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Abstract: In the literature, there are several criteria for validation of a clustering partition. Those criteria can be external
or internal, depending on whether we use prior information about the true class labels or only the data itself.
All these criteria assume a fixed number of clusters k and measure the performance of a clustering algorithm
for that k. Instead, we propose a measure that provides the robustness of an algorithm for several values of
k, which constructs a ROC curve and measures the area under that curve. We present ROC curves of a few
clustering algorithms for several synthetic and real-world datasets and show which clustering algorithms are
less sensitive to the choice of the number of clusters, k. We also show that this measure can be used as a
validation criterion in a semi-supervised context, and empirical evidence shows that we do not need always all
the objects labeled to validate the clustering partition.

1 INTRODUCTION

In unsupervised learning one has no access to prior
information about the data labels, and the goal is
to extract useful information about the structure in
the data. Typically, one can apply clustering algo-
rithms to merge data objects into small groups, unveil-
ing their intrinsic structure. Two approaches can be
adopted in clustering: hierarchical or partitional (Jain
et al., 1999; Theodoridis and Koutroumbas, 2009).

Usually it is hard to evaluate clustering results
without any a priori knowledge of the data. Valida-
tion criteria proposed in the literature can be divided
in external and internal (Theodoridis and Koutroum-
bas, 2009). In external criteria, like Rand Statistics,
Jaccard Coefficient and Fowlkes and Mallows Index
(Halkidi et al., 2001), one has access to the true class
labels of the objects. Internal criteria are based on the
data only, such as the average intra-cluster distance or
the distance between centroids. Silhouette, Davies-
Bouldin and Dunn indexes (Bolshakova and Azuaje,
2003) are examples of these measures.

There are some drawbacks in using either type of
criteria. To use external criteria we need to have the
true class label for each object, given by an expert,
and this is not always possible or practical. We might
have only labels for a small part of the entire dataset.
On the other hand, using internal criteria might give

a wrong idea of a good clustering. Since internal cri-
teria are based on intra and/or inter cluster similarity,
these criteria may be biased towards one clustering al-
gorithm relative to another one. So, when possible, an
external criterion is preferable since all the clustering
algorithms are equally evaluated.

In the literature, external and internal criteria are
designed for the evaluation of clustering algorithms
for a fixed number of clusters, k. In this paper, we
propose to use a ROC curve and the area under that
curve (AUC) to study the robustness of clustering al-
gorithms for several values of k, instead of a fixed k.
Also, we study the advantages of using this measure
when only a few objects are labeled.

2 THE PROPOSED CRITERION

A ROC (Receiver Operating Characteristic) curve is
normally used in telecommunications; it is also used
in medicine to evaluate diagnosis tests. In machine
learning, this curve has been used to evaluate classi-
fication methods (Bradley, 1997). Here we will use it
to evaluate the robustness of clustering algorithms.

Let C = {C1, . . . ,Ck} be a partition of a dataset
X obtained by a clustering algorithm and P =
{P1, . . . ,Pm} be the true labeling partition of the data.
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Figure 1: Synthetic dataset with two clusters. Top: ROC
curve for single-link (SL) and average-link (AL). Bottom:
Error rate for SL and AL, which corresponds to the sum of
the two type of errors, ε1 and ε2.

2.1 ROC Curve

In this paper, a ROC curve shows the fraction of false
positives out of the positives versus the fraction of
false negatives out of the negatives. Consider two
given points xa, xb; a type I error occurs if those
two points are clustered separated when they should
be in the same cluster, i.e., for any pair of objects
(xa,xb), type I error is given by ε1 ≡ P(xa ∈Ci,xb ∈
C j|xa,xb ∈ Pl), i 6= j and type II error is given by
ε2 ≡ P(xa,xb ∈Ci|xa ∈ Pj,xb ∈ Pl), j 6= l. In terms of
the ROC curve, for a clustering algorithm with vary-
ing k, for each k we compute the pair (εk

1,ε
k
2), and we

join those pairs to get the curve (see figure 1 top).
We define that a clustering partition C is concor-

dant with the true labeling, P , of the data if ε1 = 0 if k ≤ m
ε2 = 0 if k ≥ m
ε1 = ε2 = 0 if k = m.

(1)

We call a ROC curve proper if, when varying k,
ε1 increases whenever ε2 decreases and vice-versa.
These increases and decreases are not strict. Intu-
itively, small values of k should yield low values of ε1
(at the cost of higher ε2) if the clustering algorithm is
working correctly. Similarly, large values of k should
lead to low values of ε2 (at the cost of higher ε1).

2.2 Evaluate Robustness

At some point, a clustering algorithm can make bad
choices: e.g., an agglomerative method might merge
two clusters that in reality should not be together.
Looking at the curve can help in predicting what is
the optimal number of clusters for that algorithm,
k′, which minimizes the error rate; it is given by
k′ = argmin(ε1 + ε2). In figure 1, right, we plot the
sum of the two types of errors as a function of the
number of clusters, k; this is equivalent to the error
rate. In figure 1 left, we see a knee in the curves which
corresponds to the lowest error rate found in the bot-
tom plot. We see that average-link (AL) merges clus-
ters correctly to obtain the lowest error rate when the

true number of clusters is reached (k = 2). On the
other hand, for single-link (SL), the minimum error
rate is only achieved when k = 9. Since that number
is incorrect, the minimum of the AL curve is lower
(better) than the minimum of the SL curve.

In the previous example, visually inspecting the
ROC curve shows that AL performs better than SL:
the former’s curve is closer to the axes than the lat-
ter’s. However, visual inspection is not possible if
we want to compare several clustering algorithms; we
need a quantitative criterion. The criterion we choose
is the AUC. A lower AUC value corresponds to a bet-
ter clustering algorithm, which will be close to the
true labeling for some k. In the example, we have
AUC = 0.0247 for AL and AUC = 0.1385 for SL.
Also, if AUC = 0 then the clustering partition C is
concordant with the true labeling, P . This definition
is consistent with (1).

The ROC curve can also be useful to study the
robustness of clustering algorithms to the choice of k.
We say that a clustering algorithm is more robust to
the choice of k than another algorithm if the former’s
AUC is smaller than the latter’s. In the example, AL
is more robust to the choice of k than SL.

2.3 ROC and Parameter Selection

Some hierarchical clustering algorithms need to set a
parameter in order to find a good partition of the data
(Fred and Leitão, 2003; Aidos and Fred, 2011). Also,
most of the partitional clustering algorithms have pa-
rameters which need to be defined, or are dependent
of some initialization. For example, k-means is a par-
titional algorithm that needs to be initialized.

Typically, k-means is run with several initializa-
tions and the mean of some measure (e.g. error rate)
is computed, or the intrinsic criterion (sum of the dis-
tance of all points to their respective centroid) is used,
to choose the best run. We could also consider a fixed
initialization for k-means like the one proposed by (Su
and Dy, 2007). In this paper we compute the mean
(over all runs) of type I error and type II error to plot
the ROC curve for this algorithm.

2.4 Fully Supervised Case

In the fully supervised case, we assume that we have
access to the labels of all samples and we apply clus-
tering algorithms to that data. The main goal is to
study the robustness of each clustering algorithm as
described in section 2.2.
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Figure 2: Synthetic datasets.

2.5 Semi-supervised Context

We want to study the evolution of the AUC as the frac-
tion of data which has labels becomes smaller. We be-
gin by applying the clustering algorithms to the com-
plete datasets, as in previous section. However, only
10% of the points are used to compute the ROC curve,
and consequently the AUC. The whole dataset is used
to perform clustering, whereas the AUC is computed
with only a part of the data. This mimics what would
happen in a real situation if only part of the data had
labels available.

This process is done M times, each time using a
different 10% subset of the data for computing the
AUC. This process is run also with 20%, 30%, ... ,
100% of the points used for the AUC computation.

3 EXPERIMENTAL RESULTS
AND DISCUSSION

We consider several synthetic (see figure 2) and real
datasets, from the UCI machine Learning Reposi-
tory1, to study the robustness of clustering algorithms
using the measure described in the previous section.
We use 7 traditional clustering algorithms: single-link
(SL), average-link (AL), complete-link (CL), Ward-
link (WL), centroid-link (CeL), median-link (MeL)
and k-means (Theodoridis and Koutroumbas, 2009),
and two clustering algorithms based on dissimilarity
increments: SLAGLO (Fred and Leitão, 2003) and
SLDID (Aidos and Fred, 2011).

3.1 ROC and Parameter Selection

SLAGLO and SLDID have one parameter that needs
to be set (Fred and Leitão, 2003; Aidos and Fred,

1http://archive.ics.uci.edu/ml
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Figure 3: Synthetic dataset with four clusters. Blue dots
correspond to the error values for 100 different initializa-
tions of k-means. AvgError is the ROC curve correspond-
ing to the mean of type I and II errors; bestrun is the ROC
curve for the best run according to the intrinsic criterion of
k-means; VarPart Init is the ROC curve for k-means with a
fixed initialization based on (Su and Dy, 2007).

2011). As described in section 2.3, we use the AUC
to decide the best parameter for each algorithm.

Figure 3 shows the ROC curves for k-means, for
each strategy described in section 2.3. The figure
shows that the curve based on the mean of type I and
II errors is proper; the other two are not. This curve
also has the lowest AUC. In the following, we plot
the ROC curve of k-means using several initializa-
tions and the mean of the type I and II errors.

3.2 Fully Supervised Case

In this section we study the case described in sec-
tion 2.4. Figure 4 shows the results of applying the
clustering algorithm to the datasets described above.
For brevity, we present plots only for three of the
datasets; we then summarize all the results in table 1.

From table 1 we can see that SLAGLO is more
robust in the synthetic data than other clustering algo-
rithms. However, in real datasets, WL and CeL seem
to be the best algorithms. In some datasets, we get
high values of ε1 and ε2 for some algorithms (such
as CL and MeL on the cigar dataset) which indicate
that these clustering algorithms are not appropriate for
that dataset. One of the datasets (crabs) is very hard
to tackle for all algorithms.

3.3 Semi-supervised Case

As described in section 2.5, we simulate a semi-
supervised situation to study the advantages of the
AUC as a clustering evaluation criterion. In these ex-
periments we use M = 50 runs.

Figure 5 shows the values of the AUC versus the
percentage of points used to compute the AUC. There
is considerably different behavior depending on the
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Figure 4: ROC curves for one synthetic datasets and two real datasets.

Table 1: Area under the ROC curve (AUC) when we have access to all labeling of data. Ns is the number of samples, Nf the
number of features and Nc the true number of clusters. The bold numbers are the lowest AUC, which corresponds to the best
clustering algorithm.

Data Ns Nf Nc SL CL AL WL CeL MeL SLAGLO SLDID k-means
barras-c3 400 2 2 0.139 0.025 0.025 0.010 0.010 0.011 0.102 0.087 0.034
image-1 1000 2 7 0.007 0.082 0.068 0.063 0.067 0.087 0.002 0.175 0.074
image-2 1000 2 2 0.467 0.211 0.274 0.224 0.261 0.245 0.030 0.343 0.266
semicircles 500 2 2 0 0.283 0.296 0.256 0.280 0.272 0 0.049 0.320
austra 690 15 2 0.489 0.428 0.472 0.470 0.483 0.486 0.489 0.496 0.320
biomed 194 5 2 0.304 0.279 0.273 0.250 0.280 0.271 0.292 0.408 0.273
breast 683 9 2 0.351 0.121 0.070 0.049 0.049 0.127 0.397 0.419 0.064
chromo 1143 8 24 0.451 0.395 0.394 0.397 0.401 0.416 0.451 0.454 0.403
crabs 200 5 2 0.486 0.501 0.492 0.485 0.498 0.496 0.481 0.480 0.499
derm 366 11 6 0.112 0.057 0.041 0.031 0.041 0.054 0.098 0.092 0.055
ecoli 272 7 3 0.332 0.100 0.072 0.093 0.070 0.162 0.257 0.322 0.095
german 1000 18 2 0.488 0.492 0.485 0.484 0.489 0.481 0.487 0.487 0.487
imox 192 8 4 0.342 0.214 0.285 0.033 0.325 0.140 0.148 0.195 0.134
iris 150 4 3 0.086 0.169 0.057 0.064 0.057 0.097 0.083 0.067 0.089

dataset. For example, in the image-1 dataset the AUC
of all algorithms is roughly constant and does not vary
much with the percentage of labeled points.

In other datasets we see something very different:
in the semicircles and image-2 datasets some methods
have a low AUC for a low percentage of labeled points
which then starts to increase with this percentage.

These two different behaviors illustrate an impor-
tant aspect of the AUC for semi-supervised situations:
this measure can become very low for very small per-
centages of labeled points. In the cases described pre-
viously, this is merely a spurious value, since if we
had more information (more labeled points) we would
find out that the AUC is actually higher.

On the other hand, these plots allow us to decide
whether it is worth it to label more data. In general, la-
beling datasets is expensive; for this reason, it is use-
ful to know if labeling only a subset of data will be
enough. One can plot part of the AUC vs. fraction of
labeled points curve using the data which is already
labeled. If this curve is approximately constant, then
it is likely that labeling more data won’t bring much
benefit. If this curve is rising, then it might be worth
considering the extra effort of labeling more data, un-
til one starts seeing convergence in this curve.

There is a further use for these curves. In general,
the best way of knowing whether a partition of the
data is correct is to know the true partition. In some
cases, like in the WL for the imox dataset, the curve
is both constant and has a very low value. If one starts
investing the time and/or money to label, say, 40% of
the data, one can already be quite sure that the clus-
tering provided by WL is a good one, even without
labeling the rest of the data. This is applicable to a
few more algorithm-dataset combinations: WL, AL
and CeL for derm, or SLDID, AL and WL for iris.

If labeling more data is completely infeasible, the
previous reasoning will at least allow researchers to
know whether the results obtained on the partially-
labeled data are reliable or not.

4 CONCLUSIONS

There are several criteria to evaluate the performance
of clustering algorithms. However, those criteria only
evaluate clustering algorithms for a fixed number of
clusters, k. In this paper, we proposed the use of a
ROC curve to study the performance of an algorithm
for several k simultaneously. This allows measuring
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Figure 5: Average of AUC over 50 random subsets of data where we use % of samples with labels to obtain the ROC curves.

how robust a clustering method is to the choice of k.
Moreover, in order to compare the robustness of

different clustering algorithms, we proposed to use
the area under each ROC curve (AUC).

We showed values of the AUC for fully supervised
situations. Perhaps more interestingly, we showed
that this measure can be used in semi-supervised
cases to automatically detect whether labeling more
data would be beneficial, or whether the currently la-
beled data is already enough. This measure also al-
lows us to extrapolate classes from the labeled data to
the unlabeled data, if one can find a clustering algo-
rithm which yields low and consistent AUC value for
the labeled portion of the data.
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