 million
operating points were evaluated in the full search. In all
cases, the greedy algorithm found the optimal solution
identified by the full search. The greedy search naturally
requires only a tiny fraction of operating point evaluations
(e.g. for data set with 70 samples per class, it evaluated only
3158 from the total of 6.2 million system op.points).

The optimization of the hierarchical fruit classifier on the
data set with 3000 samples takes under 5 minutes on 2.8
GHz laptop.

VI. CONCLUSIONS

In this paper, we propose a scalable algorithm for opti-
mization of decoupled hierarchical classifiers, thus providing
a novel approach for tackling certain types of complex
classification problems. It allows the designer to simplify

the complex problem by decomposition, leveraging the most
appropriate features and models for each of the sub-problems
while still tuning the entire system using a cost-sensitive
optimization scheme.

It is to be expected that for more complex problems and
complicated cost specifications, the suboptimal nature of the
greedy search may become apparent, but in this case the
exhaustive approach becomes computationally intractable.

REFERENCES

[1] S. Kumar, J. Gosh, and M. M. Crawford, “Hierarchical fusion
of multiple classifiers for hyperspectral data analysis,” Pattern
Analysis & Applications, vol. 5, pp. 210–220, 2002.

[2] Y. C. Wang and D. Casasent, “A hierarchical classifier us-
ing new support vector machine,” in Proc. of Int.Conf.on
Doc.Analysis and Recognition (ICDAR’05), vol. 2, 2005, pp.
851–855.

[3] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla,
“Hand pose estimation using hierarchical detection,” in Com-
puter Vision in Human-Computer Interaction, vol. LNCS 3058,
2004, pp. 105–116.

[4] T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[5] T. C. W. Landgrebe, D. M. J. Tax, P. Paclı́k, and R. P. W.
Duin, “The interaction between classification and reject per-
formance for distance-based reject-option classifiers,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 908–917, 2006.

[6] P. Viola and M. J. Jones, “Robust real-time face detection,”
Int. Journal of Computer Vision, vol. 57, no. 2, pp. 137–154,
2004.

[7] P. Paclik, C. Lai, J. Novovicova, and R. P. W. Duin, “Variance
estimation for two-class and multi-class roc analysis using
operating point averaging,” in 19th Int.conf.on Pat.Rec. (ICPR
2008, Tampa, Florida, USA). IEEE Press, 2008.

[8] T. C. W. Landgrebe and P. Paclı́k, “The ROC skeleton for mul-
ticlass ROC estimation,” Pattern Recognition Letters, vol. 31,
no. 9, pp. 949–958, July 2010.

29722984298029802980

