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Abstract—Seismic events in and around volcanos, like
tremors, earth quakes, ice quakes and strokes of lightning,
are usually observed by multiple stations. The question rises
whether classifiers trained for one seismic station can be used
for classifying observations by other stations, and, moreover,
whether a combination of station signals improves the classi-
fication performances for a single station. We study this for
seismic time signals represented by spectra and spectrograms
obtained from 5 seismic stations on the Nevado del Ruiz in
Colombia.

I. INTRODUCTION

Volcanic eruptions are among the most important natural
disasters. They cause severe impacts on the ecology and
economy, often threatening the survival of entire commu-
nities. Mitigation strategies, such as evacuations, can only
be efficiently planned if geological processes as well as
their changes and associated risks are understood. Such an
understanding implies a permanent monitoring of geophys-
ical and meteorological phenomena. Seismicity patterns, in
particular, are a first sign of renewed volcanic activity and
reveal processes such as transport of magma and gases or
fracture of solid rock.

Seismic stations on a volcano surface detect many types
of events, like earthquakes, icequakes, long term tremors,
landslides, lightning strikes, passing cars, etcetera. Detection
and classification of events is the first step in an analysis,
often done manually in remote observatories that read the
station signals by radiographic means.

Several stations can be positioned on a volcano that
may observe the same events. Event types that cannot be
detected or classified by one station may be better observed
by another station. It is to be expected that combining
information from several stations improves the accuracy of
the analysis significantly.

As seismic stations are already in use for many years, and
events are annotated manually, large datasets are available to
study the possibility of automatic detection or classification.
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This has been undertaken in a number of previous research
studies. Applied methods range from neural networks [1],
[2], hidden Markov models [3], [4], [5], dissimilarity-based
classifiers [6] and Bayesian networks [7]. Most of them con-
sider representations in the frequency domain and classifiers
built for single or separated seismic stations. To the best of
the knowledge of the authors, none combining techniques
have been used to profit from the availability of the multiple
sources of information, i.e. different recording stations.

In this paper a study is presented on a part of a large
seismic dataset that analyzes the above issues: do different
stations observe events in the same way or not? If they do,
classifiers trained by data from one station may be applied
by other stations as well. If stations really observe different
information, their classifications may be combined into more
robust or accurate ones. We will do this for two represen-
tations: spectral features and spectrogram features. In the
first, just spectral information is stored. In the second some
time information is preserved as well. Their representations
are discussed in section 2. Data and experiments follow in
section 3.

In is not our intention to focus on the best possible
classifier, but just to answer the question on the informative
difference of different seismic stations on the same volcano.
Results are discussed in section 4. Although we come to
a clear conclusion, additional issues for further research
in order to design optimal classification systems will be
discussed there too.

II. REPRESENTATION AND CLASSIFICATION OF SEISMIC
SIGNALS

Volcano seismic signals are measured continuously, 24
hours per day. In these time signals events can be defined
caused by particular environmental disturbances like earth-
quakes and icequakes. Short periods of maximum energy
can be detected and defined as the center of the events. Ap-
propriate time intervals before and after the central moment
are considered to belong to the same event. The size of this
time-window is determined by signal energy properties as
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well. This is all set by an automatic event detector that is
independent of the event class as recognition has still to be
done. For some classes it might be appropriate, for others
it might be too large or too small. This is part of future
research once we have an initial event classification system.

The above-mentioned automatic detector is commonly
based on the short-term average to long-term average ratio
(STA — LTA), which is a classical algorithm used as a
standard in seismic detection/segmentation [8]. It consists in
a low-pass filter that averages two windows (short-term and
long-term) with the last captured sample. Such an average
is an estimation of the power density. When a seismic event
occurs, STA > LTA. Averages are recursively computed
as follows:

(abs(s; —2048) — ST'A)

STA=STA + - (1
1

ITA— LTA+ (abs(s; — 2248) - LTA)’ @)
2

where s; is the current sample, 2048 corresponds to the
offset for a 12-bit analog-to-digital converter and ki, ko
are the sizes of the ST A and LT A windows. These sizes
are typically set to ranges between 0.5 — 3 s and 30-60
s, respectively. Two additional parameters must be tuned,
namely thresholds for the beginning (EnThrHId) and the end
(DisThrHI1d) of the event. See [9], [8] fur further details.

A simple way to characterize events given by a determined
window of the time signal is by power spectra. Their sizes
are determined by the window size. If these differ over
events, alignment becomes of importance. For simplicity
we selected events of the same window size. The spectra
can thereby be represented by vectors of the same length:
X = {x1,29,...,2,} in which z; is a column vector of
length p representing a single spectrum and X is m x p
matrix storing the spectra for all observed m events.

In the just defined spectra all time information is lost.
Events however are not ergodic. The properties within event
windows may change. One way to represent this is by spec-
trograms. These are sets of spectra defined on overlapping
small windows. A single spectrogram S is thereby not a
vector but has a 2-dimensional structure, e.g. ¢ X n in case
there are n windows in an event and window spectra (which
we call for convenience subspectra) have a length ¢q. Note
that p = n x ¢ for windows that don’t overlap and spectra
that are not reduced.

As seismic events of the same class are not perfectly
aligned (e.g. two earthquake events may show different
substructures) also their corresponding spectrograms are not
aligned: similar subspectra may occur at different positions
along the time axis. A spectrogram cannot be directly used
for building classifiers. It has first to be converted into a
vector. Just unfolding may not be good due to the alignment
problem.
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In order to deal with the variability of the spectral behav-
ior in the spectrograms we decided to build a subspectra
classifier, trained on all subspectra of all spectrograms
considered in a training set. A spectrogram is classified by
combining all subspectra classifications. We used the max-
combiner, thereby following the classification of the sub-
spectrum that was most confidently classified. Consequently
a spectrogram is mapped on a vector with confidences for
all classes.

There are various other possibilities for representing
events. A few under study by us are Hidden Markov Models,
Conditional Random Fields, 2D shape analysis of spectro-
grams and shape analysis of the trajectories followed by
the subspectra as a function of time (a variation of Dynamic
Time Warping). A crucial point thereby is whether a seismic
volcano event can be considered as a word, a sentence
or a gesture, or whether it is just a type of randomized
collection of subevents. The way we deal above with the
combination of subspectra classifications is following the
latter interpretations.

III. DATA AND EXPERIMENTAL SETUP

In total about 150,000 events have been collected between
1994 and 2008 for the five volcanos observed by the
Volcanological and Seismological Observatory in Manizales,
Colombia. Events are detected and aligned for the about 40
seismic stations that are considered. Consequently, in every
event a set of seismic stations is involved, usually 1 to 10. In
total about 10 different event classes are considered, some of
them directly related to volcanic processes, others generated
by tectonic, glaciological and environmental causes.

For the study reported in this paper we decided to simplify
the dataset by taking into account just 3 classes detected
by the same 5 stations and that are all given by the same
event window size of 12032 time samples (120s). Moreover,
we restricted ourselves to the years 2002-2006. The 3
classes are Earthquake, Icequake, and Long Term Tremor.
We constructed equal class sizes of 700 events per class,
neglecting the different class prior probabilities. The seismic
stations for which all events are given are "ALF’, ’BIS’,
IRD’, "LIS’ and OLL’. The dataset had thereby a size of
3% 700 x5 event signals of 12032 time samples. Every event
is for every station represented by a spectrum of 6016 points
and by a spectrogram of 128 (spectrum) by 93 (time). In all
experiments we split the data randomly in 50% for training
and 50% for testing. This was repeated 50 times and error
estimates were averaged.

For every station separately classifiers are computed using
the spectra and spectrograms given for that station. For the
spectra we reduced by PCA the spectral feature space from
6016 to 40. In this space a quadratic classifier was computed,
assuming normal densities with different covariances per
class.



Table 1

CLASSIFICATION ERRORS FOR THE SPECTRAL REPRESENTATION.

ALF classf BIS classf IRI classf LIS classf OLL classf combined
ALF signal | 0.398(0.001) | 0.578(0.002) | 0.667(0.000) | 0.557(0.002) | 0.609(0.003) | 0.403(0.001)
BIS signal | 0.438(0.002) | 0.271(0.001) | 0.668(0.001) | 0.557(0.003) | 0.511(0.002) | 0.281(0.002)
IRI signal 0.673(0.001) | 0.664(0.001) | 0.626(0.003) | 0.667(0.000) | 0.670(0.001) | 0.626(0.002)
LIS signal | 0.642(0.003) | 0.679(0.002) | 0.669(0.002) | 0.359(0.002) | 0.577(0.004) | 0.373(0.002)
OLL signal | 0.591(0.001) | 0.572(0.001) | 0.667(0.000) | 0.553(0.002) | 0.362(0.001) | 0.366(0.002)
combined 0.358(0.002) | 0.260(0.001) | 0.622(0.004) | 0.332(0.002) | 0.332(0.002) | 0.248(0.002)
Table II

CLASSIFICATION ERRORS FOR THE SPECTROGRAM REPRESENTATION.

ALF classf BIS classf IRI classf LIS classf OLL classf combined
ALF signal | 0.406(0.002) | 0.544(0.002) | 0.662(0.003) | 0.522(0.001) | 0.609(0.002) | 0.417(0.002)
BIS signal | 0.509(0.002) | 0.287(0.002) | 0.675(0.004) | 0.586(0.003) | 0.495(0.003) | 0.292(0.002)
IRI signal 0.671(0.001) | 0.676(0.001) | 0.627(0.002) | 0.668(0.001) | 0.671(0.001) | 0.630(0.002)
LIS signal 0.537(0.001) | 0.608(0.002) | 0.654(0.004) | 0.376(0.002) | 0.547(0.002) | 0.375(0.002)
OLL signal | 0.556(0.001) | 0.469(0.001) | 0.655(0.003) | 0.640(0.002) | 0.386(0.002) | 0.396(0.002)
combined 0.340(0.002) | 0.269(0.002) | 0.601(0.005) | 0.258(0.002) | 0.344(0.002) | 0.238(0.002)

For the subspectra of the spectrograms we computed a
similar quadratic classifier in the 128 dimensional spectral
feature space. The 93 classified spectral vectors were com-
bined by the max-combiner obtaining a unique classification
for each spectrogram.

The five classifiers we obtained in this way (one for every
seismic station) for each of the two procedures are used in
several ways. First we checked the results of cross-station
classifications: the performances of signals obtained from
one station classified by classifiers of other stations. This
yields 5 x 5 tables of classifications errors, see the tables
1 and 2. Recall that this is a 3-class problem with equal
priors, so random assignments result in an error of 0.666.
Between brackets are the standard deviations of the of the
estimated mean error rates over the 50 repetitions. In bold
on the diagonal are the results of test events from the same
station as used for training the classifier.

We performed three ways of combing the classification
results. In the vertical direction of the table the five signals
of one and the same event obtained from five different
stations are combined by a trained combining rule: decision
templates [10]. In the horizontal direction the classifiers
instead of the signals are combined, also using decision
templates. Finally, in the diagonal way the sets of five
station classifiers are classified by a combined combiner,
again decision templates, yielding the result on the bottom
right.

IV. RESULTS

From the results we draw the following observations:

o Stations show significantly different performances (in
bold on the diagonals). In fact one of them is scor-
ing about randomly. This station (IRI) has a special
meaning and is used for calibration. It appeared that
after removing it from the study similar performances

are reached for the trained combiners, proving that our
system is robust.

o The off-diagonal errors are worse than the diagonal
ones showing that classifiers for individual stations
cannot be applied without loss of accuracy to other
stations. This is to be expected. The errors however are
also not equal to the random assignment errors, which
also shows that stations observe the same event in about
the same way.

e With an exception of the IRI station it holds for
both tables that combining signals of different stations
improves the classification result of individual station
classifiers (vertical combining).

« With an exception of the IRI station it holds for both ta-
bles that combining classifiers of different stations does
not improve the results of individual station classifiers
(horizontal combining).

« The best results are found by applying combined station
classifiers to the set of station signals.

o Spectrograms including time information improve the
full signal spectra just slightly.

The use of 93 time steps in constructing the spectrograms
may hamper our results. It removes lower frequencies from
the spectra. With larger windows, and thereby broader
spectrograms (at the cost of less time steps) better results
might be obtained.

V. CONCLUSION AND DISCUSSION

We studied a large set of seismic events all observed
by the same 5 seismic stations. It was shown that event
classifiers for one station could be applied to observations
by other stations as well. Although their individual classifi-
cation results were significantly worse than for observations
made by the station for which the classifiers were trained,
combining all observations from different stations yields
improved results. This shows that observations made by
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different stations are at the same time similar (the classifier
performs better than random) as well as informatively differ-
ent (combining improves). Training separate classifiers for
each station and combining them improves results further,
which confirms our conclusion.

Spectrograms, representing time as well as spectral infor-
mation, perform slightly better than just spectral features.
Future research may improve this further.

Acknowledgements. We thank the Volcanological and Seis-
mological Observatory in Manizales, Colombia for sup-
plying and annotation the data. We acknowledge support
from Universidad Nacional de Colombia, under the project
“Sistemas multiples de clasificacién para el reconocimiento
automdtico de eventos sismicos en el complejo volcdnico
Cerro Machin-Cerro Bravo (code Hermes-8970)”.

REFERENCES

[1] S. Scarpetta, F. Giudicepietro, E. C. Ezin, S. Petrosino, E. D.
Pezzo, M. Martini, and M. Marinaro, “Automatic classifica-
tion of seismic signals at Mt. Vesuvius volcano, Italy, using
neural networks,” Bulletin of the Seismological Society of
America, vol. 95, no. 1, pp. 185-196, 2005.

[2] G. Curilem, J. Vergara, G. Fuentealba, G. Acufia, and

M. Chacén, “Classification of seismic signals at villarrica vol-

cano (chile) using neural networks and genetic algorithms,”

Journal of Volcanology and Geothermal Research, vol. 180,

no. 1, pp. 1 — 8, 2009.

3

—

L. Gutiérrez, J. Ramirez, C. Benitez, J. Ibafiez, J. Almendros,
and A. Garcia-Yeguas, “HMM-based classification of seismic
events recorded at Stromboli and Etna volcanoes,” in /IEEE
Int. Geoscience & Remote Sensing Symposium, IGARSS 2006,
2006, pp. 2765-2768.

[4] M. C. Benitez, J. Ramirez, J. C. Segura, J. M. Ibaiez,
J. Almendros, A. Garcia-Yeguas, and G. Cortés, “Continuous
HMM-based seismic-event classification at Deception Island,
Antarctica,” IEEE Trans. on Geoscience and Remote Sensing,
vol. 45, no. 1, pp. 138-146, Jan. 2007.

[5] J. M. Ibafiez, C. Benitez, L. A. Gutiérrez, G. Cortés,
A. Garcia-Yeguas, and G. Alguacil, “The classification of
seismo-volcanic signals using Hidden Markov Models as
applied to the Stromboli and Etna volcanoes,” Journal of
Volcanology and Geothermal Research, vol. 187, no. 3-4, pp.
218 — 226, 2009.

[6] M. Orozco-Alzate, M. E. Garcia-Ocampo, R. P. W. Duin,
and C. G. Castellanos-Dominguez, “Dissimilarity-based clas-
sification of seismic volcanic signals at Nevado del Ruiz
volcano,” Earth Sciences Research Journal, vol. 10, no. 2,
pp. 57-65, Dec. 2006.

[7

—

C. Riggelsen, M. Ohrnberger, and F. Scherbaum, “Dynamic
bayesian networks for real-time classification of seismic sig-
nals,” in PKDD 2007: Proceedings of the 11th European con-
ference on Principles and Practice of Knowledge Discovery in
Databases, ser. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 565-572.

1055

[8] C. A. Vargas-Jimenez and S. Rinc6n-Botero, “Portable digital
seismological AC station over mobile telephone network and
internet,” Computers & Geosciences, vol. 29, pp. 685-694,
2003.

[9] M. Basseville and A. Benbeniste, Detection of Abrupt

Changes in Signals and Dynamical Systems. Berlin:

Springer, 1986.

[10] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, “Decision

templates for multiple classifier fusion: An experimental

comparison,” Pattern Recognition, vol. 34, no. 2, pp. 299—

314, Feb. 2001.



