
The use of dissimilarities for object recognition
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Summary

Pairs of objects, represented by histograms, contours, shapes or images, can be compared by
the use of a dissimilarity measure. Pattern classes may be learned from dissimilarity matrices
enabling more efficient object recognition than by using the traditional nearest neighbor rule.

Introduction

The ability to see differences supports the human recognition of patterns. When knowledge
on differences between objects, phenomena or events is gathered, one starts to observe their
similarities. This makes the process of finding good discriminating features easier.

Groups of objects can be studied, starting from the perspective that some are dissimilar,
while others are similar. This is the basis on which methods for learning and recognizing
objects by automatic means should rely on. This mimics the human ability of recognition
by computers and sensors. In the area of statistical pattern recognition objects are described
by a set of numerical features and represented as points in a feature vector space. Usually,
it is a Euclidean space, equipped with the algebraic structure of inner product, hence the
associated norm and metric. The difference between objects is interpreted as the Euclidean
distance between their point representations in this space.

The concept of dissimilarity leads to dissimilarity representations. These are numerical rep-
resentations, in which each value captures the degree of commonality between pairs of objects.
Since a dissimilarity measure can be defined on arbitrary data such as sensor measurements,
shapes, strings, graphs, or even vectors in a feature space, this representation becomes very
general. Statistical approaches offer the well-developed theory of vector spaces and ways of
dealing with noise. Syntactical approaches posses the structure-handling capability lacked by
the first. As they both make use of distances, their strengths can be combined on the level of
dissimilarity representation; see also [5]. Below, we will briefly review some developed dissim-
ilarity measures and introduce the methodology of learning from dissimilarity representations.

Dissimilarity representation and learning methods

There exists a plethora of dissimilarity measures used for object matching and comparison.
We will mention some in relation to histograms, spectra and shapes. When normalized his-
tograms and spectra are considered as probability distributions, probabilistic measures like the
divergence can be then applied. The order of bins or wavelengths is important as neighboring
elements are expected to be correlated. This may be incorporated in the measure e.g. by com-
puting the `p-distance between cumulative histograms or between approximated histograms or
spectra derivatives [9, 10].

Shape dissimilarity measures are usually developed to solve pattern matching problems.
A typical example is to find geometric transformations (from a specified class) of one pattern
(e.g. shape or contour) into another one such that a predefined cost is minimized [16, 1]. For
the matching of binary images (or contours), variants of Hausdorff distances are used [4, 8].
Ideas for curve matching are presented in [6], the definition of an elastic distance is considered
in [18] and some framework for deformable matching is developed in [2].



Shape contours can be compared by the use of an edit distance applied to the chain codes
[17]. Since starting points may be arbitrary, matching is performed between all cyclic permu-
tations. Alternatively, contours may be represented as sequences of points in 2D. Then, string
descriptions consist of the direction vectors between consecutive point pairs. Different substi-
tution costs used in the edit distance lead to different distance measures [3]. Dissimilarities
can also be evaluated as edit distances between shock graphs representing shapes [15].

In pattern matching one usually looks for the object which yields the smallest mismatch.
In classification, this translates into the 1-Nearest Neighbor (1-NN) rule, assigning objects to
the class of the nearest neighbor, defined by the smallest dissimilarity. Alternative learning
approaches based on dissimilarities, that can be applied more efficiently, however, exist.

Consider a set of objects R = {p1, p2, . . . , pn}, called a representation set, and a dissimi-
larity measure d, derived from the objects directly, their sensor representations, or some other
intermediate representations. It is nonnegative and obeys the reflexivity condition, d(x, x)=0,
but it may be non-metric. A dissimilarity representation (DR) of an example x is a vector
D(x,R)=[d(x, p1), d(x, p2), . . . , d(x, pn)] of the dissimilarities between x and the objects of
R. Consequently, for a set T of N objects, it extends to an N×n dissimilarity matrix D(T, R).
R is assumed to be a relatively small set of representative objects. R may be a subset of T or
they might be completely distinct. In the former case, R should be selected out of T for the
specific learning task to characterize variability in the data. Various random and systematic
approaches can be used; see [9, 13, 10].

Assume a dissimilarity representation D(T, R), where T is a training set. Three frameworks
for automatic learning are considered. In the first one, the given dissimilarities are directly
used, as carrying information on local neighbors. This leads to variants of the k-Nearest
Neighbor (k-NN) method. The second approach addresses a dissimilarity representation as a
data-dependent mapping specified by the set R. A mapping D(x,R) : X → Rn is defined
as D(x,R). Hence, learning takes place in a dissimilarity space, in which each dimension
corresponds to a dissimilarity with a representation object, d(·, pi). This vector space is
assumed to be equipped with the traditional inner product and the associated norm, and
Euclidean metric. Additionally, if beneficial, other distance measures may be considered. The
third approach relies on an approximate embedding of dissimilarities into a pseudo-Euclidean
space, an extension of a Euclidean space [7]. This is a real vector space E =R(p,q) equipped
with a non-degenerate, indefinite inner product. E admits a direct orthogonal decomposition
E = Rp ⊕ Rq such that the inner product is positive definite on Rp and negative definite
on Rq. Many traditional classifiers, especially those relying on (generalized) inner product
operations, can be applied or adapted for dissimilarity spaces and pseudo-Euclidean spaces.
These three frameworks are used for clustering and data characterization, novelty detection
and classification. The details can be found in [11, 14, 10].

Clustering example

Two fish contours are compared such that one is fixed and the other is transformed by a scaling,
shift and rotation to yield the smallest sum of square Euclidean distances. A dissimilarity
matrix D is derived for a collection of n = 60 examples. As the clustering results based
on D are imperfect (as judged by us visually), a new matrix Dn is computed such that

dn(i, j) = d(i,j)P
k d(i,k)+

P
l d(l,j)

. Every dissimilarity value between the i-th and j-th examples is

hereby scaled with respect to their overall dissimilarities. In this way, clusters are emphasized.
The results of three clustering techniques, EM-clustering in a PCA-dissimilarity space, k-
centers and hierarchical clustering with complete linkage, are shown in Fig. 1. All three give
good results. As the first two methods depend on initialization, they are run 50 times and
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Figure 1: Clustering of fish shapes into three clusters.

the best results, as judged by some appropriate criteria, are presented. For the EM-clustering,

the criterion is J =
P

i ni/(n−ni)
P

j njAij

2
P

i niAii
, where ni is the number of objects per class and Aij

is the average between-class dissimilarity and Aii is the average within-class dissimilarity. For
the k-centers, the best result is found by minimizing the maximum of the dissimilarities to the
selected centers.

Classification example

An edit non-metric distance between string contours of pen-written digits is considered; see [12]
for details. The insertion and delation costs are fixed, while the substitution cost is the distance
between neighboring direction vectors. There are 10 classes, represented by approximately 350
examples each. The training set T consists of 10·100 examples and the test set S has 10·200
examples. R is a random subset of T . A pseudo-Euclidean space and a PCA-dissimilarity space
are determined with the dimensionality of 0.3|R|. A regularized quadratic classifier is trained
in both spaces. The experiments are repeated 50 times for representations sets of various sizes
and the results are averaged. Fig. 2 presents the resulting error curves as a function of |R|.
The legend refers to the element-wise transformations applied to dissimilarity representations.
As a comparison, the 1-NN rule (the best k-NN) is directly applied to D(·, R). The averaged
error of the 1-NN on D(·, T ) is approximately 1% and it relies on |T | = 10 ·100 examples
to which dissimilarities need to be computed. The same result is reached for a quadratic
classifier in pseudo-Euclidean and PCA-dissimilarity spaces and |R| = 10·15 examples. When
the computation of dissimilarities is very costly, the latter offer an alternative to the k-NN
methods.

Conclusion

Dissimilarity representations can be considered as a way of integrating statistical and structural
approaches to pattern recognition. Some learning methods are developed, much is still open
for the future research.
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Figure 2: The averaged classification error for quadratic classifiers trained in pseudo-Euclidean
(left) and dissimilarity (right) spaces. As a comparison, the best k-NN rule, the 1-NN, is
directly applied to D(·, R). The 1-NN rule on D(·, T ) yields an average error of 1%. The
standard deviations reach on average 0.3% and maximally 1% for very small R.
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