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Building Road-Sign Classifiers Using a
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Abstract—Deriving an informative data representation is an
important prerequisite when designing road-sign classifiers. A
frequently used strategy for road-sign classification is based on
the normalized cross correlation similarity to class prototypes
followed by the nearest neighbor classifier. Because of the global
nature of the cross correlation similarity, this method suffers from
presence of uninformative pixels (caused, e.g., by occlusions) and
is computationally demanding. In this paper, a novel concept of a
trainable similarity measure is introduced, which alleviates these
shortcomings. The similarity is based on individual matches in a
set of local image regions. The set of regions that are relevant for a
particular similarity assessment is refined by the training process.
It is illustrated on a set of experiments with road-sign-classification
problems that the trainable similarity yields high-performance
data representations and classifiers. Apart from a multiclass classi-
fication accuracy, nonsign rejection capability and computational
demands in execution are also discussed. It appears that the
trainable similarity representation alleviates some difficulties of
other algorithms that are currently used in road-sign classification.

Index Terms—Classifier system design, road-sign classification,
similarity data representation.

I. INTRODUCTION

THE road-sign-recognition system is a module of a driver
support system of an intelligent vehicle. It should con-

tribute to updating a world model with information on traffic
signs present in the current traffic situation. Although road
signs are man-made objects defined by international standards,
a number of issues turn the automatic road-sign recognition into
a challenging problem. Let us name at least the large number
of signs types (classes) to be distinguished, numerous country-
or vendor-specific sign variants [1], general illumination condi-
tions, or sensor vibrations. In order to design a system (resilient
to noisy conditions), a statistical pattern recognition approach is
usually adopted [2]–[4]. Based on a database of labeled exam-
ples, a road-sign-recognition system is trained, minimizing the
error expected on examples unseen in training. Apart from high
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accuracy in classification of different sign types, a recognition
system should also avoid erroneous identification of nonsigns,
i.e., limit the number of false alarms. Furthermore, it should be
suited for real-time deployment.

When the road-sign-recognition problem is considered in full
generality, the sign detection and classification stages are usu-
ally distinguished [4]–[7]. In a traffic scene image, a road-sign
detector identifies a set of candidate regions using, e.g., edge-
based template matching [8] or color segmentation algorithms
[9]. Each candidate region is then passed on to a classification
module and either assigned to one of the known road-sign
classes or rejected as a nonsign. In this paper, we adopt the
separation between detection and classification and focus on the
design of the classification module.

In order to design a road-sign classifier, the input, variable
sized, candidate regions must be appropriately represented for
the given classification technique. After a basic preprocessing
such as scaling of the regions to equal size or masking out the
general sign background (BG), a more specific data represen-
tation has to be constructed. So far, two conceptually different
data representations have been used for road-sign classification,
namely the feature-based and similarity-based approach.

In the first case, each candidate region is represented by a
vector of numerical characteristics (features). Examples of fea-
tures used in road-sign classification are color histograms [9],
moment invariants, and ad hoc image characteristics [1], [10],
wavelets [6], [11], appearance-based features [12], [13], or, di-
rectly, the subsampled pixel intensities [14]–[17].

In a similarity-based approach, each candidate region is
represented by a set of similarities to stored prototype exam-
ples. The representation is, therefore, relative, contrary to the
absolute description of a patch by a feature vector. The advan-
tage of a relative representation is that the application-specific
evidence is supplied directly by prototype objects and not
refined from a set of general-purpose features. The similarity-
based representation may also account for different modes in
the data by utilizing corresponding prototype objects. This may
be especially advantageous for road-sign classes composed of
subgroups (e.g., speed limits). In this paper, we focus on the
construction of the similarity-based data representation.

The most frequently used similarity measure in road-sign
classification is a normalized cross correlation [5], [18], [19].
It is advantageous due to its simplicity, robustness to varying
illumination conditions, and statistical interpretation [20], [21].
It is also appealing from the implementation viewpoint, as
the optical correlator for road-sign recognition has been suc-
cessfully demonstrated by Guibert et al. [22]. However, as a
global measure, the normalized cross correlation is sensitive
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to the presence of uninformative pixels and therefore suffers
from template misalignments. Processing the full size candidate
regions in each comparison is also computationally expensive.

The goal of this research is to develop a similarity measure
which could be specifically tuned to a particular road-sign-
classification problem, be more resilient to uninformative pix-
els, and be computationally less expensive than the normalized
cross correlation. Our proposal is to base a similarity assess-
ment only on local clues relevant in a given comparison. Those,
naturally, depend on the used prototype object. The desirable
local measure should be, therefore, asymmetric and prototype-
specific, unlike the currently used symmetric similarities.

The original contribution of this paper is the proposal to train
such a local similarity measure from examples. The directional
similarity of an arbitrary image to a particular prototype is
computed from a set of matches in local image regions. The
set of regions, relevant when measuring a similarity to a given
prototype, is refined by the training process (thereby, we refer to
the measure as the trainable similarity). The training maximizes
separability of the class of the prototype object from the re-
maining classes. The class membership of prototype objects is
readily available because prototype objects are usually selected
from the labeled training set.

Our approach is close to the work of Hsu and Huang [6] who
used the matching-pursuit approach for road-sign classification.
Matching pursuit is a greedy algorithm for the determination
of an overcomplete set of bases using localized wavelet filters.
The authors propose a two-step process. First, assuming that
classes are compact, the set of bases is identified. In the second
stage, each class is described by a subset of bases providing
the highest discrimination with respect to the remaining classes.
For a new image to be classified, a coefficient (feature) vector is
computed for each class using a class-specific set of bases. The
coefficient vector is then compared to the stored class centroid
using the cosine distance and assigned to the closest class in a
nearest neighbor fashion.

The proposed trainable similarity measure differs from the
matching-pursuit approach in several important aspects. While
the method of Hsu and Huang constructs an intermediate fea-
ture representation and computes the dissimilarities between
feature vectors, our trainable similarity compares an image
to the prototype by directly matching the pixel intensities.
The matching-pursuit approach uses an assumption of compact
classes both when deriving a suitable set of bases and in
classification (each class is represented by its centroid). In this
paper, we illustrate that the concept of a trainable similarity
is applicable to multimodal situations using diverse prototype
selection strategies. Finally, the number of extracted bases in
the approach of Hsu and Huang needs to be specified by the
user. On the contrary, the number of local regions used in
assessing a similarity to a particular prototype is identified
automatically by the training procedure.

Firstly, the outline of the road-sign-classification problem is
given and the correlation similarity measures are introduced.
Then, the new trainable similarity measure is discussed to-
gether with the region selection strategy and the corresponding
criterion utilized in training. Possible approaches for building
a road-sign classifier based on the trainable similarity are

outlined in Section IV. In Section V, the construction and
behavior of the trainable similarity are illustrated on a set of
experiments. The performance comparison of classifiers based
on the trainable similarity representation with several other
road-sign-classification strategies is given in Section VI. Apart
from multiclass classification accuracy, rejection capability and
classifier speed are also evaluated. Finally, Section VII presents
the conclusions.

II. SIMILARITY BASED REPRESENTATION OF IMAGES

In this paper, we assume that the preprocessing converts
variable sized input regions Ij into images Ij of equal size
of n × n pixels, j = 1, 2, . . . , N . Let S(I, J) be a measure of
similarity between two images I and J . Let {Pr1, . . . P rNp}
be a given set of Np labeled prototype images. We in-
troduce a representation of an image I by using a set
of similarities {S(I, Pr1), S(I, Pr2), . . . , S(I, PrNp)}. Thus,
an image I can be represented by Np-dimensional vector
(S(I, Pr1), S(I, Pr2), . . . , S(I, PrNp)).

A. Correlation-Based Similarity Measures

Let Ii and J i represent intensities of ith pixel of correspond-
ing images I and J , i = 1, 2, . . . , n. The correlation-based
measures of similarity between two images I and J of equal
size are presented, e.g., in [20] and [21]. The cross correlation
between two images I and J represented by the intensities is
their inner product SR(I, J) =

∑
i IiJ i. The normalized cross

correlation that is invariant to scaling of pixel intensities is a
more convenient measure for image matching

SRn(I, J) =
∑

i IiJ i

√∑
i (Ii)2

∑
i (J i)2

. (1)

The cross correlation coefficient Sr(I, J) between two images
I and J is defined as

Sr(I, J) =
∑

i(I
i − Ī)(J i − J̄)√∑

i (Ii − Ī)2
∑

i (J i − J̄)2
(2)

where Ī and J̄ denote the corresponding means of image
intensities. The measure Sr(I, J) appraises the degree of linear
dependence between two images being compared and has the
following properties.

1) Sr(I, J) ∈ 〈−1; 1〉. A value of one indicates perfect
matching (identical images, except for scale and offset),
and zero corresponds to complete mismatch and a value
of minus one to the perfect negative match (e.g., one
image is a negative of the other).

2) Sr(I, J) is invariant to linear scaling and shift of intensity
values between I and J .

3) Sr(I, J) is symmetrical: Sr(I, J) = Sr(J, I).
4) Sr(I, J) is nonrobust in that a single outlying pixel can

distort them arbitrarily.
5) Sr(I, J) is not suitable in the presence of nonlinear

intensity variation at corresponding pixels.
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III. TRAINABLE SIMILARITY MEASURE FOR IMAGES

In order to define a trainable similarity measure, let Ω =
{ω1, . . . , ωC} be a set of predefined classes and Tr =
{(I1, ω(I1)), . . . , (IN , ω(IN ))} a set of N labeled training
variable size input regions.

The similarity S(I, J,R) between equal-sized rectangular
images I and J is based on local image matches in a set of
local image regions R. Each local region r ∈ R is defined by
its corner coordinates: r = {x1, y1, x2, y2}. The local match
s(I, J, r) between the corresponding pixel values r(I) and
r(J) may be measured, for example, by a normalized cross
correlation

s(I, J, r) =
〈r(I), r(J)〉

‖r(I)‖ · ‖r(J)‖ . (3)

The overall similarity between images I and J is a function of
a set of local matches R = {r1, . . . , rNr

}

S(I, J,R) = f (s(I, J, r1), . . . , s(I, J, rNr
)) . (4)

Using the mean of local similarities, we obtain the Smean

measure

Smean(I, J,R) =
1

Nr

Nr∑
j=1

s(I, J, rj). (5)

Alternative definitions such as Smin utilizing minimum of
local matches or its robust variant based on lower quartile are
discussed in [23].

We assume that deriving the similarity from a set of local
matches makes the measure more robust to local image differ-
ences caused, for example, by dirt or partial sign occlusions.

A. Training Procedure

The measure presented in this section, calculates the simi-
larity between two images using cross correlation computed in
a set of local regions R. The main contribution of this paper
lays in the realization that the set of regions R may be tuned to
a particular prototype taking into account its class membership.
The similarity measure emphasizes only the local clues relevant
in the comparison. In order to find the relevant local regions, a
training procedure is employed. Based on information derived
from a set of training examples, the similarity measure to a
particular prototype is refined.

The training procedure requires a labeled prototype im-
age Pr and a labeled set of training images Tr =
{(I1, ω(I1)), . . . , (IN , ω(IN ))}. The objective is to find a set R
for which the similarities of training examples to the prototype
yield the best class separability. We consider here a criterion
which emphasizes the differences between the class of a proto-
type image ω(Pr) and all other classes in the training set.

Let us first define the set of target and nontarget training
images denoting them T and NT , respectively. The target set of
the training images includes all images belonging to the same

class as the prototype Pr. The nontarget set includes all other
training images

T = {Ii ∈ Tr : ω(Ii) = ω(Pr)}
NT = {Ij ∈ Tr : ω(Ij) �= ω(Pr)} . (6)

The class of the prototype Pr is denoted in this paper the target
class and the collection of other classes from the set Ω the
nontarget class.

We search for such a set of regions R for which the target
class is the most separable from the non target class. The
Fisher’s discriminant ratio for two-class problem can be used
to quantify the separability capabilities of nontarget images to
a prototype

C(Tr, Pr,R) =
(µ̂T − µ̂NT )2

σ̂2
T + σ̂2

NT

(7)

where µ̂T and σ̂2
T denote mean and variance of the similarity

values S(Ii, P r,R), Ii ∈ T , respectively. Similarly for µ̂NT

and σ̂2
NT , respectively. Note that (7) represents a multivari-

ate criterion because a set of local regions is evaluated si-
multaneously.

In order to find a set R maximizing the criterion
C(Tr, Pr,R), a search strategy is needed. In this paper, we use
the sequential forward search strategy (see Algorithm 1) based
on the similar idea as the sequential forward feature selection
algorithm [24]. Computing the criterion for all singleton re-
gions, the single best region is found and fixed. A new search is
launched for an additional region providing the highest criterion
value together with the already fixed one. The search continues
until all the available regions are used for the construction
of a similarity S(I, J,R). Comparison to random search and
individual ranking algorithms is discussed in [23].

Note that the eventual number of regions for a particular
similarity measure is derived automatically from the training
data for each prototype.1

Algorithm 1 Sequential Forward Selection of Local Regions
1: input: training set Tr, prototype Pr, region count N init

r

2: generate a set of N init
r randomly positioned regions Rinit

3: initialize the pool of unused regions Rpool = Rinit

4: initialize the selected subset Rsubset = ∅
5: set the step counter i = 1
6: while Rpool �= ∅ do
7: · in a loop over regions rk∈Rpool, k=1, . . . , |Rpool|
8: · construct a candidate set Rk = Rsubset ∪ rk

9: · compute the similarity S(T, Pr,Rk) from target
10: examples to the prototype Pr
11: · compute the similarity S(NT,Pr,Rk) from
12: nontarget examples to the prototype Pr
13: · compute the criterion C(Tr, Pr,Rk)
14: · update subset Rsubset = arg maxRk

C(Tr, Pr,Rk)
15: · update the pool Rpool = Rinit \ Rsubset

1This is a major difference to an alternative region-selection strategy based
on the AdaBoost algorithm, where the number of regions is a user-specified
parameter [25], [26].
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16: · store the best subset Rsubset
i = Rsubset

17: · store the maximum criterion Cmax(Tr, Pr,Rsubset
i )

18: · set i = i + 1
19: end
20: output: Rbest = arg maxRsubset

i
Cmax(Tr, Pr,Rsubset

i )

IV. CLASSIFIER DESIGN USING

SIMILARITY REPRESENTATION

The most commonly adopted strategy for similarity-based
road-sign classification is to represent each road-sign class by a
single prototype object and then apply the nearest neighbor rule
[5], [6], [27]. Formally, the image I , represented by a set of
similarities {S(I, Prj), j = 1, . . . , Np} is assigned to the class
ω(Pri) of the most similar prototype Pri

Pri = arg max
j=1,...,Np

S(I, Prj). (8)

Several authors noted potential difficulties of this strategy due
to its sensitivity to noise. Miura et al. [19] proposed to use
two thresholds in the nearest neighbor rule. The new-coming
observation is assigned to a particular class if the similarity
to the corresponding prototype is above the first threshold
and if the ratio of similarities to the two closest prototypes
surpasses the second threshold. Piccioli et al. [5] improve the
classification robustness by tracking the candidate regions in a
sequence of images and integrating the similarity values.

The performance of the nearest neighbor approach with
a single-class prototype also rapidly deteriorates when con-
fronted with a multimodal data distribution or overlapping
classes. Although a larger number of prototypes improve the
classification accuracy, it also linearly increases the classifier
execution time.

The nearest neighbor rule does not utilize the correlations
between the computed similarity values. Duin et al. recently
proposed to leverage the correlations between dissimilarities
to prototype objects introducing the concept of a dissimilarity
space [28]. Each dimension of such a space measures a dis-
similarity to a particular prototype. By projecting the available
training observations into the dissimilarity space, one obtains
a new data representation where a general-purpose classifier
may be built. The same approach was taken independently by
Tzomakas for automatic classification of vehicles using ranked-
distance correlations [29]. The problem, which is unsolvable by
direct ranking, became linearly separable in a space spanned by
similarities to prototypes.

Subsequent studies have shown that conventional classifiers
built in a dissimilarity space often outperform the full nearest
neighbor rule and, in addition, use significantly fever prototypes
[30], [31].

In our recent work, we have illustrated that these classi-
fiers also yield significantly faster execution than the nearest
neighbor rule [32]. For a fixed set of prototypes, the parametric
classifier built in a dissimilarity space keeps the computational
complexity in execution constant. However, its accuracy may
still be improved by providing more training examples.

The construction of a similarity space is illustrated by an
example in Section V-A.

In order to build a classifier using a similarity data represen-
tation, a set of prototype objects must be constructed. Often,
ideal noise-free sign images are used as prototypes [5], [27]. In
this paper, we advocate the extraction of prototype objects from
a training set comprised of real world road-sign examples. The
advantage of this approach is that real world prototypes may
account for intraclass variations of road signs [1].

Construction of a prototype set may be driven by assump-
tions on the compactness of a class. A compact class may be
sufficiently represented by a single-class prototype. Multimodal
classes require, on the other hand, a larger set of prototypes,
describing individual class modes. The multimodality is usually
caused by the high intraclass variability or broad-class defini-
tion (e.g., speed-limit class).

If no assumption on the class structure is made, the selected
prototypes should sufficiently cover the problem domain. The
best possible coverage is reached if all the available training
examples are included in the prototype set, i.e., full set of
prototypes. The reduction of the full prototype set is desirable
in order to limit the computational complexity. This may be
achieved, for example, by random selection of prototypes [33]
or by condensing [34].

It has been repeatedly shown that randomly selected pro-
totypes yield high quality data representations and classifiers,
given sufficiently large training sets [28], [31], [33]. However,
the datasets used for training of road-sign classifiers are usually
rather small due to high data acquisition costs. It may thus
be argued that systematic prototype selection techniques may
be more beneficial for typical road-sign-classification prob-
lems than the random selection. An example of a systematic
prototype selection is a validated random search. In a cross-
validation fashion, a random prototype subset is drawn N times.
A classifier is trained on each of the similarity representations,
and its error is estimated on an independent validation set. The
prototype subset that yields the minimum validation error is
selected.

Apart from selection, the prototype objects may be also
extracted from training instances computing, for example, the
mean image per class or cluster. This technique may be benefi-
cial in averaging out the effects of noise in individual training
examples. Note that extracting a prototype object from nu-
merous training examples does not increase the computational
demands in execution.

V. EXPERIMENTS WITH TRAINABLE SIMILARITY

This section describes experiments with the proposed train-
able similarity measure focusing on the training algorithm, con-
struction of a similarity space, and the sensitivity to template
displacement. Further experiments comparing the performance
of various road-sign classifiers are presented in Section VI.

Contrary to studies describing monolithic road-sign clas-
sifiers covering many diverse road-sign classes in one step
[5], [27], we advocate the decomposition of the road-sign-
classification problem into a set of simpler subproblems based
on the available prior knowledge on sign grouping [1], [10].
Such decomposition strategy allows for use of a problem-
specific data representation in each of the subproblems.
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Fig. 1. Local regions derived during training of the similarity measure to five randomly selected prototypes from different classes. The regions overlay the
corresponding prototype image. Road-sign classes are given under images.

Moreover, in situations where the low image resolution does
not permit accurate estimation of the sign class, the hierarchical
system may still provide valuable information on the rough sign
category (e.g., prohibition sign).

The two experimental datasets used throughout this paper
represent two situations occurring when designing hierarchies
of road-sign classifiers. The dataset A contains 119 images of
circular road signs from five classes (B20a 40 speed limit 40,
B21a no overtaking, B24a no turning right, B24b no turning
left, and B4 prohibited to trucks). This dataset represents a
terminal node of a classification hierarchy with well-defined
and compact classes of similar type (prohibition signs with
red border and black pictograph positioned in a white center
area). The dataset B corresponds to a higher level problem of
separating three different types of circular road signs, namely
the red–white–black prohibition signs (eight terminal sign
classes), the blue–white obligatory signs (eight classes), and
the red–blue signs of two classes: no stopping and no parking.
This three-class dataset with 381 examples therefore illustrates
a highly multimodal problem.

All images were acquired in a real environment under general
illumination conditions using different digital cameras. Input
color images of variable size were first converted to a gray
level and rescaled to 32 × 32 pixel raster by a nearest neighbor
interpolation.

In general, the sizes of individual local regions used within
the trainable similarity measure may vary. However, in the pre-
sented set of experiments, we have fixed the region size as the
external metaparameter and optimize only the region coordi-
nates and, eventually, the region count. Apart from simplifying
the search, this also allows for an effective implementation as
the evaluation of local matches may be vectorized.

A. Trainable Similarity Measure

In this section, we illustrate the creation of a similarity space
using the trainable similarity measure and five-class dataset A.
The similarity space is spanned by dimensions measuring simi-
larities to prototype objects. In this example, we select a single
prototype image randomly from each class (see Fig. 1). Similar-
ities to these five prototypes therefore define a five-dimensional
(5-D) similarity space. This space may be now populated by
available training examples as illustrated in Fig. 2. Each of the
subfigures depicts the two-dimensional (2-D) scatter plot of the
5-D similarity space. Fig. 1(a) contains the similarity space
constructed using the normalized cross correlation measure.
Fig. 1(b) presents the similarity space derived by the trainable
similarity measure Smean (6 × 6 regions). Note that because

Fig. 2. (a) Scatter plots of similarity spaces using the normalized cross
correlation over complete images and (b) trained measures based on local cor-
relations using mean of local matches. Dimensions in plots measure similarity
of training examples to randomly selected prototype images (see Fig. 1).

the prototype objects were selected from the training dataset,
the corresponding points have unit self-similarity and may be,
therefore, seen on each of the axes.

The normalized cross correlation measure results in a space
with scattered observations from all five classes suffering from
the presence of uninformative pixels in the road-sign images.
Using the same data, the trainable similarity yields compact and
well-separated classes. Each space dimension reflects only the
local clues, which is important for separating the class of the
corresponding prototype from other classes. Fig. 1 illustrates
that trainable similarity measure, which is derived on images
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Fig. 3. Effect of occlusions on similarity space built using the trainable
similarity. The points in the scatter plot represent images from dataset A,
corrupted by occlusions covering 20%–50% of image by uniformly distributed
random noise [examples in (a)]. The trainable similarity measure Smean,
derived in Section V-A with respect to the prototypes in Fig. 1, was computed
for the disturbed images. (a) Examples of road sign images partially occluded
by uniformly-generated random noise. (b) Trainable similarity of disturbed
images to prototypes in Fig. 1.

with general BG, results in local regions that occupy only the
relevant area inside the sign boards. This becomes important in
cases when the road-sign detector does not provide the shape
information and the image BG cannot be masked out.

B. Robustness to Partial Occlusions

Normalized cross correlation similarity is known to be very
sensitive to partial object occlusions or uninformative pixels. In
this section, we visualize the effect of partial occlusions on the
trainable similarity. The examples in dataset A are corrupted by
covering 20%–50% of image by uniformly distributed random
noise. The procedure simulates occlusions by vertical objects
such as lamp poles or tree trunks. The trainable similarity
measures, derived in Section V-A, are now used to compute
the similarity of the corrupted images to the prototypes shown
in Fig. 1. Fig. 3 shows a scatter plot of a similarity space
constructed identically to the one in Fig. 2(b). Note that despite
significant disturbances of input images, the similarity space
still retains the original class structures and thereby remains
informative for the sake of classification. We conclude that due
to averaging of number of local matches, the trainable similarity
appears to be robust to partial occlusions.

C. Effect of Displacement on Similarity Assessment

A road-sign detector often generates partially displaced re-
gions. Robustness to the template displacement is an impor-

Fig. 4. Simulated patch of a traffic scene with random BG (left) and the
prototype to be matched (right).

tant quality of data representation used in building a road-
sign classifier. A classifier providing high accuracy in ideal
conditions may become inadequate if it is sensitive to small
pixel displacements of a candidate region.

In order to measure the robustness of a classifier based
on the notion of image similarity, we perform the following
experiment. A road-sign image is scaled and placed in the
center of a bigger image filled with randomly generated pixel
values obeying uniform distribution. In this way, we simulate a
patch of a traffic scene with general BG. A prototype image is
simulated by placing identical road-sign board with randomly
generated BG pixels (see Fig. 4).

In a regular grid, the prototype image is placed over the
traffic scene patch, and a similarity between the two images is
computed. The resulting set of similarity values is visualized in
a form of a 2-D surface in Fig. 5. The upper subfigure presents
the results of the normalized cross correlation SRn and the
lower subfigure the output of the trainable similarity Smean.
The measure was trained on the five class dataset A using a
mean of the speed-limit class B20a 40 as a prototype. The
forward search algorithm was used to identify the 8 × 8 local
regions, as explained in Section III-A. Note that a set of regions
derived with respect to the mean prototype [see Fig. 5(b)]
is different from the regions found considering the randomly
selected prototype in Fig. 1(a).

In Fig. 5(a), we can observe that normalized cross correlation
produces a sharp peak centered in the best match position.
The trained similarity yields a broader base with several peaks
reaching even higher absolute value than the normalized cross
correlation. The peak in Fig. 5(b) is asymmetric with more
mass along the horizontal axis of the prototype. This may be
understood by taking into account the set of regions under con-
sideration [see the prototype in Fig. 5(b)]. When the prototype
image is shifted over the scene (Fig. 4) in the horizontal direc-
tion, the local regions defined in the prototype will match highly
similar scene patches. The mean of these local similarities will
still attain a high value. Displacing the template in the vertical
direction yields, on the other hand, less similar regions. This
example illustrates, in the case of template displacement, the
trainable similarity that can result in a broader peak than the
normalized cross correlation.
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Fig. 5. Response of normalized cross correlation and trainable similarity to different template displacements. For trainable similarity, the prototype image is also
shown. It is overlaid with local regions that are identified during training. (a) Normalized cross-correlation SRn. (b) Trainable similarity Smean.

VI. PERFORMANCE COMPARISON OF

ROAD-SIGN CLASSIFIERS

In this section, we investigate the performance of road-sign
classifiers utilizing the proposed trainable similarity measure
and the normalized cross correlation. For the sake of compar-
ison, we also include two feature-based data representations.
Existing studies on road-sign classification usually focus on
the issue of multiclass classification accuracy and speed of
prototype implementation [5], [6]. In this paper, we additionally
discuss the ability of a classifier to reject nonsign examples and
estimate its computational complexity in execution, which is
implementation independent.

In order to evaluate the performance of different road-sign-
classification strategies given a limited amount of labeled ex-
amples, a ten-fold cross-validation method is adopted. In each
fold, the dataset is split into ten parts; nine of them are used for
training and the remaining independent parts for the evaluation.
All the steps required when building a road-sign classifier, i.e.,

representation building, feature selection, prototype selection,
or training of the similarity measure are performed on the
training set only. Test sets used for algorithm evaluation contain
examples unseen during training. The preprocessing of the
variable-sized input images is fixed for all the investigated
algorithms and is, therefore, excluded from cross validation.

A. Preprocessing

As mentioned in Section V, the input variable-sized color
images are preprocessed by conversion to a gray-level repre-
sentation and rescaling to a fixed 32 × 32 pixel raster. In the
set of experiments with road-sign classifiers, we consider an
additional preprocessing technique: a BG removal. The road-
sign detector may, depending on the used algorithm, provide
information on the sign board shape. If available, the board
shape may be used to mask out the sign BG as shown in Fig. 6.
In order to compare algorithm performance with and without
BG masking, we use the both preprocessing variants.
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Fig. 6. Preprocessing by BG masking. The left-most image shows the candi-
date region scaled to 32 × 32 raster. The circular mask is given in the middle
image and the final processed image in the right-most pane.

B. Data Representation

When building a similarity-based data representation, a set
of prototype objects must first be selected. We consider the fol-
lowing prototype selection strategies, introduced in Section IV.

• Class prototype:

1) Randomly selected.
2) Randomly selected with 20-fold validation: A set of

class prototypes is randomly selected on a 80% subset
of training data and its performance is validated on
the rest of the training set selecting the best set. This
procedure is repeated 20 times.

3) Mean prototypes.

• Mode prototypes derived by clustering: Each class is clus-
tered using an algorithm proposed in [23]. The algorithm
identifies a set of clustering solutions using the mode-
seeking technique [35]. The final clustering is determined
as a solution with p-percentile of a distribution of number
of clusters. Because the number of clusters is not fixed
by the user but estimated from the data, this method
is appropriate for evaluation by cross validation. In this
paper, the parameter p is set to p = 0.95, resulting in a
large number of diverse prototypes (cluster modes).

• Full set of objects.
• Randomly selected prototypes.

Given a set of prototype objects, a similarity representation
is built using either the normalized cross correlation similarity
measure Sr or the trainable similarity measure Smean. The
trainable similarity measure derives a set of local regions using
the sequential forward search algorithm.

For the sake of comparison, two feature-based data repre-
sentations are also included: The first is comparable to feature
sets used in our previous studies [1], [10]. In total, 41 features
are considered, which have been computed from preprocessed
regions: Seven Hu’s moment invariants, shape characteristics
Ra and θ [36], and subsampled horizontal and vertical projec-
tions of the road-sign board. A classifier is trained on a smaller
feature subset refined by a sequential forward feature selec-
tion using the apparent error of the nearest neighbor classifier
(1-NN) as a criterion.

The second feature-based data representation considers the
raw pixel intensities directly as features in a similar way
to [15] or [17]. The excessively large input dimensionality
(32 × 32 pixel region yields a 1024-D feature space) is reduced
by a principal component analysis (PCA). The PCA feature
extraction was performed on a pooled class covariance matrix,
retaining a fixed amount of 95% of total variance.

C. Classification

Apart from the 1-NN directly applied to the similarity-based
data representation, two conventional classifiers are applied in
similarity spaces: the Fisher linear discriminant (FLD) and the
soft independent modeling of class analogy (SIMCA) classifier.
The FLD classifier projects the input data to a lower dimen-
sional linear subspace, maximizing the Fisher separability cri-
terion [2], [3]. A linear discriminant is applied to the projected
data. In this paper, we use a multiclass FLD classifier from [37].

The SIMCA classifier developed in the chemometric com-
munity defines a separate linear subspace for each of the classes
[38] using the PCA.2 A distance of an incoming observation to
each class model is computed. An observation is assigned to
the class with the minimum distance. The distance to a class
consists of two components: a Euclidean distance to the class
subspace and a Mahalanobis distance of the projected feature
vector to the class mean. Both distances are normalized by the
critical values of respective in-model and out-of-model data
distributions. The fraction of variance preserved by the PCA
was in all experiments set to 0.95.

1) Multiclass Classification Performance: Multiclass clas-
sification performance estimated for a set of methods using
the dataset A is provided in Table I. For each method, two
experiments were performed: one using only foreground (FG)
pixels (with masked out BG) and the second on complete
regions. The table is split in three sections, corresponding to
the three investigated types of data representations. The results
are given as estimated mean errors (µ̂) and standard deviations
of the mean (σ̂). From the results, summarized in Table I, we
conclude the following.

1) When using normalized cross correlation and class proto-
types, the prototype selection used is important. The first
three table rows demonstrate that when using a single
prototype per class, its selection significantly influences
the result. Systematic selection is better than random.
The results using mean class prototypes are comparable
to the full nearest neighbor rule (using on average 107
prototypes per cross-validation fold).

2) Classifiers built in a similarity space using normalized
cross correlation require tens of prototypes in order to
reach low error rates. FLD built in the 30-dimensional
(30-D) similarity space (randomly selected prototypes)
reaches the performance comparable with the full nearest
neighbor rule.

3) Classifiers using trainable similarity consistently reach
low error rates. Note that even direct ranking of the
trainable similarity to randomly selected class prototypes
yields lower error than the full nearest neighbor rule using
the normalized cross correlation similarity.

4) Different sizes of local regions do not dramatically alter
the performance of classifiers based on the trainable
similarity.

5) Trainable similarity-based classifiers are resilient to unin-
formative pixels. All other techniques, with the exception
of the PCA-based feature extraction directly applied to

2Similar approach was adopted also by Sung and Poggio for the sake of face
detection in [39].



PACLÍK et al.: BUILDING ROAD-SIGN CLASSIFIERS USING A TRAINABLE SIMILARITY MEASURE 317

TABLE I
SUMMARY OF CLASSIFICATION ERRORS OBTAINED BY CROSS VALIDATION ON THE FIVE-CLASS DATASET A. FOR SIMILARITY-BASED

REPRESENTATIONS, THE NUMBER OF PROTOTYPES USED ON AVERAGE PER CROSS-VALIDATION FOLD IS GIVEN IN PARENTHESES

TABLE II
SUMMARY OF CLASSIFICATION ERRORS OBTAINED BY CROSS VALIDATION ON THE MULTIMODAL DATASET B WITH THREE CLASSES. FOR

SIMILARITY-BASED REPRESENTATIONS, THE NUMBER OF PROTOTYPES USED ON AVERAGE PER CROSS-VALIDATION FOLD IS GIVEN IN PARENTHESES

raw pixel intensities, are highly sensitive to general BG
in images.

6) The feature-based representations also yield high-
accuracy multiclass classification. The Parzen classifier
on selected subset of features and FLD on features ex-
tracted from raw pixel intensities offer high accuracies.

Table II summarizes the multiclass classification results us-
ing the three-class multimodal dataset B.

1) Due to multimodal nature of the data, a single prototype
per class is not sufficient for class separation. Neither
prototypes selected by the validated random search nor
the mean class prototypes provide a good quality data
representation. However, both prototype selection tech-
niques yield better results with the trainable similarity
measure than using the normalized cross correlation.

2) For normalized cross correlation, using all available train-
ing examples as prototypes significantly improves perfor-
mance compared to 1-NN using mean class prototypes.

3) Full 1-NN is outperformed by classifiers using similar-
ity space. For normalized cross correlation, more than
50 prototypes are needed.

4) Mode prototypes, which are identified by clustering, yield
better representations than randomly selected prototypes
On normalized cross correlation, the SIMCA classifier
performs significantly better than the FLD.

5) Simple feature representation computed on sign FG pix-
els with the Parzen classifier yields the lowest classi-
fication error of 9.4%. However, when computed over
the complete image, the Parzen performance deteriorates
significantly.

6) Both relative representations benefit from cluster mode
prototypes. The trainable similarity, however, exhibits
more resilience to uninformative pixels than the normal-
ized cross correlation.

7) Features extracted by PCA from raw pixel intensities
yield moderate result.
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Fig. 7. ROC curves for different road-sign classifiers. Thin and thick lines denote classifiers trained on the masked sign FG and on complete images
including general BG, respectively. (a) Representations based on normalized cross-correlation. (b) Representations based on trainable similarity. (c) Feature-
based representations. (d) The best algorithms for each type of representation.

2) Rejection Capability of a Classifier: In addition to high
multiclass classification accuracy, a road-sign classifier must be
able to effectively reject nonsign examples. These are inevitably
generated as the false alarms of the road-sign detector. Here,
we evaluate the rejection performance of road-sign classifiers
using a receiver operator curve (ROC) expressing the relation
between the true positive ratio TPr and the false positive ratio
FPr in a sign versus nonsign two-class problem. The following
classifier outputs are thresholded and used for building of
ROC curves.

1) Parzen classifier—maximum estimated posterior;
2) FLD—distance to the separation hyper plane;
3) 1-NN—distance to the closest training example;
4) SIMCA—distance to the closest class model.

The ROC curves given below were constructed from the ten-
fold cross-validation results using the dataset A (Section VI).
For each fold, a two-class test dataset was built with the sign
and nonsign examples. While the sign examples originate from
the test set of a given fold, nonsigns are formed by a separate
dataset with 888 images. In order to be as close as possible to

real conditions, we use a set of nonsign regions, which are
identified in a database of urban traffic scenes by the road-
sign detector and designed by Líbal [8]. The detector is based
on the hierarchical spatial feature matching (HSFM) algorithm
utilizing the local edge information. The detector was trained
on a different set of images to the data used in this paper.

Fig. 7 presents ROC curves of different road-sign classifiers.
Thin lines denote classifiers trained on presegmented sign
boards (i.e., FG). Thick lines represent classifiers trained on the
full candidate regions with general BG.

Fig. 7(a) presents the methods, based on the normalized
cross correlation. We can observe that both 1-NN using either
a single-class prototype or the full set of training examples
fail to reject the nonsign examples. The classifiers trained in
the similarity space, however, reach similar or slightly worse
rejection performance than the feature-based techniques in
Fig. 7(c). It follows from experiments not shown here that
the nearest neighbor rule is capable of moderate rejection
performance, if the data are not normalized by mean subtrac-
tion. Its multiclass classification accuracy, however, deteriorates
rapidly.
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Methods based on trainable similarity measures are pre-
sented in Fig. 7(b). Although moderate rejection performance is
achieved even by direct ranking of the trainable similarity (dot-
ted line), the false positive rate remains high. The FLD, which
is trained in the similarity space (dashed line), does not sig-
nificantly improve the ranking results. The SIMCA classifier,
on the other hand, yields very good ROC curve (dash–dotted
line). Our results suggest that the high rejection performance is
reached in a range of region sizes. It is also interesting that train-
ing the similarity measure using complete regions including
general BG improves the rejection performance of a classifier in
some cases.

Classifiers, based on feature-based representations are given
in Fig. 7(c). Note that the Parzen classifier trained on features
computed from FG pixels (thin solid line) exhibits very poor
rejection performance although it reached low multiclass clas-
sification error of 3.6% (Table I). When trained on complete
regions containing the BG (thick solid line), its rejection ability
significantly improves. The classification error, however, rises
to 46.9%. This result illustrates that high multiclass classifica-
tion accuracy does not guarantee a good rejection performance
of a classifier.

The FLD and SIMCA classifiers, which are trained using
the same data representations as Parzen classifier, yield signifi-
cantly better results. We conclude that these parametric models
leverage the small training set better than the Parzen classifier.
The best rejection performance is attained by the FLD trained in
a feature space derived by PCA from raw pixel intensities. This
classifier is also quite insensitive to presence of uninformative
BG pixels (see Table I).

In the following, we illustrate why the data representation,
which is derived by the trainable similarity measure, allows for
the high rejection performance. Fig. 8 shows the 2-D scatter
plot of a 5-D similarity space, constructed from test examples
used in the ROC experiments above. Each dimension of the
plot measures the similarity to a mean class prototype. For
the sake of clarity, all the five types of signs are rendered by
different markers. We can see that although the nonsign exam-
ples (marked by dots) were not used while deriving the data
representation, they fall into the well-defined region with low
or negative correlation with respect to the prototype images.
The sign examples from the remaining three classes exhibit low
correlation values to the two rendered prototypes. They are,
however, analogously separated from the nonsign examples by
the corresponding dimensions of the similarity space.

D. Speed of Classifier Execution

Eventually, the road-sign classifier should operate in a real-
time environment, where the execution speed is of crucial
importance. Measuring the execution speed is implementation
and hardware dependent. We adopt an alternative strategy es-
timating the number of operations needed for processing of a
single incoming observation. We assume an ideal implementa-
tion where all information that may be precomputed in order
to speed up the algorithm execution is precomputed. Details on
the estimation of the number of operations may be found in
[23]. Fig. 9 depicts the generalization error in a ten-fold cross-

Fig. 8. Two-dimensional scatter plot of the 5-D similarity space constructed
using trainable similarity to class mean prototypes. The space is filled with
sign and nonsign examples unseen during training of the similarity measure.
Note that nonsign examples fall into a well-defined region with low or negative
correlation to prototypes and may be easily rejected.

Fig. 9. Generalization error versus number of operations required for execu-
tion of a classifier on single region (including representation building). The full
1-NN classifier remains out of the plot requiring 5 × 105 operations. (Color
version available online at http://ieeexplore.ieee.org.)

validation experiment on dataset A (Section VI) as a function
of the number of operations required for processing a single
candidate region. Due to BG subtraction, the algorithms operate
only on 793 of the original 1024 pixels. For each method,
minimum and maximum operations counts and classification
errors are plotted.

The number of operations required by the classifiers based on
normalized cross correlation grows linearly with the number of
prototypes. The performance of the 1-NN classifier to randomly
selected class prototypes may be significantly improved by
training the classifiers in a similarity space. However, their
computational demands become excessive due to a large num-
ber of prototypes needed to reach a moderate performance.
Interestingly, the 1-NN classifier to mean class prototypes
yields high accuracy, retaining the low computational demands.
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Methods based on the trainable similarity reach low clas-
sification error for the fraction of computational effort of the
normalized cross correlation, utilizing the same number of pro-
totypes. The reason is that only a limited number of local image
regions is employed in each comparison. Note that growing the
size of local regions does not directly imply slower computation
of the trainable similarity.

VII. CONCLUSION

In this paper, the novel concept of a trainable similarity was
proposed as a representative building technique for road-sign
classification. The proposed trainable similarity extends the
commonly used normalized cross correlation approach, which
is global and symmetric, by deriving a local measure that is
specific to a particular prototype. This involves computing the
similarity between an observed image and a labeled prototype
example based on multiple matches in local image regions.
The set of regions is derived by training from a set of labeled
examples, leveraging the available knowledge of the class mem-
bership of prototype objects. The proposed method incorporates
locality typical for feature extraction into the design of a
similarity measure. However, the identified prototype-specific
regions are not used directly as features but rather are employed
for the sake of image matching. The resulting representation
therefore exhibits desired properties of a similarity measure
such as retaining low values for nonsign examples unseen
during training. This is crucial for robust rejection of false
alarms introduced by the road-sign detector.

Although this representation building strategy is also applica-
ble to other image recognition tasks, it specifically suits the
road-sign-classification problem for several reasons.

First, the road-sign classes are often multimodal, implying
that representation of individual sign variants should reflect spe-
cific local clues. The proposed approach facilitates the design of
such representations by training a specific similarity measure to
each of the prototypes.

Second, some road-sign detectors may not provide informa-
tion on the sign board shape, and therefore, the uninformative
sign BG cannot be removed by preprocessing. Additionally,
uninformative pixels may also be introduced by slight displace-
ment of the detector template or by sign occlusions. The train-
able similarity appears to be more robust in these situations than
the normalized cross correlation and yields more informative
data representation for the sake of road-sign classification.

Finally, as fewer prototypes are needed and only a pixel
subset is used in each image comparison, the resulting road-
sign classifiers also execute significantly faster than algorithms
based on the normalized cross correlation.
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