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Detecting edges in multispectral images is difficult because different spectral bands may contain different
edges. Existing approaches calculate the edge strength of a pixel locally, based on the variation in intensity
between this pixel and its neighbors. Thus, they often fail to detect the edges of objects embedded in
background clutter or objects which appear in only some of the bands.
We propose SEDMI, a method that aims to overcome this problem by considering the salient properties of
edges in an image. Based on the observation that edges are rare events in the image, we recast the problem of
edge detection into the problem of detecting events that have a small probability in a newly defined feature
space. The feature space is constructed by the spatial gradient magnitude in all spectral channels. As edges are
often confined to small, isolated clusters in this feature space, the edge strength of a pixel, or the confidence
value that this pixel is an event with a small probability, can be calculated based on the size of the cluster to
which it belongs.
Experimental results on a number of multispectral data sets and a comparison with other methods
demonstrate the robustness of the proposed method in detecting objects embedded in background clutter or
appearing only in a few bands.
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1. Introduction

Edge detection for gray-scale images has been thoroughly studied
and is well established. However, for color images and especially for
multispectral images, this topic is still in its infancy and even defining
edges for these images is a challenge [1]. There are two main
approaches to detect edges in multi-channel images based on either
monochromatic [2,3] or vector techniques [4–6]. The monochromatic
approaches apply a gray-scale edge detection to each band and then
combine the results over all the bands. Several combination rules have
been used, e.g. the summation rule [3], the maximum rule [7], and the
OR operation [8]. A more sophisticated combination technique is to
fuse the individual responses using different weights [9].

Vector based approaches consider each pixel in a multispectral
image as a vector in the spectral domain, then perform edge detection
in this domain. These approaches can be further divided into two
categories: multidimensional gradient [4,10,11] and vector order
statistic [5,6,12]. Themultidimensional gradient approach extends the
gray-scale definition of gradient magnitude and direction to multi-
spectral images. Di Zenzo [4] defines the gradient direction at a pixel
as the direction in which its vector in the spectral domain has the
maximum rate of change. Hence, an eigenvalue decomposition is
applied to the set of partial derivatives at a pixel to determine the
largest eigenvalue and its corresponding eigenvector. The largest
eigenvalue is then considered as the edge magnitude and the
eigenvector as the edge direction of this pixel. The disadvantage of
this method is its sensitivity to texture because the gradient-based
operators are sensitive to small change in intensity.

The vector order statistic approach follows the use of morpholog-
ical operators for edge detection in gray-scale images [13], which
calculates gradients as the difference between a dilation and an
erosion. Trahanias et al. [5] order the pixels within a small window by
the aggregate distances of each pixel to the others. Then, the edge
strength of the pixel located at the center of the window is calculated
as the deviation between the vector with the highest rank and the
median vector. Evans and Liu [6] improve this method by defining the
edge strength of a pixel as the maximum distance between any two
pixels in its surrounding window. This helps to localize edge locations
more precisely.

In the approaches discussed above, the edge strength of each pixel is
computed locally based on the variations in the intensities of the pixels
within a small, surrounding window. Consequently, besides extracting
meaningful and useful edges, these approaches also extract many other
spurious edges that arise fromnoise and background clutter [14,15]. For
gray scale images, a commonmethod to overcome this problem is based
on the salient characteristic of edges in images [14,16]. This stems from
visual attention theory that structurally salient features such as edges,
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blobs, and circles are pre-attentively distinctive. They attract our
attention without the need to scan the entire image in a systematic
manner [17]. The saliency of an edge can be defined as its stability of
occurrence over scales [18] or the maximum over scales of normalized
derivatives [19]. Saliency, according to information theory, is also
related to the frequency or the probability of occurrence, i.e. events that
occur rarely are more informative [20,21].

Motivated from these approaches, we recast the edge detection
problem in multispectral images into detecting events that occur with
a small probability in a newly defined feature space. The feature space
is constructed by spatial gradient magnitudes of all pixels over all
spectral bands (thereafter referred to as gradient magnitude feature
space). We then introduce a saliency based edge detection in
multispectral images (SEDMI) to detect such events.

The prominent characteristic of the gradient magnitude feature
space is that edge pixels often fall in small, isolated clusters. The
saliency (or the edge strength) of a pixel is then defined as the
confidence value that this pixel belongs to a small cluster and
subsequently, can be calculated based on the size of the cluster
containing the pixel. As the constructed gradient magnitude feature
space utilizes the global, structural image information, SEDMI
recovers edges of objects surrounded by background clutter or objects
appearing in a few bands of a multispectral image.

The rest of the paper is organized as follows. Section 2 provides
additional motivation for SEDMI and discusses related work. Section 3
presents the SEDMI method. To demonstrate the effectiveness of our
method, experimental results and a comparison with other methods
are presented in Section 4. Sections 5 and 6 discuss related issues and
draw conclusions.

2. Motivation and related work

2.1. Edge detection as detecting salient features

Salient features are image features assumed to be able to capture
the most prominent structures in an image [21]. They may provide
crucial clues for image analyses such as image matching and object
detection. Salient features are often defined as the local extrema of
some functions in the image. Thus, corners, junctions, blobs, and
edges (local maxima of gradient magnitudes) can be considered as
salient features [22].

According to information theory, saliency is related to the frequency
of appearance: events that occur rarely are more informative [20,21].
Thus, salient features correspond to the events with small probabilities
in a feature space defined by, for example, differential invariant features
of the pixels over a range of scales [23]. Salient features can then be
detected by applying a novelty detection technique to the constructed
feature space [24]. Inspired by this approach, we recast the edge
detection problem in multispectral images into detecting events with
small probability (thereafter referred to as small probability events) in
the feature space composed of the gradient magnitudes of the pixels in
all channels.

The main assumption made in our method is that edges in a
multispectral image are rare events. This assumption is reasonable
because the frequency of occurrence of edges in an image is typically
small (O(m) in an m×m image). In addition, spectral differences on
edges between objects are often systematic. This yields a similarity in
the gradient magnitudes between these edge pixels. Therefore, they
form a small, isolated cluster in the gradient magnitude feature space.

2.2. Towards clustering-based edge detection

As discussed earlier, the prominent characteristic of the gradient
magnitude feature space is that edge pixels often fall in small, isolated
clusters. Therefore, the cluster based novelty detection approach,
which is based on the size of the cluster, is suitable for detecting edge
pixels in the gradient magnitude feature space [25,26]. The smaller
the cluster size corresponding to a pixel, the more likely this pixel is a
small probability event. The cluster size of a pixel p can be defined as
either the number of pixels in the cluster containing it [26] or the
number of pixels within a hyper-sphere centered at p with radius w.
w is determined by learning from a training set [25]. In our method,
we use the former definition.

It should be noted that clustering methods often require prior
knowledge about the data, such as the number of clusters and cluster
shapes. For edge detection, however, such a prior knowledge is
typically unavailable. To overcome this obstacle, we use ensemble
clustering that is well known for its stability and robustness without
any prior knowledge [27,28].

2.3. Related work on ensemble clustering

Themain aim of data clustering is to partition an unlabeled data set
into homogenous regions. However, it is an ill-posed problem due to
the lack of prior information about the underlying data distribution
[27,28]. By utilizing the fact that different clusterings (difference in
algorithms or in the setting of each algorithm) applied to the same
data set are able to capture different structures in the data, ensemble
clustering has been shown to be a powerful method for improving the
cluster result in terms of both robustness and stability.

In [28], a set of clustering results is transformed into a hyper-graph
representation. In the hyper-graph, each vertex corresponds to a point
in the data set and each hyper-edge, which can connect any set of
vertices, represents a cluster in a clustering. Based on this represen-
tation, different consensus functions, e.g. Cluster-based Similarity
Partitioning Algorithm (CSPA), HyperGraph Partitioning Algorithm
(HGPA), and Meta-CLustering Algorithm (MCLA), can be used to
produce the final clustering result.

In [27], an evidence accumulation clustering algorithm is proposed.
In the algorithm, the results ofmultiple clusterings are summarized into
a Co-Association (CA) matrix, in which each element is the number of
times a pair of points is assigned to the same cluster. Subsequently, the
final clustering can be computed by applying a hierarchical clustering to
the CA matrix. In fact, the CA matrix can be considered as a similarity
measurement between points. The more frequently two points are in
the same cluster, the more similar they are.

It should be noted that we use ensemble clustering in our method
to estimate the cluster size corresponding to a pixel but not to
generate the final clustering as in the above methods. As demon-
strated in Section 3.4, the estimated cluster size of a pixel is equal to
the sum of the co-association values of this pixel with respect to all
pixels in the multispectral images. This provides a strong connection
between our method and the evidence accumulation clustering
method.

3. SEDMI method

3.1. Constructing the feature space

For each channel of an n-channelmultispectral image, we compute
its gradient magnitude using a Gaussian derivative [29]. Each pixel is
then represented by an n-component vector composed of the gradient
magnitudes of this pixel over all channels. Thus, the gradient
magnitude feature space contains M such vectors, where M is the
number of pixels in the image.

3.2. Performing ensemble clustering

We perform ensemble clustering in the gradient magnitude
feature space to estimate the cluster size for the pixels in the image.
One important requirement in ensemble clustering is the diversity in
the clustering results. This requirement is needed to ensure that



Table 2
Properties of the four data sets used in experiments.

Data sets No. channels Spatial resolution

AI I 20 100×100
AI II 20 100×100
SEM/EDX 8 128×128
Scene 31 820×820

(a)

(b)
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different clusterings preserve different structures in the image and do
not yield identical data partitions. Therefore, we use a simple k-means
as the base clustering algorithm. At each clustering, we randomly
choose the number of clusters and the initial cluster centers.

After each clustering, we calculate for each pixel the size of the
cluster containing it. The estimated (expected) cluster size of a pixel
pi, denoted as EC(pi), is then calculated as the mean (average) of the
size of the clusters containing pi generated by N clusterings:

EC pið Þ = ∑N
t=1Ci;t

N
ð1Þ

where Ci,t is the size of the cluster containing pixel pi at clustering t.

3.3. Calculating edge strength map

We calculate the edge strength of a pixel based on its cluster size
estimated by the ensemble clustering. A pixel is an edge pixel or an
event with small probability if it belongs to small clusters. Therefore,
the smaller the expected cluster size of a pixel, the more probable this
pixel is a small probability event. Thus, the confidence value that a
pixel pi is a small probability event, or the edge strength of pi, denoted
as ES(pi), can be calculated as follows:

ES pið Þ = 1− EC pið Þ
M

: ð2Þ

It should be noted that an image with high spatial resolution may
cause a high computational cost because of the ensemble clustering
procedure. In this case, we may reduce the computational cost by (i)
randomly selecting a subset of pixels, (ii) performing the ensemble
clustering on this subset to compute the edge strength for the pixels in
this subset, and (iii) using a regression algorithm, e.g. knn-
regression [30], to estimate the edge strength for the remaining
pixels in the image.

3.4. Connection with the evidence accumulation clustering

Our algorithm to compute the cluster size for a pixel is strongly
connectedwith the evidenceaccumulation clustering.Wewill showthat
theestimated cluster size of apixel in our algorithmis equal to thesumof
the co-association values between this pixel and all the pixels including
itself. The following deduction demonstrates this claim. Denote aij, t the
association value between pixels pi and pixel pj at clustering t. aij, t equals
1 if pi and pj are in the same cluster and 0 otherwise. Note that aii, t=1.
From Eq. (1), the estimated cluster size of pi is:

EC pið Þ = ∑N
t=1Ci;t

N
=

∑N
t=1∑M

j=1aij;t
N

= ∑
M

j=1

∑N
t=1aij;t
N

: ð3Þ

Denote C A(i, j) the co-association value between pixels pi and pj
after N clusterings. C A(i, j) is the number of times the two pixels being
assigned to the same cluster normalized by N. Then Eq. (3) becomes:

EC pið Þ = ∑
M

j=1
C A i; jð Þ: ð4Þ
Table 1
Co-association between a pixel pi and all the pixels in the feature space.

p1 p2 ⋯ pM Sum (cluster size)

Clustering 1 ai1,1 ai2,1 ⋯ aiM,1 Ci,1
Clustering 2 ai1,2 ai2,2 ⋯ aiM,2 Ci,2
⋮ ⋮ ⋮ ⋮ ⋮
Clustering N ai1,N ai2,N ⋯ aiM,N Ci,N
Sum N×C A(i, 1) N×C A(i, 2) ⋯ N×C A(i, M) N×EC(pi)
A graphical illustration of our claim is shown in Table 1. The sum
across a row t (t=1⋯N) corresponds to the size of the cluster
containing the pixel under consideration (pi) at clustering t; while the
sum across a column j (j=1⋯M) is equal to the co-association value
between the pixels pi and pj times N. It is obvious that the sum across
all rows equals to the sum across all columns in a matrix. Thus, Eq. (4)
is deduced.

On the other hand, the co-association of two pixels represents the
similarity, or the inverse distance, between them. From this point of
view, the way a pixel is considered as a small probability event in our
method is confirmed by the R-ordering in statistics [31]. The greater
the distance between a point of interest and all other points in the
feature space, the more likely this point is an event that has small
probability.
Fig. 1. A channel in the AI I data set. (a) The content of the synthetic imagewithout noise
(object is located in themiddle) and (b) a corrupted imagewith the SNRs of 16 dB in the
object region and 0.2 dB in the background region. Dark color means high intensity.
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Fig. 2. AUC curves produced by SEDMI (solid line), Di Zenzo's method (dot dashed line),
and the RCMGmethod (dashed line) for the AI I data set. The horizontal axis shows the
SNR with respect to the background noise level.
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Fig. 3. Edge strength maps generated by (a) SEDMI (0.98), (b) Di Zenzo's method (0.59), a
corresponding to a SNR of 0.2 dB. Dark color means high edge strength. The corresponding A
by the SEDMI method.
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It should be noted that although the estimated cluster size of a
pixel can be calculated from the co-associationmatrix, we do not need
to generate the co-association matrix explicitly. Thus, it avoids the
problem of quadratic memory required to store the M×M matrix for
large M in the evidence accumulation clustering algorithm.
4. Experimental results

We compare the edge detection results between the SEDMI and
two other methods: the Di Zenzo method [4] and the Robust Color
Morphological Gradient (RCMG) method proposed by Evans and Liu
[6]. We select these two methods for comparison as they represent
two main approaches for edge detection in multispectral images:
multidimensional gradient and vector order statistics, respectively.

For the RCMG method [6], the mask size is set to 5×5 and the
number of rejected vector pairs is set to 8 as recommended by the
authors. For the SEDMImethod, the gradient magnitude for each pixel
is computed by a Gaussian derivative with σ=1. In the ensemble
clustering, the number of clusterings is set to 200. At each clustering,
the cluster centers are randomly selected and the number of clusters
varies from 3 to 15. We use this configuration for all of the studied
multispectral data sets.
b)

d)

nd (c) the RCMG method (0.39) for the AI I data set with the background noise level
UC values are shown in brackets. Figure (d) shows the best binary edge map generated
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Fig. 4. Two representative channels in the AI II data set. (a) A channel with the vertical
bar object and (b) a channel with the horizontal bar object.
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Four multispectral data sets are used for the evaluation: two
artificial images (AI I and AI II) and two from real world applications
(SEM/EDX and Scene). The properties of these data sets are shown in
Table 2.

We evaluate edge detection results in term of both quantitative
and subjective measurements. For the quantitative measurement, we
use the area under the ROC curves (AUC) criteria following [32,33].
The receiver operating characteristic (ROC) curve [34] is a plot of the
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Fig. 5. AUC curves for the AI II data set generated by SEDMI (solid line), Di Zenzo's
method (dot dashed line), and the RCMG method (dashed line). The horizontal axis
shows the SNR with respect to the noise level added to the data set.
true positive edge rate against the false positive edge rate with
regards to different thresholds.

For eachmultispectral data set, we first apply the threemethods to
generate the corresponding edge strength maps. We then put these
edge strengthmaps into the same thinning process introduced in [35].
In this process, a pixel is only considered as an edge if its edge strength
is a local maximum in the horizontal or vertical direction. Finally, we
generate the binary edge maps by thresholding the corresponding
edge strength maps.

Using the ROC curve, the best threshold is typically determined at
the point which yields the minimum sum of false positive and false
negative rates [36]. For edge detection problems, however, this
threshold often results in many false positive edge pixels because the
(c)

Fig. 6. The best binary edge maps generated for the AI II data set with the SNR of 16 dB
by (a) the SEDMI method (0.998), (b) Di Zenzo's method (0.972), and (c) the RCMG
method (0.993). The corresponding AUC values are shown in brackets.
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number of background pixels is normally substantially larger than
that of edge pixels (e.g. 9800 background pixels versus 200 edge
pixels in the AI I data set). Therefore, we select the threshold that
yields the minimum total number of false positive and false negative
edge pixels for the artificial data. For the real data, we select the
threshold at which a best subjective result is obtained.

4.1. Artificial data

4.1.1. Objects surrounded by background clutter
Using the AI I data set, we investigate the behavior of the three

edge detection methods when the objects in an image are embedded
by severe noise or background clutter. We generated a multispectral
image composed of 20 channels. We used the same binary image of
size 100×100 with intensity of 0.7 in the object region and 0.3 in the
background region for each channel. The content of the synthetic
image without noise is shown in Fig. 1a. The object is located in the
middle from column 30 to column 70. Thus, edge pixels are located at
columns 30 and 70. A fixed, low Gaussian noise level corresponding to
a signal to noise ratio (SNR) of 16 dB is added to the object region. The
noise level in the background region varies with the corresponding
SNRs from 0 to 3 dB. Fig. 1b shows an example of a channel for a SNR
of 0.2 dB with respect to the background noise level.

Fig. 2 depicts the AUC curves produced by (a) SEDMI (solid line),
(b) the Di Zenzo method (dot dashed line), and (c) the RCMGmethod
(dashed line). The horizontal axis shows the SNR with respect to the
noise level in the background region. The vertical axis displays the
AUC value. SEDMI outperforms Di Zenzo's method and the RCMG
method for low SNRs (from 0 to 0.75 dB) or high noise levels. As SNR
(a) (

(c) (

Fig. 7. Four channels in the SEM/EDX dataset. (a) The second channel, (b)
exceeds 0.75 dB, the Di Zenzomethod produces the largest AUC value.
SEDMI continues performing better than the RCMG method as SNR
grows to 1.65 dB. For SNRs between 1.65 dB and 2.5 dB, the other two
methods work slightly better than SEDMI.

SEDMI is markedly more robust to severe noise in the background
region (background clutter) than the other methods. For high
background noise levels (the corresponding SNRs around 0.01 dB),
SEDMI yields an AUC value of approximately 1 while the AUC values
produced by the Di Zenzo and the RCMG methods are both smaller
than 0.6. In this case, the difference in gradient magnitude between
the edge pixels is substantially smaller than that between an edge
pixel and a pixel in the background region. This leads to the formation
of edge pixels as a small, isolated cluster in the global gradient
magnitude feature space. Thus, SEDMI detects these edge pixels. Di
Zenzo's and the RCMG methods are greatly inferior to SEDMI in
dealing with such severe background noise because they do not use
the global statistical information in the spatial domain of the image.
The edge strength of a pixel is calculated based on a local window. In
the background region, a combination between a noisy pixel and its
neighbors whose differences in intensities are large leads to a large
gradient magnitude for this noisy pixel, even larger than the gradient
magnitudes of the true edge pixels. Subsequently, these methods
incorrectly determine this noisy pixel as an edge pixel.

The AUC produced by SEDMI decreases to a minimum value of 0.76
as the SNR increases to around 1.0 dB, and then increases again to 1. For
small SNRs, only a small number of pixels in the background exhibit
similar intensities with those of pixels in the object region. When the
SNRs increase, the number of background and object pixels having
similar intensities increases too, and thus more background and edge
b)

d)

the fourth channel, (c) the sixth channel, and (d) the eighth channel.
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pixels exhibit similar gradient magnitudes. They are then grouped into
the same clusters. This makes it difficult for SEDMI to estimate the
cluster size for these edge pixels correctly.

The robustness to background clutter of the SEDMImethod is further
illustrated by the edge strength map and the binary edge map in Fig. 3.
(a)

(b)

(c)

Fig. 8. Edge strength maps generated on the SEM/EDX dataset by (a) SEDMI, (b) Di
Zenzo's method, and (c) the RCMG method. Dark color means high edge strength.
Fig. 3a–c shows the gradient maps generated by (a) SEDMI, (b) the Di
Zenzomethod, and (c) the RCMGmethod for a SNRof 0.2 dB. The darker
a pixel in the edge strength map, the higher the edge strength in that
location. Most of the true edge pixels dominate the highest edge
strength values in the edge strength map produced by SEDMI (the
(a)

(b)

(c)

Fig. 9. The best subjective binary edge maps generated for the SEM/EDX dataset by
(a) SEDMI, (b) Di Zenzo's method, and (c) the RCMG method.
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corresponding AUC is 0.98). As a result, these edge pixels are correctly
selectedwhen thresholding the gradientmap. The best binary edgemap
created by SEDMI using theminimum total number of false positive and
false negative edge pixels criterion is depicted in Fig. 3d.

In contrast, Di Zenzo's and the RCMG methods calculate substan-
tially smaller edge strengths for the true edge pixels than for the noisy
pixels in the background region (the corresponding AUCs are 0.59 and
0.39, respectively). These noisy pixels then dominate the binary edge
map. Consequently, the best binary edgemaps generated according to
the above criterion assign all pixels to background. We note that if the
threshold is determined by the point in the ROC curve that gives the
minimum sum of false positive and false negative rates, then most of
the noisy pixels are classified as edge pixels by these two methods.

4.1.2. Objects occurring in a few bands
The AI II data set contains objects appearing in a few spectral bands.

There are two objects of interest a vertical bar and a horizontal bar. The
objects have the same intensity values in the images. The vertical bar
appears in the first two bands whilst the horizontal bar appears in the
remaining eighteenbands. The contents of the synthetic imageswithout
noise containing the vertical and the horizontal objects are shown in
(a)

(b)

Fig. 10. The scene data set. (a) A gray scale image (channel 28) and (b) the
reconstructed color image of the data set (channels 28, 14, and 4 are used, respectively,
as the red, green, and blue channels for the reconstruction).
Fig. 4a–b. All of the bands in the data set are then corrupted by the
independent Gaussian noise. It should be noted that applying a thinning
process to this data set will generate offset edges because in the case of
binary image corrupted by noise, edge strengths at two sides of the
(b)

(c)

Fig. 11. Edge strengthmaps generated on the scene dataset by (a) SEDMI, (b) Di Zenzo's
method, and (c) the RCMG method. Dark color means high edge strength.
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(b)

(c)

Fig. 12. The best subjective binary edge maps generated for the scene dataset by
(a) SEDMI, (b) Di Zenzo's method, and (c) the RCMG method.
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edges differ from each other only due to noise. Therefore, for all
methods, we exclude the thinning process from this experiment.

Fig. 5 shows the AUC curves produced by the three methods with
respect to various levels of Gaussian noise. For SNR lower than 6.0 dB,
the RCMG method outperforms both the Di Zenzo method and
SEDMI. As SNR exceeds 6.0 dB, SEDMI performs better than the other
two methods.

Fig. 6 shows the best binary edge maps generated by (a) SEDMI,
(b) the Di Zenzo method, and (c) the RCMG for the SNR of 16 dB. The
corresponding AUCs are 0.998, 0.972 and 0.993, respectively. All three
methods detect the horizontal bar well as it appears in most of the
bands (18/20). The Di Zenzo method detects many noisy pixels close
to the horizontal bar while the vertical bar exhibits discontinuous
edges. Compared with SEDMI, the RCMG method misses more edge
pixels for the vertical bar as reflected by a slightly lower AUC value.

4.2. Real world data sets

4.2.1. SEM/EDX data set
This data set is a collection of scans of detergent powder obtained

from a scanning electron microscopy using energy-dispersive X-ray
microanalysis (SEM/EDX). The data consists of eight 128×128 images
that correspond to particular chemical substances. [37]. The data set is
noisy in both spatial and spectral domains. Four representative
channels are shown in Fig. 7a–d. The crucial task is to reveal the
spatial arrangement of three clusters: the solid, the active, and the
porous regions of the detergent powder.

Fig. 8a–c shows the edge strength maps generated for this data set
by the evaluated methods. SEDMI exhibits a high contrast between
the edge and the background/noisy pixels. Thus, the method
distinguishes edge pixels from noise pixels in the image.

Fig. 9a–c shows the best subjective binary edge results generated
by (a) the SEDMImethod, (b) the Di Zenzo method, and (c) the RCMG
method (binary edge maps based on various thresholds are provided
in the Supplement, Figures S1–2). The figures demonstrate that the
SEDMI method is less affected by noise than the other two methods.
SEDMI detects edges along the boundaries between the active and the
porosity (particularly in the lower part of the image) whilst the other
methods suffer heavily from the noise and fail.

In terms of continuity, edges generated by the RCMG method are
more continuous than those generated by the SEDMI and the Di Zenzo
methods, e.g. the vertical line on the left side of the image. It is because
in the RCMG method, neighbor pixels tend to have similar gradient
magnitude values. On the other hand, however, this similarity may
result in spurious edges in the noisy region, e.g. the region under the
upper curve in the image.

4.2.2. Scene data set
Foster's group created a database containing 30 hyperspectral

images of natural scenes [38]. Eight representative scenes are
available from [39]. We select the fifth scene for our experiment
because of two reasons. Firstly, it contains many man-made objects.
Therefore, we know exactly their boundary, i.e. we knowwhere edges
should be. Secondly, these objects are surrounded by a heavily
textured wall. Fig. 10 shows (a) a gray scale image (channel 28) and
(b) the reconstructed color image of the data. Channels 28, 14, and 4
are used, respectively, as the red, green, and blue channels for the
reconstruction.

The data set under consideration contains 31 channels with a
large spatial resolution of 820×820 pixels. As discussed in
Section 3.3, we reduce the computational cost by computing the
edge strength values for 5000 randomly selected pixels and then
estimating the edge strength values for the remaining pixels using a
k-NN regression. The number of nearest neighbors used in the k-NN
regression is set to 50.

Edge strength maps generated by the three methods are shown in
Fig. 11a–c. Fig. 12a–c shows the best subjective binary edge results by
thresholding the three edge strength maps (binary edge maps
generated using various thresholds can be found in the Supplement,
Figures S3–4). The SEDMImethod is able to locate edges of most of the
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objects such as the text on the ball and the toys on the left side of the
table. However, the method does not detect as many edges of the
textured wall on the bottom right as the RCMG method does. On the
other hand, the Di Zenzo and the RCMG methods generate many
spurious edges on the chair and under the ball due to the variance in
intensity of the chair's surface. As demonstrated by the AI I data set,
SEDMI is better in dealing with such a variance by using the
assumption that edges are rare events in the image. Pixels appearing
with higher frequency manifest smaller edge strength values; hence,
these pixels are not classified as edges.
5. Discussion

The main advantage of the SEDMI method is the ability to deal
with images in which objects are surrounded by severe noise and
background clutter. Typical edge detection techniques such as the Di
Zenzo method [4] and the RCMG method [6] compute edge strength
of a pixel by considering its small, surroundingwindow. This results in
misclassifying the noisy pixels as edge pixels in such a circumstance
because the noisy pixels in noisy images may have significantly
different intensities compared with their neighbors. Our approach
overcomes this problem (c.f. Sections 4.1.1 and 4.2) by calculating the
edge strength of a pixel based on its sparseness in the global gradient
magnitude feature space. As a result, edge strengths of noisy pixels,
which appear in the image with high frequency, are smaller than
those of the edge pixels.

In hyperspectral images, objects appearing in one band may be
absent in other bands. Moreover, a broad spectral band might
dominate other bands which are more narrow in the spectral domain.
Therefore, detecting objects which appear in such narrow spectral
bands becomes difficult. As defined by our approach, edge pixels
appearing in a few bands exhibit high similarity to one another. These
pixels then form a small cluster in the feature space and hence, are
detected by SEDMI.

We note that if severe noise (corresponding to low SNRs) is
distributed independently in an image where objects appear in all
bands, e.g. the AI I data set, Di Zenzo's method and SEDMI perform
similarly and both are inferior to the RCMGmethod. The performance
of the RCMG method results from its novel use of the pairwise pixel
rejection scheme in calculating the variance in intensities of pixels
within a small window. In such a case, applying a smoothing process
before using SEDMI will substantially improve the edge detection
result.

In terms of complexity, all the three methods are linearly
dependent on the number of pixels in the image. SEDMI requires
more computation than the other two methods due to the use of the
ensemble clustering process. Ensemble clustering requires O
(M×C×N), where M is the number of pixels in the image; C is the
number of clusters in each clustering and N is the number of times
doing the clustering. The clustering process can be speeded up by i)
performing ensemble clustering on a subset of pixels, which then
requires O(K×C×N) where K is the number of pixels in the subset;
and then ii) generating edge strength map of the whole image using
knn-regression algorithm, which requires O(M× log(K)) in average
[40]. It should also be noted that the use of the ensemble clustering in
our method is to detect events with small probability in the feature
space. We are, however, not restricted to using this type of clustering.
Other techniques such as the density based technique can also be
employed.

In this paper we focus on estimating edge strength for every pixel
in the image. We note, however, that more sophisticated thinning
approaches than the technique used [35] can be applied to
multispectral edge detectors that provide accurate edge direction.
Therefore, estimating the gradient direction of a pixel is an interesting
continuation of the current research.
6. Conclusions

Wehave presented a saliency based approach for edge detection in
multispectral images. First, we constructed the gradient magnitude
feature space which contains spatial gradient magnitudes in all
spectral channels. This feature space is composed of global informa-
tion in both spatial and spectral domains. The key characteristic of this
feature spacew.r.t. the edge detection problem is that edges often stay
in small, isolated clusters. Second, based on the assumption that edges
are rare events in an image, we recast the edge detection problem into
detecting events with small probability in the feature space. This
assumption is reasonable as the proportion of edge pixels in an image
is generally small.

Using the key characteristic of the feature space, we then
estimated the confidence value that a pixel is a small probability
event based on the size of the cluster containing it. The estimation is
reliably produced by ensemble clustering. The confidence value is
then interpreted as the edge strength of the pixel. Thus, the smaller
the cluster size corresponding to a pixel, the more probable it is this
pixel does belong to an edge in the image.

Experimental results on a number of multispectral data sets show
that the proposed method gives promising results, especially in
detecting objects embedded in background clutter or appearing in a
few bands. The results also confirm that the rarity is an important
property of edges in images and this property should be studied
further. It also holds for other salient features in an image such as
corners, junctions, and blobs. To construct suitable feature space to
detect these features in a hyperspectral images may be interesting
topics for future research.
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