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Abstract—Conditions are given for the mean recognition performance
over a class of independent distributions to approach unity when the
dimensionality is raised to infinity.

I. INTRODUCTION

The mean recognition performance has been studied by
several authors. Hughes [1] investigated a measurement space
quantized into n measurement cells. For this space a two-class
pattern recognition problem is defined by the sample size of
each class, m,,mz. and by the set of probabilities P={p;} for
the cells, j=1,---,n, i=1,2. The mean recognition performance

P.(n,m;,my) is now defined as the probability of correct recog-
nition averaged over all sets P and over all samples of size
my,my. Hughes showed that when P has a uniform a priori
probability distribution, P, has a maximum in n with m,m,
fixed. If the number of cells is increased beyond that optimum,
P, decreases. The optimal value of n, called the optimal measure-
ment complexity, is then a function of m,; and m,. A small sample
size m;, m; results in a small optimal measurement complexity.

This result has been further investigated by Chandrasekaran
and others [2]{6] who called it the “peaking phenomenon.” A
somewhat different model was used in which P, was now
studied as a function of the dimensionality of the measurement
space instead of the number of cells. For the case of independent

Manuscript received September 13, 1976; revised August 14, 197/,
The author is with the Department of Applied Physics, Delft University of
Technology, Delft, The Netherlands,

394

binary features, Chandrasekaran [4] showed that P_ has no
peaking and approaches unity if the dimensionality is raised to
infinity. Again a uniform distribution was used for the parame-
ters. In this paper we examine more general conditions for P to
approach one monotonically as the dimension is raised to infin-
ity. The proof is partly based on the paper by Chandrasekaran
and Jain [6].

II. FORMULATION OF THE CONDITIONS

Let ¢;,¢, be two classes with a priori probabilities p,,p,, with
n+ p2= 1. To discriminate between the classes, n measurements
x',+-,x" are taken. Let f(x/|6/) be the density of x/ where & is
the parameter value associated with the density function of x/
given class ¢, If we assume independent measurements, the
Bayes decision function is given by

n n X
choose ¢, if p, I f(xj|0{)>p2 I f(x’185),
j=1 Jj=1
otherwise.

)

choose ¢,
We will assume that (8/,6)), - - ,(87,6%) are independent identi-
cally distributed (i.i.d.) with a probability density G (4,,8,). To

estimate 6{,64, an independent sample of the jth measurements is
generated, and estimates 8,84 are formed. If

r=log (f(=/|6])/f(x’|6)),

then, given class ¢;, r',- - - ,r" is an i.i.d. sequence. Letting d=1log
(p2/p)) and using the decision rule

1<j<n,

n
choose ¢;, if 2,/ >d,
1

@

choose ¢;, otherwise,

we see that

n n
Fc,=p,P(2rf > d|class l)+p2P(2 r/ < d|class 2). 3
1 1

To show that P, approaches 1 monotonically, it suffices to show
that

Egl'azExExicl, "l >0, (4)

®)

where Ey o is the expectation over 0,,02, E, is the expectation
over the sample used to estimate 8/,8;, and Ex,c is the expecta-
tion over x' given class .

We will prove that the conditions (4) and (5) are satisfied if
G (8,,6,) satisfies

E0| ﬂzE Ex[L'Z, rl <O

G(6,,8,)=G(8,,8,), forall§,f, (6)
and
[ G(8,.6,) a8, db,>0, )
8,50,
and if R(x,6,,8,)=E,r' satisfies
R(x,8,,0,)>0,  if f(x|8,)>f(x]82), ®
R(x,0,,0,)=0, if f(x]6,)=f(x|6,), ®
R(x,81,82)<0,  if f(x/8;)<f(x/82). (10)
Note that
R(x,6,,0,)=—R(x,05,6,) (1

because of the definition of r. For the proof we write (4) as
LS, [ R(0002) £ (x181)G (8:,6,) b, db x >0.
Ll )

Let S=f(x|8,)—f(x|8,). The integrals over 8, and 6, can be

split into a sum of three terms, one term with § >0, one with
8§ <0, and one with §=0. The last of these terms is zero because
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of (9). If we interchange 8, and 6, in the integral over § <0, we
get, using (6) and (11), ;

J ST R (808 { F(x160) £ (x18:)} G (8,,6,) b, B, dx >0,
8§50 : .

All factors are positive because of (7) and (8), which means that
this condition and thereby (4), are satisfied. In the same way (5)
can be proved.

IIl. DiscussioN

The conditions (4) and (5) guarantee for independent distribu-
tions that the mean probability of correct recognition ap-
proaches unity monotonically. These conditions differ slightly
from the ones given in [6], mainly because Chandrasekaran and
Jain do not demand monotonic behavior. However, this is
necessary in order to avoid peaking in P,. We proved that our
conditions are fulfilled if (6)~(10) are satisfied. The condition (6)
is probably the most demanding one. Condition (7) simply
requires that the classes differ in their statistical behavior and is
trivial when G (8,,8,) contains no impulses or other types of
singularities. The conditions (6) and (7) include the common
assumption that 8, and 6, are uniformly distributed over the
same interval. The conditions (8)-(10) require that the expected
value (over all sample sets) of the estimated discriminant func-
tion 7 have the same sign as the optimal one.

If all conditions are satisfied, P,, approaches unity monotoni-
cally. Note, however, that this does not imply that in a particular
problem peaking can be avoided.
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