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Abstract: This paper introduces a novel classification algorithm named MAP-DHi digorithm combines a maximum
a posteriori (MAP) approach using the well-known Gaussian Mixture1¢@MM) method with a term that
forces the various Gaussian components within each class to have aocoostmcture. That structure is
based on higher-order statistics of the data, through the use of the disitynilerements distribution (DID),
which contains information regarding the triplets of neighbor points in the datapposed to typical pairwise
measures, such as the Euclidean distance. We study the perforniddB-®ID on several synthetic and real
datasets and on various non-Euclidean spaces. The results showXRaDND outperforms other classifiers
and is therefore appropriate for classification of data on such spaces.

1 INTRODUCTION 2.1 Pseudo-Euclidean Spaces (PES)

Classification deals with algorithmic methodologies The PES is given by the Cartesian product of two
for assigning a new input data to one of the known rea| spaces’z = RP x RY. A vectorx € £ is rep-
classes. There are numerous classifiers with differ- resented as an ordered pair of two real vectars:
ent strategies, likek nearest neighbor, neural net- (x+ x—). This space is equipped with a pseudo-inner
works, support vector machines, Parzen windows product, such thatx,y),; = ijpqy, where 7pq =
(Duda_ etal., 2901; Hastie et al., 2009_). ~lpxp 0;0 —lgxg). Alternatively, if x* andx~ rep-
This paper introduces a new maximum a posteri- resent the components ®f andx—, then(x,y), =
ori (MAP) classifier based on the Gaussian Mixture Zip—1Xi+yi+ _ Zﬁ_lxi—yi—_
Model (GMM). This novel classifier (MAP-DID) in- Although this pseudo-inner product is symmetric
troduces an extra factor on the likelihood containing snq inear in its first argument, it is not positive defi-
information about higher-order statistics of the data, nite Thys, if one constructs the Gram mate, from
through the use of the distribution of their dissimilar-  ha gata patterng asGjj = xJ X;, thenG may not be

ity increments (Aidos and Fred, 2011). positive semidefinite in the PES (Pekalska, 20G5).
is symmetric in the PES, so it has an eigendecompo-
sition of G = VDV; but, its eigenvalues can be neg-
2 DISSIMILARITY ative. Note that a new dataset can be built up from
REPRESENTATIONS G throughX = V‘D'll/z, where matrixX conta}ins the
vector representations of the new patterns in the PES.
In (Duin et al., 2008; Duin and Pekalska, 2008),
several variants of PES are considered. In this paper,
we also consider the following spaces.

Sometimes it is useful to describe the objects using a
dissimilarity representation, a square matrix contain-
ing the dissimilarities between all pairs of objects. To
use the typical classifiers, we need to build a vector e Pseudo-Euclidean Space (PEShis is a(p+q)-
space based on the relations given by the dissimilar-  dimensional PES defined hy+ q eigenvectors.

ity matrix. In (Duin and Pekalska, 2008), two strate- One keeps the largest positive eigenvalues and
gies are considered to obtain vector spaces: pseudo- the g negative eigenvalues that have the highest
Euclidean spaces and dissimilarity spaces. absolute value. Each direction is scaled by the



magnitude of the corresponding eigenvalue. is defined asinc(Xi, X}, Xk) = [d(Xi,xj) — d(X;j,X)|-
e Positive Pseudo-Euclidean Space (PPESs p- This measure contains information different from a

dimensional space is defined as PES, but only the distance: the latter is a pairwise measure, while the

p largest positive eigenvalues are kept. former is_a measure fc_)r a triple_t of points, thus a mea-
. q lid ) sure of higher-order dissimilarity of the data.
* Negative Pseudo-Euclidean Space (NPEB)s In (Aidos and Fred, 2011) the Dls distribution

g-dimensional space is defined as PES, but only (DID) was derived under the hypothesis of Gaussian

theq 'afge“ negative _elgenvalues (in magnitude) yigtribution of the data and it was written as a function
are kept; no positive eigenvalues are used. of the mean value of the DI&,. Therefore, the DID

o Corrected Euclidean Space (CE®).CES,acon-  of a class is given by
stant is added to all the eigenvalues (positive and
negative) to ensure that they all become positive. P, (W) = T[BZ\NeXp(_T[ﬁZWz) i ™p°
This constant is given by|&|, wherea is the neg- ding 2 4)\2 4\2 8v/2)\3

ative eigenvalue with the largest absolute value. 2 2
(4)\ \A/2> exp(—ﬂB vvz> erfc( AL

2 2
2.2 Dissmilarity Spaces (DS) e 8\ 2v2\
where erf¢-) is the complementary error function,

We consider four more spaces constructed in the fol- gngp — 2 /2.
lowing way: we compute the pairwise Euclidean dis-
tances between data points of one of the spaces de-3_2 MAP-DID
fined above. These distances are new feature repre-
sentations ok;. Note that the dimension of the fea- ) ] N
ture space is equal to the number of points. Consider thax;, ¢i,inci};Z, is our dataset, whenq

Since our classifier suffers from the curse of di- is a feature vector iiR?, c; is the class label anitic;
mensionality, we must reduce the number of features; is the set of increments yielded by all the triplets of
there are several techniques for that (Hastie et al., Points containingk. We assume that a classhas
2009). We chosé&-means to find a number of pro- @ single statistical model for the increments, with an
totypesk < N. k is selected as a certain percent- associated parametdy. This DID, described above,
age ofN/2, and the algorithm is initialized in a de- can be seen as high-order statistics of the data since it
terministic way as described in (Su and Dy, 2007). has information of a third order dissimilarity of data.
After the k prototypes are found, the distances from For example, we generate a 2-dimensional Gaus-
each pointx; to each of these prototypes are used Sian with 1000 points; it has zero mean and covari-
as their new feature representations. This definesance the identity matrix (figure 1 left). We also
four new spaces, which are named Rissimilarity generate a 2-dimensional dataset with 1000 points,

X

w), )

Pseudo-Euclidean Space (DPEBjssimilarity Posi- where 996 points are in the center and there are four
tive Pseudo-Euclidean Space (DPPHSssimilarity ~ off-center points at coordinatés-a,0) and (0, +a),
Negative Pseudo-Euclidean Space (DNP&R®)Dis- wherea is such that the covariance is also the identity
similarity Corrected Euclidean Space (DCES) matrix (figure 1 right). We compute the Dls for each

dataset and look at their histograms (figure 1).

3 THE MAP-DID ALGORITHM

In this section, dissimilarities between patterns in the
eight previously defined spaces are computed as Eu- NS [ S
clidean distances. i .

3.1 Dissimilarity Increments - :
Distribution (DID)

Let X be a set of patterns, ang,x;,xx) a triplet Figure 1: Two simple datasets with zero mean and a covari-
of nearest neighbors belon:qingXQ’ V\I/Flerexj is the ance given by the identity matrix, but with vastly different

t neiahbor of andx. is th t neiahb DlIs. Left: Gaussian dataRight: dataset with 996 points
nearest neighbor of; antx, IS the nearest Neignbor ;e origin and four off-center points. Corresponding his-

of xj, different fromx;. Thedissimilarity increment  t{ograms of the DIs. Note that in the right histogram there
(DI) (Fred and Lei@io, 2003) between these patterns are four non-zero increments and 996 zero increments.



Table 1: Number of eigenvectors and prototypes used to
Although the datasets have the same mean and COonstryct the spaces degscribed in Sectiopn 2 yP

variance matrix, the two Dls distributions are very dif-

ferent from each other. Therefore, the DIs can be seen ggﬁzzzt g 3 1k0
as a measure of hlgher—orc_ier statistics: the two dis- Balls50d 181 5| 18
tributions under consideration have exactly the same CatCortex 2121 2
mean and variance, but their DIDs are vastly different. CoilDelftSame| 8 | 4| 7
So, we design a maximum a posteriori (MAP) CoilYork 8 |57
classifier that combines the Gaussian Mixture Model DelftGestures | 11 | 2 | 13
(GMM) and the information given by the increments, ;;?E'(gr 164 g 250
assuming thak; andinc; are cc_)nd|t|_onally indepen- Chickenpieces| 8 | 3| 9
dent givencj. We used a prior given by(cj) =
Icj|/N, with |c;| the number of points of class and 1NN ~NM ~Parzen —SVM -=-MAP-DID
the likelihoodp(x;,inci|cj) = p(xi|cj) p(inci|cj). PES
The class-conditional density of the vecigifol- o

lows a GMM given byp(xi|cj) = TK ;o1 p(xi|Z, 1), gr
with K the number of Gaussian components deter- £
mined for clascj, a; the weight of each Gaussian g

component ang(x;|Z;, i ) the Gaussian distribution. 0
We obtained the parametens, 2, and | using the °
GMM described in (Figueiredo and Jain, 2002). =

The class-conditional density of the set of in- %
crements where; belongs is given byp(inci|cj) = =
LM p(ind'|c;), whereM is the number of incre- £ ¢
ments of the sdhg;, incl is then-th increment of that 55
set, andp(inci|cj) = p(inci|Aj) is the DID given in b B
equation (1). We thus consider a statistical model for NPES
increments with parametay; for each class. »
4 EXPERIMENTAL RESULTS E=

AND DISCUSSION o

In this section we compare MAP-DID to other classi- -

fiers (1-nearest neighbor (1-NN), nearest-mean (NM), ¢”
Parzen window and a linear support vector machine g
(SVM)). We use 13 datasets, of which 2 are synthetic &

and 11 are real-world data »

For each of the classifiers, we use a 10-fold cross- AN e e e e o s e
validation scheme to estimate classifier performance. N EFS ST FFS S
- 7 o & Q}‘é ¢ T A9 @Q‘ & Q\e é\a (-}@
Figures 2 and 3 present the results for the average & & @*“Q&*ZQ@*QQ&*@Q&&

< < <

classification error. The values pfandq eigenvec-
tors, andk prototypes, used to construct the spaces Figure 2: Classificatiqn error rate on the four pseudo-
described in Section 2, are in Table 1. Euclidean spaces considered in Section 2.1.

The MAP-DID is the algorithm with the lowest
error rate. This is true for the vast majority of all
the possible dataset-space pairs. Thus, if any of thes
spaces are to be used for classification, the MAP-DID
is a good choice for classification algorithm.

Some other interesting points should be empha-
sized: for the real-world datasets it is interesting to

note that the results are not very different between the
®PES, PPES and CES spaces, all of which take into ac-
count the positive portion of the space. Conversely,

the NPES results are considerably worse than those
three, which indicates that this negative space con-
tains little information for classification purposes.

1See http://prtools.org/disdatasets/ for a full description  Another interesting point is that in the dissimilar-

of the datasets and the MATLAB toolboxes containing the ity spaces (figure 3), neither the positive (DPPES) nor
classifiers used for comparison. the negative (DNPES) spaces contain all the informa-



—1-NN —NM Parzen —-SVM -=MAP-DID

DPES ments distribution (DID). This classifier, called MAP-
DID, can be interpreted as a Gaussian Mixture Model
with an operator that forces a class to have a com-
' /\7/\\ mon increment structure, even though each Gaussian
\~ \ component within a class can have distinct means and
covariances. Experimental results have shown that
MAP-DID outperforms multiple other classifiers on
various datasets and feature spaces.
%0 - In this paper we focused on Euclidean spaces de-
/\ rived from non-Euclidean data. This might suggest
that MAP-DID could perform well when applied to
originally Euclidean data. This is a topic which will
receive more investigation in the future.
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