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ABSTRACT

This article studies the possibility of detecting dementia in

an early stage, using nonrigid registration of MR brain scans

in combination with dissimilarity-based pattern recognition

techniques. Instead of focussing on the shape of a single brain

structure, we take into account the shape differences within

the entire brain. Imaging data was obtained from a longitudi-

nal, population based study of the elderly. A set of 29 subjects

was identified, who were asymptomatic at the time of scan-

ning, but were diagnosed as having dementia within 0.7 to 5

years after the scan, and a set of 29 age and gender matched

healthy controls were selected. Each subject was registered

to all other subjects, using a nonrigid registration algorithm.

Based on statistics of the deformation field in the brain, a dis-

similarity measure was calculated between each pair of sub-

jects, yielding a 58×58 dissimilarity matrix. A kNN classifier

was trained on the dissimilarity matrix and the performance

was tested in a leave-one-out experiment. A classification ac-

curacy of 81% was attained (spec. 83%, sens. 79%). This

demonstrates the potential of whole-brain intersubject dissim-

ilarities to aid in early diagnosis of dementia.

Index Terms— dementia, classification, image registra-

tion, dissimilarity, brain imaging

1. INTRODUCTION

Early diagnosis of dementia has received increasing attention

in light of the potential disease-modifying treatments becom-

ing available [1]. By morphological analysis of MR brain

scans, the disease may be detected long before the occurrence

of clinical symptoms such as memory loss. The most im-

portant example is a small hippocampal volume, which has
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consistently been found to be an early biomarker of demen-

tia [2–4]. Other brain structures whose shapes have been re-

lated to dementia are the amygdala [3], the putamen and tha-

lamus [5], and the ventricles [6]. The brain structure under

consideration needs to be delineated accurately, in order to be

useful as a biomarker for dementia.

In this article we study the possibility of predicting de-

mentia by considering the entire brain’s morphology. A clas-

sifier is trained to distinguish healthy subjects from subjects

in an early, asymptomatic stage of dementia. We focus on a

dissimilarity-based pattern recognition approach [7], in which

the subjects are characterised by their pairwise relation to

other subjects in the training set, instead of specific individual

shape/appearance features that are traditionally used in sta-

tistical pattern recognition. To measure the dissimilarity of

two brain scans, we perform a nonrigid registration, which

provides us with a coordinate transformation that spatially re-

lates the two images. The standard deviation of the logarithm

of the Jacobian determinant of the transformation, calculated

over the entire brain, is subsequently used as a distance mea-

sure between the two subjects. The method thus does not rely

on segmentations of specific brain structures.

2. METHODOLOGY & EXPERIMENTS

2.1. Data

Imaging data was obtained from the Rotterdam Scan Study, a

longitudinal MRI study on age-related diseases [8]. In the pe-

riod ’95-’96, 518 elderly subjects of 55 years and older were

scanned on a Siemens 1.5 T scanner, using an inversion recov-

ery 3D half-Fourier acquisition single-shot turbo spin echo

sequence, acquired in sagittal direction. The images were

reconstructed to 128×256×256 with a voxel dimension of

1.25×1.0×1.0 mm, and corrected for inhomogeneities using

N3 [9].

For the experiments in this study, one subset of 29 sub-

jects (mean±st.dev. age of 80 ± 6 yr; 19 female) was iden-



tified who where cognitively intact at the time of scanning,

but developed clinical symptoms of dementia within 5 years

(2.3 ± 1.3) after the scan was taken. The procedure for de-

mentia screening is explained in [3]. A second subset was

composed of 29 age/gender matched controls (mean±st.dev.

age of 80 ± 6 yr; 19 female), who remained cognitively in-

tact until the last dementia screening in 2005 (or died before).

The Mini Mental State Examination (MMSE) scores for both

groups were comparable at the time of scanning (demented:

mean 25.7, range 20-30; controls: mean 27.4, range 19-30).

2.2. Image registration based dissimilarity measure

To measure the dissimilarity of two brain scans, we propose a

method based on nonrigid image registration. Given a pair of

images F (x) and M(x), image registration is the task of find-

ing a coordinate transformation T (x) that spatially aligns the

two images, such that the deformed “moving” image M(T (x))
looks similar to the “fixed” image F (x). Based on statistics

of T (x) over the brain region, we can define a measure of the

‘anatomical dissimilarity’ between F and M . The Jacobian

determinant of the transformation J(x) = det[∂T (x)/∂x]
is a measure of volumetric expansion and compression [10].

A value of 1 indicates volume preservation. Values between

0 and 1 indicate local compression and values larger than 1

indicate local expansion. Often, the logarithm of J is used in

statistical analyses, to account for the fact that volumetric ex-

pansion by a factor of r should be comparable to a volumetric

compression of 1/r. If two images have a similar anatomy,

we may expect log(J) to be nearly constant over the image

domain. Dissimilar anatomies will be characterised by large

fluctuations of log(J) over the image domain. We argue thus

that the standard deviation of log(J), calculated over the en-

tire brain region, reflects anatomical dissimilarity.

For our experiment, all N = 58 subjects were registered

to each other, resulting in a N × N ‘matrix’ of coordinate

transformations [T ij ], with i = 1, . . . , N and j = 1, . . . , N
the fixed and moving image subject number, respectively. The

diagonal of this matrix is filled with identity transformations.

A dissimilarity matrix D ≡ [Dij ] was constructed by com-

puting the Jacobian based dissimilarity measure for each pair

(i, j), and symmetrising:

Dij = 1

2
(stdev log(Jij) + stdev log(Jji)) (1)

The brain region in each scan (over which the standard devia-

tion is computed) was extracted by a multi-atlas segmentation-

by-registration method, using the atlas described in [11]. The

registrations were performed using the open source software

package elastix [12]. A two-stage approach was opted

for, starting with an affine transformation model, followed by

nonrigid B-spline based registration. In the affine registration

stage, mutual information [13] was used as a cost function,

in combination with a stochastic gradient descent optimisa-

tion method with adaptive step size estimation [14]. In the

second stage, a B-spline transformation model [15] was em-

ployed, embedded in a four-level multiresolution framework,

with isotropic control point spacings of 60, 60, 30, and 15 mm

in the subsequent resolution levels. Localised mutual infor-

mation was used as a cost function, integrated in a stochastic

optimisation procedure as described in [16]. Exact registra-

tion parameter settings can be found in the elastix param-

eter file database1.

2.3. Dissimilarity-based classification

Matrix D forms the basis of a classifier that distinguishes be-

tween healthy subjects and subjects in an early stage of de-

mentia. Row (or column) i of the dissimilarity matrix D im-

plicitly characterises subject i. The subject is thus described

by its anatomical dissimilarity with respect to all other sub-

jects. Following the paradigm of [7], the rows of D may

be treated as feature vectors, and used in a traditional sta-

tistical pattern recognition framework, such as linear discrim-

inant analysis (LDA), logistic regression (LR), or k-nearest-

neighbour (kNN) classification. In this study, we implemented

a kNN classifier (with k estimated automatically from the

training set by leave-one-out cross-validation).

Note that this approach is conceptually different from the

multidimensional scaling (MDS) [7] techniques, as used in

[17] for example, in which feature vectors of a user-defined

dimension M are estimated such that their pairwise Euclidean

distances approximate Dij . Another often used approach is to

use the dissimilarities Dij directly as the distances in a kNN

classification framework, as if D were a matrix of pairwise

Euclidean distances2. This, however, implies that possible

correlations between the distances to different subjects are not

fully exploited. Treating the rows of D as feature vectors,

as advocated in [7], ensures that correlations between rows

are taken into account. Another advantage of this technique

is that the measure of dissimilarity is neither assumed to be

Euclidean nor metric.

The classification experiments were performed in a leave-

one-out fashion, using the Matlabr toolbox PRTools3.

3. RESULTS

The dissimilarity matrix is visualised in Figure 1. The bot-

tom graph presents the classification result of the dissimilarity

based classifier. In total, 81% of the subjects were correctly

classified (spec. 83%, sens. 79%).

For comparison, we trained additional classifiers on the

left and right hippocampus volumes (normalised by intracra-

nial volume), and on the MMSE score. The hippocampus vol-

ume was automatically segmented by the method described

in [18]. In a leave-one-out setting, the highest classification

1http://elastix.isi.uu.nl/wiki.php
2In fact, this is equivalent to MDS with M = N − 1.
3http://www.prtools.org
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Fig. 1. The dissimilarity matrix D (colour scale chosen to maximise con-

trast) and the classifier’s decision. The dissimilarity matrix roughly has a

block structure, corresponding to the groups; elements in the off-diagonal

blocks tend to have larger values than those in the diagonal blocks.

performance of 78% was obtained for the right hippocampus

volume (spec. 72%, sens. 83%). The left hippocampus vol-

ume resulted in an accuracy of 74% (spec. 72%, sens. 76%).

The MMSE score yielded a prediction accuracy of 66% (spec.

76%, sens. 55%).

4. DISCUSSION

The results suggest that, within our selected study population,

whole-brain dissimilarity-based classification has a slightly

larger predictive value for dementia than the hippocampus

volume. The whole-brain approach has the advantage that ac-

curate segmentation of brain structures and prior knowledge

on which structures are the most relevant are not necessary.

Previous work on MR image based detection of dementia,

or more specifically Alzheimer’s disease (AD), has mainly fo-

cussed on the hippocampal shape. The work by Klöppel et al.

[19] is most related to ours. They segment the MR brain im-

ages into grey matter, white matter, and cerebro-spinal fluid.

After registration to a population template, the (whole-brain)

grey matter segmentations are used as feature vectors in a sup-

port vector machine (SVM). The method was tested on three

groups. The patients in all groups were clinically diagnosed

as demented at the time of scanning. On Group I and II,

correct-classification rates of 95% and 93% were achieved,

but the patients in these groups suffered from rather severe,

‘definite’ AD at the time of scanning. Group III is most com-

parable to our population, since it only contained patients

with ‘probable mild’ AD. In this group, consisting of 57 con-

trols and 33 patients, 81% of the subjects were correctly clas-

sified (spec. 93%, sens. 61%). An improved accuracy of 86%

was obtained by taking into account only a volume of interest

(antero-medial lobe) centred around the hippocampus.

Duchesne et al. [20] also employ a population template

to which all subjects are aligned by nonrigid registration. An

SVM classifier is constructed, using feature vectors formed

by the normalised image intensities and Jacobian determinant

values within a volume of interest centred on the medial tem-

poral lobes. Leave-one-out validation on a group of 75 sub-

jects suffering from ‘mild to moderate probable’ AD and 75

normal controls resulted in an accuracy of 92%.

Miller et al. [17] consider (automatically) segmented hip-

pocampi, which are registered to each other in order to con-

struct a dissimilarity matrix based on the deformation metric

implied by their diffeomorphic registration approach. MDS

followed by LDA was used for classification. The method

was validated on 56 subjects, of whom 36 were healthy and

20 had ‘very mild’ or ‘mild’ dementia. With optimal settings,

77% of the subjects were correctly classified.

Ferrarini et al. [6] focus on the ventricular shape. Based

on a shape model, surface nodes significantly related to the

presence of AD are selected. These biomarker nodes are used

by a SVM to classify the subjects. A leave-one-out test on a

set of 28 healthy controls and 29 patients with probable AD

resulted in a classification accuracy of 84%. The experiment

involved a training/tuning stage on the full set though. Run-

ning the method with the same settings on 29 other patients

with probable AD resulted in a sensitivity of 76%.

In summary, our results are in line with those reported in

the literature, taking into account that all our subjects were

cognitively intact at the time of scanning. The large variety

of brain structures that were reported in the literature to be

related to dementia was the motivation for our whole-brain

approach. The results of [19] do suggest though that it could

be beneficial to additionally take into account some volume

of interest around the hippocampus. We plan to investigate

this aspect in future work, by testing the method for different

volumes of interest.

In the proposed method, each subject is characterised by

its dissimilarities to multiple subjects in the training set, rather

than using a single template as for example in [19, 20]. This

results in a much richer representation of each subject and, in

addition, makes the method potentially more robust for mis-

registrations, just as multi-atlas segmentation-by-registration

methods tend to outperform single-atlas based segmentation

methods [21]. We may expect that there is an optimum com-

position of the training set, which includes ‘typical examples’

(prototypes) of healthy and demented subjects. Determining

these by means of a feature selection algorithm forms part of

our future work.



5. CONCLUSION

A dissimilarity-based classification framework was proposed

that, based on the presence of structural abnormalities in the

entire brain, aims to recognise subjects that will develop clin-

ical symptoms of dementia in the near future. The method

was tested in a leave-one-out experiment on 58 subjects. All

subjects were asymptomatic at the time the MR brain scans

were acquired. For 29 subjects, clinical diagnosis of demen-

tia was established 0.7 to 5 years later. The method correctly

classified 81% of all 58 subjects, demonstrating the potential

of whole-brain intersubject dissimilarities to aid in early di-

agnosis of dementia. We would like to emphasise the unique

nature of our dataset among those described in the literature;

clearly it should be much harder to predict conversion over

five years than to diagnose even mild AD.

More generally, the proposed combination of dissimilarity-

based classification with nonrigid image registration may prove

effective in other applications as well, since it does not rely on

a dedicated set of features characterising the disease of inter-

est.
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