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Abstract

An upperbound is derived for the classification
error made by a Baves discriminant function which is
estimated by a finite learning sct. This upperbound is
expressed in the Layes error made in the infinite
sample case and the estimation errors for the
distributions of the classes. The expectation of such
an estimation error is a function of the number of
learning samples. The upperbound for the expected error
can therefore be written as a function of the sample
size. This makes 1t possible to compute the nuwmber of
learning sanmples that guarantees a certain accuracy in
the discriminant function. For the cases of a general
measurcment space and of normal distributed classes
these numbers are computed as a function of the
measurement complexity and the dimensionality
respectively.

Introduction

In the pattern recognition literature error bounds
are intensively studied !. The main purpose of these
studies is the construction of easily computable error
bounds in the case of known class distributions. These
error bounds are therefore sample size independent.
They don't take into account the error made by the
estimation of the distribution. For answering questions
like: What is the error caused by a finite learning
set, or: What number of learning samples should be
used in order to recach a certain accuracy, these error
bounds are useless. :

Effects of the sample size upon the accuracy of
the discriminant_function are previously studied.
Cover? and Foley3 give lower bounds of two and
respectively about five times as many samples as
features. Extremely large figures are given by Hughe54
and Abend et al.?. They compute the optimal measurement
complexity for a given sample size. The resulting
sample size for which a given measurcment complexity is
optimal is very large due to the general approach in
which nearly each distribution is allowed.

In this paper an upperbound for the expectation of
the discriminant error is given which is expresses in
the Bayes error for the case of infinite sample size
and in the expected errors made in the estimation of
the class distributions. The expccted estimation error,
and therefore the upperbound is a function of the
sample size. This makes it possible to compute the
maximum number of learning samples necessary for a
given expected value of the discriminant error.

General formulation

Let fA(x) and fB(x) be the two density functions
of the classes A and Bjlet f\(x) and fB(x) be their
4
estimates. The Bayes error is given by
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We assume equal class probabilities. Expression (1) is
equivalent with

*
e =} fmin{fA(x), fB(x)}dx (2)
1234 - ~
The error made by the estimates fA(x) and EB(X) will

be defined by

e, = i f!fA(x) - fA(x)|dx (3)
VX
which 1s equivalent with
ey = 1-/ mln{fA(x), fA(x)}dx (4)
. VX
and by
ep = ) f{fB(x) - fB(x)|dx (5)
VX
which is equivalent with
ey = l—vimxn{rB(x), fB(X))dX ’ (6)
The definitions are such that 0 <e, <1 and 0 < ey < 1.
For perfect estimates e, and e, are zero, for bad

estimates they approach or are equal to one. The error
made by the difference,

G0 = £,60 - £,00 ™
is e = .S fA(x)dx + 4.s fB(x)dx (8)
$<0 520
We can rewrite this, if
S(x) = fA(x) - fB(X) (9)
by e€=1}17/ fA(x)dx-i J fA(x)dx+5 / fA(x)dx
S<0 S<0 520
S>0 5<0
+ 4 f fB(x)dx—i / fB(x)dx+§ ! fB(x)dx (10)
520 $20 5<0
S$<0 5>0
=4 s fA(x)dx+£ ! fB(x)dx—i S S(x)dx+} S S(x)dx
5<0 $20 $<0 520
$>0 $<0 (i)

From (1) and (9) it follows that the first two terms

* . .
are together ¢ If we define an area V in which the
classes are non-optimally classified.

V= {x:(s(x)<0As(x)gp)U(S(x);png(x)<o)} (12)
then (l1) can be written as
*
ge=¢ +} J|s(x)]dx (13)
xeV
*
se +4 J ]fA(x)—fB(x)[dx (14)
x€V
For x€V the following inequality holds
IfA(x)—fA(x)|+]fu(x)—fB(x)I;[[A(x)-fB(x)| (15)
For the proof we distinguish the two cascs
a) S(x) <0, S(x) >0 (16)
so =S{x) < S(x) - S(x) an

Because both terms are positive, (17) is also true for

the absolute values



[5Gy =] 1, (0-£, G0 ] 8G0=8(0)
;1}A(x)—}n(x)-f‘\(x)uB(x)l
<l -1, Gl +]F 01,601 (18
which proves (15)
b) S(X) 20, S(x) < 0 (19)

The proof in this case is similar to that in a.
By using (15), (14) can be written as

*
€<e +} {|f (x)-f (x)]+|f (x)- r (x)}|dx (22)
xCV
I1f V is replaced by the whole space this becomes

€<e +; f|f (x)-f (x)[d).o 1[f (x)-f,(x)~f (x)‘d)\

VX VX
(23)
From (3) and (5) it follows that (23) can be written as
* -
ese te, ey (24)
This is the basic formula of this paper.
From (14) another upperbound can be found by
immediately replacing V by the whole space,
* f f
< Y~
e<e +} [ A(x) B(x)|dx
VX
| _ .
5;2V)f({|fA(x) £5,00 [ +min{£, (x), £ (x)}}dx (25)
in which use has been made of (2). (25) is equivalent

with

e<} Smax{f, (%), fB(x)}dx

VX A
eéivi{fA(x)+fB(x)-m1n{fA(x),fB(x))}dx
e<l-e (26)
Together with the obvious fact that 6*5; we yield
e*;rimxn{(l - ), (e +e )} » ‘ @n

For most practical problems (24) 1s a more stringent
bound then (26).

We will consider two cases for the computation of

ey and e,. First we adopt Hughes' model4 of a general

measurement space consisting of m cells, each with its
own probability of occurence. This is a very general
approach that allows all kinds of distributions. It
appears therefore that ey and ep grow fast with m. A

second casc we Investigate is that of normal
distributions for fA(x) and fB(x). This leads, using a

Monte Carlo procedure to more realistic figures.

Inequality (24) holds as it is given {or a
particular learning set. The crror made by the
discriminant function based on that learning set is
expressed in the Bayes error and the cstimation errors
for the distributions. For an unknowu casc these errors
are unknown, but the expectation of these errors can be
computed, by a given class of distributions for the
learning sct.

*
E(e)<e +E(e,+e,) (28)
A B
The expectation of e +e_  can, as we will sce, be
expressed in the number of learning samples. This
enables us to compute the sample size ncecessary for a
certain accuracy;

General measurcement SRIICE

We assume that x is an _outcome in one of m cells
with probablilities p and pl (i=1,m) for cla“s A and
class B. For the estimation of both, p\ and pB

assume to have n learning samples. The maximum

likelihood estimates, indicated by ﬁz and ﬁ; will be
used. For (4) can be written:
m
= - {p
e, 1 ii] min{ pA, pA)} (29)

Taking the expectation over all learning sets we yield:
o

E(CA) = 1 - I E[min(ﬁi, pi}] (30)
i=1 '
Define y = (D ‘PA){P (-p ')/“}5
so E[min(ﬁi, pi}] = E[min(y,O}]{Pi("Pi)/“}i+pi (31)

If n is large enough p\ is normally distributed with

expectation pA and variance pA(I- )/n y is then

N(0,1) distributed. The first term in (31) can
therefore be written as

p -4 2 -4
= [ y(2m) fexp(-y"/2)dy = -(2n) * (32)
because the integral is zero in the interval O<y<=.
(30) yiclds with (31) and (32):

E [min{y,0}]
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Fig. 1. The number of learning samples n as a function

of the mcasurcment complexity m for vavious

*
values of E(e, .+ e,), € = 0.05.
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B(e,) = iil[(21.)'4{1,;(1—p;)/n}51 (33)
m .
because I p;=l. In the same way can be derived
i=1
n -boi,, i }
E(CB) = iEl[(2n) {pB(l—pﬁ)/n} | (34) .

In the appendix it is shown that E(cA+eB) is

maximum if for m/2 values of i

i * i *
P, = 2¢ /m, Py = 2(1-¢ )/m (35)
i * 1 *
and p; = 2(1-¢ )/m, p; = 2e /m (36)

for the other m/2 values of i, (m even). We can write
therefore for (28), using (33)-(36).

E(e) <+ (2nm (2 (-2 my w4
+ 201-) (1=2(1-¢") /m) /) 31

In the figures 1, 2 and 3 n is given as a function of m
*

for constant values of E(eA+eB) by ¢ =0.2, 0.1 and 0.5

respectively. These curves should be interpreted as

follows. If the Bayes crror 5* (infinite sample case)
equals 0.1 and an additional error of 0.1 is allowed,
due to the use of estimated distributions, then fig. 2
gives the nunber of learning samples as a function of
the measurcment complexity. The indicated sample size
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Fig. 2. The number of learning samples n as a function
of the weasurement complexity m for various

. *
va}ucs h(eA + CH), e = 0.10

guarantees that the demanded accuracy is recached in

expectation. Because the Bayes error E* is only
rarely known in practice, the given curves serve
mainly as an impression of the accuracy as a function
of measurement complexity and sawple size.

The resulting numbers of learning samples are very
large, and in many practical problems not available.
Besides they are in respect to many practical results
extremely pessimistic. This is caused by the very
general approach in which nearly every kind of
distribution is allowed. In the next section we will
therefore restrict ourselves to normal distributions.

Nor@gl_ﬂiﬁf{jbutions

In order to find E(uA+e“) for k-dimensional normal

distributions we consider the expectation of an
estimation error e for that case. Using (4) we yield

E(e) = 1-E JSmin{f(x,u,2),f(x,0,L)}dx (38)
VX

in which f(x,u,%) is the normal density function with
expectation u and covariance matrix L. The estimate of
f is found using the maximum likelihood estimates & and
T for p and . Any linear transformation of the x-space
does not change the integral in (38) if the parameters
of the distribution are transformed adequately. We may
write thereforce: -

ECe) = I1-E{ /min{f(x,0,T);£(x,0"',L")}dx] (39)
x -
in which §' and I' are the transformations of {i and L.
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Fig. 3. The numher of learning samples n as a function

of the measurement complexity m for various

*
values of E(e,. + ¢,), ¢ = 0,20
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They can, however, also be interpreted as the maxinwim
likeliliood estimates of the porameters of the
distribution L(x,0,1). (1l is the unity matriz). We will
not give the proof here, which is straipht forward,

The result of this reasoning is that E(e) is iundcependent

of # and £, it only depends upon the dimensionality k
and the number of learning samples n.

We computed E(e) as a funcrion of n and k using
Monte Carlo procedures. The integral of the minimum in
(39) was found using a method described in [6] in which
50 points for cach distribution were used, The
expectation was cobtained by averaging the results of
200 randomly clhosen learning sets of size n. The
accuracy of this method can be found by cowputing the
standard deviation of those 200 results. In fig. 4
E(e), estimated in this way is shown as a function of
n and k. The standard deviation in the averaged value
is for the worst case about 0.007.

From fig. 4 n can be computed as a function of k
for constant values of E(e). The result is shown in
fig. 5. The valucs of n can be interpreted as that
number of learning samples that guarantees that, in
expectation, the contribution of the estimation error
of some density function to the discriminant error is
less than E(e). For a two class problem the values of
E(e) should be multiplied by two in order to find
L(eA+eB).

One may wonder how valuable the numbers given imn
fig. 5 are in practice. In order to get an impression
of that we did a number of experiments. If y is defined
by:

*

€ =¢ +T(eA+eB) (40)
we computed for a number of classification problems
with randomly chosen learning sets, <, E*, ey and ey
The resulting values of y appcared very often to be
less than 0.2. An example is given in table T where the
results are presented of a two dimensional example. The
distributions of the classes A and B werc both
independent. A with mean (0,0) and variances 1 and 1,

B with mean (u,0) and, variances v and |. For each
value of p and v ten learning sets were chosen at
random resulting in ten values of y. In the table the
mean value of y and the number of times y was larger
than 0.15 or 0.20 is given. The results are given for
n=20, and n=50.

n=20
n=50
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Fig. 4. The expected estimation error of a normal

distribution as a function.of dimensionality k
and sauwple size n.

Tn order to be sure that there exists a bound
such as y=0.2 or sowme other value, much more
cxperiments have to be done. Cur experiments just
showed that in a uumber of cases the accuracy is a
factor five or more better than as determined from
fig. 5.

n = 20 n = 50
M V_”,f* ) Fgl“ 3) 1 2) 3)
¢} 2 0.42] 0.09 2 2 0.02 0 0
0.5 2 0.36| 0.09 3 1 0.04 0 0
1.0 2 0.26 0.10 2 0 0.03 0 o]
2.0 2 0.11 0.15 0 0 0.01 0 0
0 6 0.30} 0.10 5 5 0.04 | 0
0.5 6 0.29] 0.08 2 0 0.00 0 0
1.0 6 0.261 0.07 0 0 0.0l 0 0
2.0 6 0.17] 0.05 I 0 0.02 0 0
0 200 0.19] 0.03 Q 0. 0.00 0 0
0.5 201 0.19¢ 0.10 0 0 0.0} 0 0
1.0 20| 0.18| 0.09 2 0 0.03 0 0
2.0 201 0.16] 0.05 0 0 0.03 0 0
Table 1

Results of a number of two dimensional experiments,
each repeated for ten different learning sets and for
sample sizes of 20 and 50 samples for each of the two
classes. One distribution had a mecan (0,0) and variances
of 1 and 1, the other had a mcan of (u,0) and variances
of v and 1. Both distributions were assumed to be
independent.

1) mean value of y in ten experiments
2) number of times y > 0.15
3) number of times y > 0.20

Multi-class case

The essence of the proof given for (24) is that
each error made in the estimation of the density
functions can result in an equal increase of the
discriminant error. This causes for the multi-class
case the following upperbound:

1000~
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n
200
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Fig. 5. The number of learning samples n as a function
of the dimensionality k and the expected
estimation errvor E{e¢) for normal distributions.



L
e <e + YL e, (40)

2 is the number of classes, e; is defined by (3). The

general proof of (40) will not be given here.

An estimation error of a density function will
only result in an increase of the discriminant error
if that estimation error results in a different
classification In a certain area. In a multi-class
problem, however, several densities can be estimated
erronously, but in e¢ach point only two of those
errors can result in a different classification, the
correct one and the one that takes over. The
upperbound given in (40) is because of this reason in
a multiclass problem weaker than in a two class
problem, The results given in the previous scctions
can, nevertheless, be used in any &-class problem. The
values for n for the various cases can easily be
derived from the given figures.

Summnary

In this paper an upperbound is presented for the
discriminant error. Because this bound is sample size
dependent, it 1s possible to compute the guaranteed
accuracy, in terms of expected errors, as a function
of the number of learning samples. This has been
worked out for two examples.

If we adopt Hughcs'S model of a general
measurement space, a rather conservative estimate is
obtained, duec to the very general approach. In case of
normal distributions more realistic figures were
obtained. These can even be improved by estimating to
what extend the upperbound is approached in practice.
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Appendix
We will prove here that
PR SRS NNF S PG ST S
iil{PA(l"PA)} + iﬁl{PB(l“PB)} (41)

is maximum if
i_ o, * i *
Py = 2¢ /m, Py = 2(l-¢ )/m
in m/2 points, and
i * i *
P, = 201=< )/m, py = 2" /m

in the other m/2 points.
As constraints for the maximization of (41) we have
m

1 =
.Z Py = 1 (42)
1=1
mn .
i
L opy= 1 : (43)
i=1
m .
. 1 1, %
4 iil min{p,, py} = e (44)

Using the Lagrange multiplier method we yield

m ; i mo i) s
max: I o O=p )2 £ (p(mp i aa( o p b)) +
i=1 i=1 1=]
mo m i i *
+u( 2 pp-D+v(y L omin{p ,p, - ) (45)
j=1 B j=1 ATD

Suppose pR < ph. The derivative to p; is equal to zero
if . - .
;(p;(n-p;>} T(1=2p ) +a+h) = 0 (46)

The derivative to p; is equal to zero if

HPS T S _
Hpy(lmpy)) “(1=2p )+ = 0 (47)
(46) and (47) give for all i, with p1 < pl the same
solution. In the same way can be proved tLaL all 1 with

p; < p; yield the same solution. Suppose that for m

. i i . i 1 i1 d
values of i, Py < Py with solution Pp = Pgs Py = P an
that for mz(m2=m—ml) values of 1, p; i.P; with

solution pt = pi, pﬁ = pi. By using (41)-(44) we now
4

got

max: - ] - ) 2
1 2 _ -
ml(PL(l—pA)}£+m2{pA(l—pA)} +ml(pB(l pB)} +m2{pB(l pB)}
(48)
with constraints
1 2 _ 4o
1 2
= 50
m Py T myPy = (50)
| 2 % 5
o pl + dnyp? = 1)

. i . 2
With (49) pi can be ecxpressed in Py with (51) py can

. I
be expressed in pA and with this result and (50) py can

be expressed in

yield for (48):

Py If we write for W, WM, We now

1 1
max: ml{pi(l_pg)}£ + {(l—mlpA)(m—ml"HmlpA)}i +
+ {(l—2€*+m ])(m —1+°6*—m pl)}i +
Pp/imymiee iPa
* * \
+ {(2¢ —mlpi)(m—ml—ZE +m]pA))l (52)

L. . . . i
This is a sum of roots of quadratic functions in Py The

derivative is a sum of monotonous decreasing functions
and has therefore only one zerocrossing. According to
the same reasoning there exists only one solution for
. The proof is completed by the computation of the

two derivatives and the substitution of the solution
given in the start of this appendix, which implies

m o= m/2. Using (49)-(51) pi, pé and pﬁ can be computed

We will omit the calculations of this final part of the
proof because of its spacious character.
References

1 K. Fukanaga, "Introducticon to Statistical Pattern
Recognition", Academic Press, 1972,

2 T.M. Cover, "GCrowcvtrical and Statistical Properties
of systems of linear inequalities with applications
in pattern rccognition'", TERL Trans. Electronic.
Comp., vol. EC-14, pp. 326-334, June 1965.

3 D.H. Foley, "Considerations of Sample and Feature
Size", ILZEE Trans. Inform. Theory, vol., IT-18,
pp. 618-626, Sept. 1972,

4 G.F. Hughes, "On the Mean Accuracy of Statistical
Pattern Recognizers', IEEE Trans. Inform. Theory,
vol., IT-14, no., 1, pp. 55-63, January 19(8.

5 K. Abend, T.J. Harley, B. Chundrasckaran, G.F. Hughes,
"Comments '"On the mean accuracy of statistical
Pattern Recognizers'"", 1ERE Trams. Inform. Theory,
vol. IT-15, pp. 420-423, May 1969.

6 R.P.W. Duin, "A criterion for the smoothing parameter
for Parzen estimators of probability density
functions", lunternal report Pattern Recognition Group,
Department of Applied Physics, Delft University of
Technology, Sept. 1975.



