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Abstract

Relational discriminant analysis is based on a

similarity matrix of the training set. It is able to

construct reliable nonlinear discriminants in infi-

nite dimensional feature spaces based on small

training sets. This technique has a large sample

size problem as the size of the similarity matrix

equals the square of the number of objects in the

training set. In this paper we discuss and initially

evaluate a solution that drastically decreases

training times and memory demands.

1. Introduction

Traditionally the main approach in statistical pattern recog-
nition is feature based: Objects are individually described
by features. Classes of objects are represented in a feature
space by sets of feature vectors. Discriminants are con-
structed in such a feature space separating these sets, possi-
bly based on density estimations of the classes. This
approach suffers from a feature size - sample size dilemma.
Better, more complete object representations, yield feature
spaces of higher dimensionalities which on their turn
demand larger sample sizes in order to realize the possibil-
ity of better discriminants [1]. Consequently the small
sample size problem is permanent issue in the pattern rec-
ognition literature [2].

In this paper we will discuss the possibilities, advantages
and drawbacks of an entirely different way of object repre-
sentation. Instead of an individual description by features
now the set of available objects is represented by all object
relations, like distances, in a similarity matrix. These rela-
tions may be computed from a feature representation, but
might also be computed directly from digitized or even ana-
logue object differences.

In the relational approach the training set is represented
by a squarem*m matrix D containing all pairwise relations
d(xi,xj) between the objectsxi andxj, (i,j  = 1,m). For the
moment we will assume that these relations are distances.
Other similarity measures, however, are equally possible. A
new objectx is now classified by a function S(•) of the dis-
tances d(xi,x) between this object and (a subset of) the train-
ing objects. During training this subset and the parameters
in S(•) have to be optimized. In case the similarities are
based on a feature description, which, we repeat, is not nec-
essary, a larger feature set may or may not result in a more
accurate D. It does not, however, imply the need of a larger
training set. In fact, for any sizem of the training set classi-
fiers S(•) can be computed. So there is no small sample size
problem.

In contrary, we have a large sample size problem, which
is of a computational nature. As the size of D ism*m,
memory demands and computing times may grow quadrat-
ically with the size of the training set. It is the purpose of
this paper to address this problem and to show that there are
effective training methods that circumvent the large sample
size problem for a good deal. These methods are inspired
by, but not identical to the support vector methods that have
recently been proposed in the machine learning community
by Vapnik and others [3], [4], [5]. As a result we have a set
of interesting new pattern recognition methods that offer a
new way of representing expert knowledge: distance or sim-
ilarity measures instead of features. As will be shown, these
methods may be nonlinear, and can, for feature based repre-
sentations, operate in feature spaces of any dimensionality
and may be based on small training sets.

This paper elaborates further on ideas first presented in
[9], [10], [11] on featureless pattern recognition. The rela-
tional approach addressing the large sample size problem is
presented here for the first time.

2. Relational Discriminant Analysis

Let the set of training objects be given byX = {x1, ... ,xm}.
D(X,X) is its knownm*m similarity matrix. A new objectx



should now be classified using the (m,1) vectory = D(X,x),
containing its similarity values to the training set. In a first
approach the set of linear classifiers

(1)

is considered. A constant termw0 has been added by defin-
ing y0 = 1. Note that this classifier is linear inw andy but
might be nonlinear in the original measurements, depending
on the definition of D(•). In particular it should be realized

that instead of the original D(•) any  may be
used if K(•) is a monotonic function like exp(•), log(•) or
power. In this way the relative importance of larger and
smaller similarity values can be changed.

In a two-class problem with target outcomes -1, +1 for
the two classes stored in a vectorλ, the weightsw directly
follow from the desired outcomes for the training set:

(2)

So (3)
In case rank(Y) < m the mean square error solution has to be
used (Fisher’s Linear Discriminant).

The similarity matrix D can be considered to be a pattern
matrix: a set ofm objects defined bym relational features.
These features describe the similarities with all training
objects. The following observations can now be made:
1. A classification problem in which sample size and feature

size are equal clearly suffers from the small sample size
problem. In section 3 this will be discussed further.

2. Instead of the standard linear classifier (1), trained by (3)
any other classifier based on the training set as represent-
ed by D might be used as well.

3. One of the solutions for the small sample size problem is
feature reduction. In case of relational features, feature
selection is similar to editing the training set.

4. Large training sets cause problems as they involve the
manipulation (e.g. inversion, like in (3)) ofm*m matrices.
This point and the previous one will be discussed further
in section 4.

3. Small Sample Size Problem

The computation and performance of linear classifiers as
discussed in the previous section for sample sizesm in the
order of the dimensionality has been extensively investi-
gated by us during the recent years, e.g. [6], [7], [8]. A typ-
ical learning curve for a 30-dimensional Gaussian problem
is sketched in fig. 1. Form > 30 the Fisher discriminant is
used. Form = 30 an exact solution as in (3) is obtained and
for m < 30 a pseudo-inverse is used, see [6]. Sample sizes
equal to the dimensionality appear to be maximally bad due
to some resonance phenomenon: the noise in the training set
is maximum and entirely reflected in the discriminant. For

larger training sets the noise is decreased by averaging, for
smaller training sets the total amount of noise is less, see
[8]. As a consequence the point where the sample size
equals the feature size should definitely be avoided. Gener-
ally there are four options:

1. reduce the feature size (feature selection)

2. reduce the sample size, either at random or systematical-
ly. This is the basis of our work in [6] and of the support
vector classifier [3], [4], [5].

3. enlarge the sample size.

4. enlarge the feature size.

As we argue in [12], the options 3 and 4 can both be real-
ized by adding noise, in different ways. In connection with
the relational approach discussed in this paper, the options
1 and 2 both reduce the similarity matrix D, but in different
ways: columns versus rows. Similarity measures are often
symmetric, but, nevertheless, there is an important differ-
ence.

Reducing samples (rows) implies that thepoint of oper-
ation is moved to the left in fig. 1. This corresponds with
less samples in a feature space of constant dimensionality.
The training set is thereby reduced into a support set [3].
The pay off of having a larger training set has to be found
by the careful selection of this support set.

Reducing features (columns) implies that themaximum
in the curve of fig. 1 shifts to the left. This corresponds to a
space of lower dimensionality. In this space all training
points are still represented.

The difference between the two approaches becomes
clear by observing what happens if new objects become
available after the reduction. In the case of a support set this
does not help unless this set is recomputed. In case of a
computed feature subset new objects may still be helpful as
thereby the object set in the relational feature space grows.
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Fig. 1. Learning curves of linear classifiers for a
Gaussian 30 dimensional problem.



4. Large Sample Size Problem

The methods used for reducing the similarity matrix should
be judged on both, their feasibility as well as their perfor-
mance. We have argued above that reduction in one way or
another is necessary before good generalizable discrimi-
nants can be computed. In this section we will face the prob-
lems that arise with increasing training sets. A direct
application of (3) yields for large sample sizes an increasing
noise sensitivity and a decreasing performance. Reduction
will become even more necessary. The manipulation of the
similarity matrix, however, becomes for larger sample sizes,
say over 1000, a serious computational problem. This has
been partially solved by Burges and Schölkopf [16]. The
computational demands, however, are still heavy.

Because of the above it may be highly interesting to
study relational discriminant methods that apply a feature
reduction on the similarity matrix instead of an object
reduction as thereby all objects remain represented. The
question arises what an efficient reduction is for relational
features. Especially for large datasets it becomes less
important to study optimal selection methods as the rela-
tional features are similar for neighboring objects. More-
over, each representation has some intrinsic dimensionality:
the maximum number of independent directions that is
essential for the representation. Suppose that this intrinsic
dimensionality is k, then almost any subset of k+1 objects
used for the feature representation constructs a k-dimen-
sional subspace which is, except for some linear transfor-
mation, identical to the optimal subspace. So, for linear
solutions like (3) a random feature selection may be a good
start, i.e. random selection of the objects used for the rela-
tional features.

A random selection may be improved in two ways: mul-
tiple random trials (stochastic optimization) or by using a
systematic approach instead. The latter may be based on an
observation we borrow from the ideas behind the support
vector classifier, see [3]: good objects for representing a dis-
criminant are close to the discriminant, i.e. around the
margin between the classes. In an iterative way these
objects may be found by adding the erroneously classified
training objects to an initial object set.

In the next section some examples will be presented
illustrating the above ideas.

5. Examples

The first example, see figure 2, shows the use of all train-
ing objects in (3) for a simple 2-dimensional problem.

Three similarity measures are used: (x1•x2)
3, resulting in a

3rd-order polynomial discriminant, ||x1-x2||
2 yielding a qua-

dratic function and ||x1-x2||. For this last measure rank(D) =
m. Consequently it classifies all objects correctly and is

thereby overtrained. For this situation we are in the top of
the peak in figure 1.

In figure 3 an example is shown in which the classifier is
a linear function of a similarity representation of just two,
randomly selected objects. The left figure shows the origi-
nal 2-dimensional feature space and the final classifier. In
the right figure the relational feature space is shown based
on the squared Euclidean distances to the two selected
objects. These objects are thereby exactly on the axis. In
this space a linear classifier between all training objects is
computed, which is equivalent to the quadratic classifier in
the left figure, the original feature space.

The next example shows the result of the following pro-
cedure:
1. select an arbitrary object,k = 1.
2. compute the (m,k) similarity matrix to all training objects
3. compute a linear classifier in the resultingk-dimensional

space.
4. If not all objects are correctly classified add the most er-

roneously classified object (largest distance to the classi-
fier), k = k + 1, go to 2.

5. Remove objects from the selection as long as the training
error remains zero.
The left figure shows two banana shaped classes. In the

right figure the well known spiral problem is shown. The
objects that are selected for the relational features are encir-
cled.

Finally a character recognition experiment was run on a
large NIST database [14]. We used 20000 numerals ‘0’ - ‘9’
(2000 for each class) as normalized by DeRidder [11], [13]
in 16x16 grey value images. The similarity is computed as
the Euclidean distance between the 256 pixels of two
objects (these distances were raised to the 1.4 power for his-
torical, arbitrary reasons). The total dataset is randomly
split in 1000 objects per class for training and 1000 objects
per class for testing. Out of the total training set random
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Fig. 2. Examples of classifiers based on all objects.



subsets of 10, 20, 50, 100, 250 and 1000 objects per class
are selected. Out of each subset randomlyn objects per class
are selected (n=1,2,3,4) to be used as thek relational fea-
tures. Sok = 10,20,30,40. For these features linear and qua-
dratic classifiers are computed. It appears that the quadratic
classifiers perform much better. Results are shown in figure
5. In the left figure the averaged results are shown over 25
experiments with different random selections of the rela-
tional features. It appears thatn = 3 (k = 30) is almost suffi-
cient for representing the training set. For small training sets
smaller feature sets (n = 1,2, sok = 10, 20) are better.

The best of our 25 experiments withn = 4 (which is just
slightly better than the average) is compared in the right
figure with some historical results obtained by DeRidder on
the same training set [11], [13] using a LeCun neural net-
work [15], the nearest neighbor rule and a 3rd order support
vector classifier [3].

The results that are obtained in this character recognition
experiment are reasonably good, in particular if the comput-

ing time is taken into account. Our relational discriminant
needs for the largest experiment with in total 10000 training
objects (1000 objects times 10 classes) in an originally 256
dimensional feature space just a few minutes on a Sun-
Ultra-1 processor. This is due to the random reduction of the
10000*10000 similarity matrix to a 10000*40 matrix. In the
resulting 40-dimensional feature space a discriminant is
trained by all 10000 training objects. Also the application of
this discriminant to new objects is relatively fast in compar-
ison with the other classifiers as it primarily demands the
computation of the distances to just 40 training objects.

6. Discussion

Relational discriminant analysis offers the possibility to
compute nonlinear classifiers from small or large training
sets. The original object representations should be such that
similarity matrices can be computed. This is possible for
any feature representation as well as for other representa-
tions. This enables the use of different kinds of prior knowl-
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Fig. 3. Left: Original 2-dimensional feature space with final discriminant. Right: transformed feature space based
on the distances to two randomly chosen training objects
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edge for the definition of the object relations,
(dis)similarities or distances.

A m*m similarity matrix on the training set can be inter-
preted asm objects given bym features (similarities to train-
ing set objects). Its direct use for building a linear classifier
is not advisable as exactly for this situation (sample size
equals feature size) the learning curve peaks. Using less
objects as in the support vector classifier is an option but has
the drawback that it is computationally intensive and is
entirely defined by the selected object subset. In this paper
we found that the selection of a small set of relational fea-
tures is very well possible: it is fast, both for training and
testing, and may perform well. Moreover, it has the advan-
tage over the support vector classifier that new training
objects can directly be included.

An open question is still the selection method for finding
the relational features: random or systematic. The latter will
certainly decrease the training speed. Other open issues are
the final discriminant computed on top of the reduced simi-
larity matrix and its possible nonlinear transformations.
Here we experimented with both, linear as well as nonlinear
discriminants. Nonlinear similarity transformations will
have to be studied in relation with this with the similarity
measure itself.
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Fig. 5. Character recognition experiment. Left the learning curves averaged over 25 experiments with a
relational discriminant. Right the best of these 25 experiments compared with some historic results.


