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Abstract: This paper introduces a novel classification algorithm named MAP-DID. This algorithm combines a maximum
a posteriori (MAP) approach using the well-known Gaussian Mixture Model (GMM) method with a term that
forces the various Gaussian components within each class to have a common structure. That structure is
based on higher-order statistics of the data, through the use of the dissimilarity increments distribution (DID),
which contains information regarding the triplets of neighbor points in the data, as opposed to typical pairwise
measures, such as the Euclidean distance. We study the performance of MAP-DID on several synthetic and real
datasets and on various non-Euclidean spaces. The results show that MAP-DID outperforms other classifiers
and is therefore appropriate for classification of data on such spaces.

1 INTRODUCTION

Classification deals with algorithmic methodologies
for assigning a new input data to one of the known
classes. There are numerous classifiers with differ-
ent strategies, likek nearest neighbor, neural net-
works, support vector machines, Parzen windows
(Duda et al., 2001; Hastie et al., 2009).

This paper introduces a new maximum a posteri-
ori (MAP) classifier based on the Gaussian Mixture
Model (GMM). This novel classifier (MAP-DID) in-
troduces an extra factor on the likelihood containing
information about higher-order statistics of the data,
through the use of the distribution of their dissimilar-
ity increments (Aidos and Fred, 2011).

2 DISSIMILARITY
REPRESENTATIONS

Sometimes it is useful to describe the objects using a
dissimilarity representation, a square matrix contain-
ing the dissimilarities between all pairs of objects. To
use the typical classifiers, we need to build a vector
space based on the relations given by the dissimilar-
ity matrix. In (Duin and Pekalska, 2008), two strate-
gies are considered to obtain vector spaces: pseudo-
Euclidean spaces and dissimilarity spaces.

2.1 Pseudo-Euclidean Spaces (PES)

The PES is given by the Cartesian product of two
real spaces:E = R

p ×R
q. A vector x ∈ E is rep-

resented as an ordered pair of two real vectors:x =
(x+,x−). This space is equipped with a pseudo-inner
product, such that〈x,y〉E = xT

J pqy, where J pq =

[Ip×p 0;0 − Iq×q]. Alternatively, if x+i and x−i rep-
resent the components ofx+ andx−, then〈x,y〉E =
∑p

i=1x+i y+i −∑q
i=1x−i y−i .

Although this pseudo-inner product is symmetric
and linear in its first argument, it is not positive defi-
nite. Thus, if one constructs the Gram matrix,G, from
the data patternsxi asGi j = xT

i x j , thenG may not be
positive semidefinite in the PES (Pekalska, 2005).G
is symmetric in the PES, so it has an eigendecompo-
sition of G = VDVT ; but, its eigenvalues can be neg-
ative. Note that a new dataset can be built up from
G throughX = V|D|1/2, where matrixX contains the
vector representations of the new patterns in the PES.

In (Duin et al., 2008; Duin and Pekalska, 2008),
several variants of PES are considered. In this paper,
we also consider the following spaces.

• Pseudo-Euclidean Space (PES):This is a(p+q)-
dimensional PES defined byp+ q eigenvectors.
One keeps thep largest positive eigenvalues and
the q negative eigenvalues that have the highest
absolute value. Each direction is scaled by the



magnitude of the corresponding eigenvalue.

• Positive Pseudo-Euclidean Space (PPES):This p-
dimensional space is defined as PES, but only the
p largest positive eigenvalues are kept.

• Negative Pseudo-Euclidean Space (NPES):This
q-dimensional space is defined as PES, but only
theq largest negative eigenvalues (in magnitude)
are kept; no positive eigenvalues are used.

• Corrected Euclidean Space (CES):In CES, a con-
stant is added to all the eigenvalues (positive and
negative) to ensure that they all become positive.
This constant is given by 2|a|, wherea is the neg-
ative eigenvalue with the largest absolute value.

2.2 Dissimilarity Spaces (DS)

We consider four more spaces constructed in the fol-
lowing way: we compute the pairwise Euclidean dis-
tances between data points of one of the spaces de-
fined above. These distances are new feature repre-
sentations ofxi . Note that the dimension of the fea-
ture space is equal to the number of points.

Since our classifier suffers from the curse of di-
mensionality, we must reduce the number of features;
there are several techniques for that (Hastie et al.,
2009). We chosek-means to find a number of pro-
totypesk < N. k is selected as a certain percent-
age ofN/2, and the algorithm is initialized in a de-
terministic way as described in (Su and Dy, 2007).
After the k prototypes are found, the distances from
each pointxi to each of these prototypes are used
as their new feature representations. This defines
four new spaces, which are named asDissimilarity
Pseudo-Euclidean Space (DPES), Dissimilarity Posi-
tive Pseudo-Euclidean Space (DPPES), Dissimilarity
Negative Pseudo-Euclidean Space (DNPES)andDis-
similarity Corrected Euclidean Space (DCES).

3 THE MAP-DID ALGORITHM

In this section, dissimilarities between patterns in the
eight previously defined spaces are computed as Eu-
clidean distances.

3.1 Dissimilarity Increments
Distribution (DID)

Let X be a set of patterns, and(xi ,x j ,xk) a triplet
of nearest neighbors belonging toX, wherex j is the
nearest neighbor ofxi andxk is the nearest neighbor
of x j , different fromxi . Thedissimilarity increment
(DI) (Fred and Leit̃ao, 2003) between these patterns

is defined asdinc(xi ,x j ,xk) =
∣

∣d(xi ,x j)−d(x j ,xk)
∣

∣.
This measure contains information different from a
distance: the latter is a pairwise measure, while the
former is a measure for a triplet of points, thus a mea-
sure of higher-order dissimilarity of the data.

In (Aidos and Fred, 2011) the DIs distribution
(DID) was derived under the hypothesis of Gaussian
distribution of the data and it was written as a function
of the mean value of the DIs,λ. Therefore, the DID
of a class is given by

pdinc
(w;λ) =

πβ2

4λ2 wexp

(

−πβ2

4λ2 w2
)

+
π2β3

8
√

2λ3
×

(

4λ2

πβ2 −w2
)

exp

(

−πβ2

8λ2 w2
)

erfc

( √
πβ

2
√

2λ
w

)

, (1)

where erfc(·) is the complementary error function,
andβ = 2−

√
2.

3.2 MAP-DID

Consider that{xi ,ci , inci}N
i=1 is our dataset, wherexi

is a feature vector inRd, ci is the class label andinci
is the set of increments yielded by all the triplets of
points containingxi . We assume that a classci has
a single statistical model for the increments, with an
associated parameterλi . This DID, described above,
can be seen as high-order statistics of the data since it
has information of a third order dissimilarity of data.

For example, we generate a 2-dimensional Gaus-
sian with 1000 points; it has zero mean and covari-
ance the identity matrix (figure 1 left). We also
generate a 2-dimensional dataset with 1000 points,
where 996 points are in the center and there are four
off-center points at coordinates(±a,0) and (0,±a),
wherea is such that the covariance is also the identity
matrix (figure 1 right). We compute the DIs for each
dataset and look at their histograms (figure 1).

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 1: Two simple datasets with zero mean and a covari-
ance given by the identity matrix, but with vastly different
DIs. Left: Gaussian data.Right: dataset with 996 points
at the origin and four off-center points. Corresponding his-
tograms of the DIs. Note that in the right histogram there
are four non-zero increments and 996 zero increments.



Although the datasets have the same mean and co-
variance matrix, the two DIs distributions are very dif-
ferent from each other. Therefore, the DIs can be seen
as a measure of higher-order statistics: the two dis-
tributions under consideration have exactly the same
mean and variance, but their DIDs are vastly different.

So, we design a maximum a posteriori (MAP)
classifier that combines the Gaussian Mixture Model
(GMM) and the information given by the increments,
assuming thatxi and inci are conditionally indepen-
dent givenc j . We used a prior given byp(c j) =
|c j |/N, with |c j | the number of points of classj, and
the likelihoodp(xi , inci |c j) = p(xi |c j)p(inci |c j).

The class-conditional density of the vectorxi fol-
lows a GMM given byp(xi |c j) = ∑K

l=1 αl p(xi |Σl ,µl ),
with K the number of Gaussian components deter-
mined for classc j , αl the weight of each Gaussian
component andp(xi |Σl ,µl ) the Gaussian distribution.
We obtained the parametersαl , Σl and µl using the
GMM described in (Figueiredo and Jain, 2002).

The class-conditional density of the set of in-
crements wherexi belongs is given byp(inci |c j) =
1
M ∑M

n=1 p(incn
i |c j), whereM is the number of incre-

ments of the setinci , incn
i is then-th increment of that

set, andp(inci |c j) = p(inci |λ j) is the DID given in
equation (1). We thus consider a statistical model for
increments with parameterλ j for each class.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

In this section we compare MAP-DID to other classi-
fiers (1-nearest neighbor (1-NN), nearest-mean (NM),
Parzen window and a linear support vector machine
(SVM)). We use 13 datasets, of which 2 are synthetic
and 11 are real-world data1.

For each of the classifiers, we use a 10-fold cross-
validation scheme to estimate classifier performance.
Figures 2 and 3 present the results for the average
classification error. The values ofp andq eigenvec-
tors, andk prototypes, used to construct the spaces
described in Section 2, are in Table 1.

The MAP-DID is the algorithm with the lowest
error rate. This is true for the vast majority of all
the possible dataset-space pairs. Thus, if any of these
spaces are to be used for classification, the MAP-DID
is a good choice for classification algorithm.

Some other interesting points should be empha-
sized: for the real-world datasets it is interesting to

1See http://prtools.org/disdatasets/ for a full description
of the datasets and the MATLAB toolboxes containing the
classifiers used for comparison.

Table 1: Number of eigenvectors and prototypes used to
construct the spaces described in Section 2.

Dataset p q k
Balls3d 3 7 10
Balls50d 18 5 18
CatCortex 2 2 2
CoilDelftSame 8 4 7
CoilYork 8 5 7
DelftGestures 11 2 13
Protein 6 2 5
Zongker 14 3 20
Chickenpieces 8 3 9

Figure 2: Classification error rate on the four pseudo-
Euclidean spaces considered in Section 2.1.

note that the results are not very different between the
PES, PPES and CES spaces, all of which take into ac-
count the positive portion of the space. Conversely,
the NPES results are considerably worse than those
three, which indicates that this negative space con-
tains little information for classification purposes.

Another interesting point is that in the dissimilar-
ity spaces (figure 3), neither the positive (DPPES) nor
the negative (DNPES) spaces contain all the informa-



Figure 3: Classification error rate on the four dissimilarity
spaces considered in Section 2.2.

tion; instead, the union of the information contained
in those two spaces (DPES or DCES) yields much
better results than either of them separately.

It was necessary to reduce the dimensionality of
the data to generate the dissimilarity spaces (figure 3).
This reduction was accomplished throughk-means,
by computing the distances from the data patterns to
the estimated prototypes. However, many other tech-
niques could be used for dimensionality reduction,
and it is possible that some of those techniques would
yield an improvement on the results for these spaces.

One aspect not considered here is the metric-
ity and euclideaness of datasets (Duin and Pekalska,
2008). These properties may help us identify the sit-
uations where MAP-DID performs well.

5 CONCLUSIONS

We have presented a novel maximum a posteriori
(MAP) classifier which uses the dissimilarity incre-

ments distribution (DID). This classifier, called MAP-
DID, can be interpreted as a Gaussian Mixture Model
with an operator that forces a class to have a com-
mon increment structure, even though each Gaussian
component within a class can have distinct means and
covariances. Experimental results have shown that
MAP-DID outperforms multiple other classifiers on
various datasets and feature spaces.

In this paper we focused on Euclidean spaces de-
rived from non-Euclidean data. This might suggest
that MAP-DID could perform well when applied to
originally Euclidean data. This is a topic which will
receive more investigation in the future.
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