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Abstract

Segmentation methods, combining spectral and spatial information, are essential for analysis of multi-spectral images. In this article, we

propose such a method based on statistical pattern recognition algorithms and a combined classifier approach. A set of experiments is

presented with multi-spectral images of detergent laundry powders acquired by imaging cross-sections with scanning electron microscopy

using energy-dispersive X-ray microanalysis (SEM/EDX). The algorithm stability and the segmentation quality are investigated. The use of a

priori information for the segmentation of images with similar spectral properties is studied as well. Finally, a comparison with probabilistic

relaxation method for multi-spectral image segmentation is made.

q 2003 Published by Elsevier Science B.V.
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1. Introduction

Multi-spectral quantitative analysis provides new possi-

bilities for a qualitatively better description of natural

processes or phenomena in many practical applications.

Therefore, it has received a growing attention in fields like

remote sensing and product inspection. The basic task

performed by the majority of multi-spectral data analysis

systems is image segmentation. A segmented multi-spectral

image may serve for visualization purposes or for the further

processing in order to describe, recognize, and interpret

underlying physical modalities. In this paper, we present a

method for the segmentation of multi-spectral images based

on statistical pattern recognition methods. The paper, which

is an extension of our conference article [14] describes the

segmentation method developed for the structure analysis of

multi-component, granular material.

Many methods have already been presented for the

segmentation of gray-level or color images [4,6,15,16].

Generally, segmentation methods may be divided in four

groups: edge-based, neighborhood-based, histogram-based,

and cluster-based methods [12]. Edge-based methods search

for discontinuities in the image while neighborhood-based

employ the similarity between different image regions. The

spatial domain of a processed image is used in both cases.

Examples are edge-following and region growing algor-

ithms. These methods cannot be effectively used for the

multi-spectral image segmentation as their adaptation to

the multi-dimensional data is not straightforward. On the

contrary, histogram-based and cluster-based segmentation

methods operate in the spectral domain. They consider

individual image pixels as general data samples and assume

correspondence between homogeneous image regions and

clusters in the spectral domain.

The histogram-based algorithms perform mode seeking

or multi-thresholding operation and relate the modes of

a spectral histogram to homogeneous regions in the image

[4,6]. It appears, however, that the increase of data

dimensionality implies considerable memory requirements

and the loss of precision. The cluster-based segmentation

methods employ more general procedures to separate

distinct structures in the spectral feature space. As an

example, we can note multi-dimensional clustering methods

like ISODATA or Fuzzy c-means clustering [9,10].
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When designing a segmentation algorithm, one faces a

fundamental dilemma—which data domain should be

emphasized? It is a widely agreed fact, that robust

algorithms for multi-spectral segmentation should employ

both available domains—spectral and spatial. The issue of

combining spectral and spatial information has been

addressed by several authors. Spann and Wilson [17], for

example, performed a quad-tree smoothing operation

followed by feature clustering and boundary estimation.

Their method requires spatially coherent image regions at

different scales of the quad tree. Haralick and Shapiro [6]

devised to use the combination of spatial region growing

with the clustering procedure running in the spectral feature

space. The method called ‘spatial clustering’ starts from the

analysis of feature space histograms. The region growing

procedure is performed by taking into account mutual pixel

distances and estimated probabilities of class membership.

Matas and Kittler [13] developed a method for the clustering

of spatially related data called ‘spatial and feature cluster-

ing’. This method is based on the graph-theoretical

clustering approach. Segmentation method of Hauta-Kasari

et al. starts by a quantization of the spectral domain by the

self-organizing map [7]. The multi-spectral image is then

labeled by the trained map. To analyze local spatial

relationships, a co-occurrence matrix are then used for the

training of a pattern classifier. The other technique, suitable

for the segmentation of multi-spectral images is probabil-

istic relaxation [3,8]. For each pixel the probability of class

membership is estimated given pixel features and its

context. In the case of image segmentation is the pixel

context usually represented by its local neighborhood.

The Algorithm 1, presented in this paper, treats the

spatial and spectral domains separately. In both domains

statistical classifiers are built and their outcomes are

combined. The procedure is iterative and runs until a stable

segmentation result is reached. The independent treatment

of both data domains and a general way of combining the

domain-specific information distinguishes the presented

segmentation algorithm from other multi-spectral segmen-

tation methods. Because the presented algorithm is

constructed from general statistical pattern classifiers we

refer to it as classifier-based segmentation method in the

paper.

In Section 2, a formal description of the presented

segmentation algorithm is given. Then, we discuss the

application of the described method for the segmentation of

multi-spectral images of multi-component granules. The

algorithm stability and the issue of the segmentation quality

are discussed. We also investigate the possibility to use a

segmentation result as a priori information for the proces-

sing of similar images. The presented algorithm is an

alternative approach to probabilistic relaxation. Therefore,

we derive a simple relaxation model and compare the results

of both segmentation methods in Section 3.5. Finally, we

shortly discuss the presented method and give some ideas

for future research.

2. The segmentation algorithm

The input of the segmentation algorithm is a multi-

spectral image with D spectral bands. The algorithm output

is the image labeling L ¼ {li}; i ¼ 1;…;N; li [ V; where

N denotes the number of image pixels and li are pixel

labels. Labels take values from a set of mutually exclusive

classes V ¼ {v1;…;vC}:

The algorithm separates spectral and spatial infor-

mation and works with a different dataset in each data

domain. In the spectral domain, a dataset Dspec is built

which contains a feature vector xi [ RD for each image

pixel. Individual features then correspond to spectral

bands. The dataset therefore contains only the spectral

information and all the spatial relationships are lost. In

the spatial domain, a dataset Dspat is created containing a

feature vector x0
i [ R2 for each image pixel. In this case,

features correspond to spatial pixel coordinates and the

spectral information is omitted.

The first step of the segmentation algorithm is the

construction of the initial labeling L0 by allocation of each

feature vector xi into a class v [ V: The initial labeling is

performed by an unsupervised clustering algorithm on the

spectral dataset Dspec.

The second step of the segmentation algorithm is the

iteration process using labeled spectral and spatial datasets

to generate new labeling schemes. A classifier cspec :

RD !V is trained on the spectral dataset Dspec. Class

conditional a posteriori probabilities P̂specðvClxiÞ; c ¼

1;…C; are then estimated for all data samples using the

trained spectral classifier. In similar way, a spatial classifier

cspat : R
D !V is trained on the dataset Dspat. For each data

sample, class conditional a posteriori probabilities P̂spatðvCl
x0

iÞ; c ¼ 1;…;C are estimated.

Algorithm 1. Segmentation of multi-spectral image

1: input: multi-spectral image I; number of classes C

2: initial labeling: find initial labeling L0 by clustering

algorithm

3: iter ¼ 0

4: repeat

5: · iter ¼ iter þ 1

6: · create Dspec (spectral data and labels Liter21)

7: · train spectral classifier cspec on dataset Dspec

8: · estimate P̂spec running cspec on Dspec

9: · create Dspat (pixel positions and labels Liter21)

10: · train spatial classifier cspat on dataset Dspat

11: · estimate P̂spat using cspat on Dspat

12: · get P̂comb by combining P̂spec and P̂spat together

13: · generate new labels Liter from P̂comb

14: until diff (Liter21; Liter)

15: output: segmented image Liter

So far, two separate datasets have been used in the

segmentation process: Dspec in the spectral and Dspat in
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the spatial domain. Two sets of a posteriori probabilities

were therefore computed in these domains for each

individual pixel. The a posteriori probabilities are then

combined by a classifier combination method. Different

combination strategies may be used such as the maximum,

product, or mean rule. We have chosen the product rule

because we assume statistical independence of both

combined representations (spectral and spatial) [11]:

P̂combðvlxiÞ ¼
P̂specðvlxiÞP̂spatðvlx0

iÞXC
c¼1

P̂specðvClxiÞP̂spatðvClx0
iÞ

;i; i ¼ 1;…;N ð1Þ

The a posteriori probability P̂combðvclxiÞ determines a new

labeling L1 :

li ¼ arg max
C

{P̂combðvClxiÞ}; L1 ¼ {li}

;i; i ¼ 1;…;N ð2Þ

The labeling L1 is then used to generate the spectral and

spatial datasets Dspec and Dspat, again. The segmentation

algorithm, presented in Fig. 1, is therefore an iterative

procedure starting from the initial labeling estimate L0: In

the loop, results of spectral and spatial classifies are

combined together and new labeling schemes are developed

until a stable segmentation is reached.

Let us define the number of label changes between two

sets of labels La and Lb diffðLa;LbÞ as

diffðLa;LbÞ ¼
XN
i¼1

IðLaðiÞ;LbðiÞÞ; ð3Þ

where I is the indicator function:

Iðlm; lnÞ ¼
1 if lm – ln

0 otherwise:

(
ð4Þ

The labeling scheme Lj; j $ 1 is then stable if

diffðLj21;LjÞ ¼ 0:

During the segmentation, different algorithms may be used

to generate the initial labeling and to build the spectral and

spatial domain classifiers. The final segmentation result

depends on the actual dataset and is also influenced by the

performance of spectral and spatial classifiers. It is difficult

to make any general statements about the segmentation

stability. The actual behavior of the segmentation algorithm

and the issue of the observed segmentation stability is

discussed further in Section 3.

3. Experiments with the classifier-based

segmentation method

This section describes several experiments with the

presented segmentation algorithm on a set of multi-spectral

images of laundry detergents. First, we describe the

application, dataset and the evaluation procedure. Then,

we explain the actual setup of the classifier-based

segmentation. In order to evaluate the performance of the

presented method, a comparable probabilistic relaxation

model is derived in Section 3.4. Eventually, the experimen-

tal results of both approaches are presented and discussed in

Section 3.5.

3.1. Application of interest and experimental dataset

The presented classifier-based segmentation algorithm

has been developed in order to segment multi-spectral

images of multi-component granules acquired by scanning

electron microscopy (SEM). The spatial arrangement of the

three constituent clusters, which are solids, actives and

porosity, determines largely the properties of the product,

here the detergent powder. Structure analysis is therefore of

key importance in the assembly and the optimization

process of such material. A crucial intermediate step is the

segmentation of images depicting the granule structure in

the three mentioned clusters.

The spatial information about the structural arrange-

ment of granule cross-sections is obtained by SEM. The

spectral information, necessary to distinguish different

underlying modalities, is acquired by the method

of energy-dispersive X-ray microanalysis (EDX).Fig. 1. The segmentation algorithm.
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The SEM/EDX method generates the multi-spectral

image by delivering the information about chemical

elements for each image pixel [5]. The experimental

dataset consists of five multi-spectral images of laundry

detergent powders. All the images render similar material

using eight spectral bands. The size of the images is

128 £ 128 pixels. An examples of a multi-spectral image

acquired by SEM/EDX method is shown in Fig. 2.

3.2. Evaluation of segmentation algorithms

The image segmentation task, introduced in Section 2, is

inherently a clustering problem because the true class labels

are not known. However, in order to evaluate performance

of segmentation algorithms, some form of ‘ground-truth’

labeling is necessary. We decided to use images, segmented

by application experts, as a substitute of the true image

labeling.

The experts, in fact, hand-painted the label images taking

into account information in all spectral bands. The outcome

of this time-consuming process naturally depends on the

expert’s experience, insight, and subjective interpretation of

multi-spectral data. Different experts, therefore, produce

slightly different hand-labeled images which is illustrated in

Fig. 3. Variability of hand-labeling images, created by

different experts, usually does not exceed 8% of label

differences.

The only ultimate criterion to measure the quality of a

clustering result is the eventual judgment of a human

expert which is, unfortunately, hard to quantify. There-

fore, we use also a number of label differences to

measure the closeness between segmentation result and a

hand-labeling.

3.3. Classifier-based segmentation

In all experiments, the following setup was used: the

initial image labeling L0 was derived by the k-means

clustering of a randomly generated dataset with 500

pixels. The initial labeling was then used by the

segmentation algorithm separately in both data domains

(see Fig. 1). In the spectral domain, the nearest mean

classifier was used. The outcome of a classifier was

converted into a posteriori probability estimate [2]. In the

spatial domain, we have used a Parzen classifier with a

Gaussian kernel which could easily be implemented using

a convolution. If not mentioned explicitly, the smoothing

parameter s of the Parzen classifier was set to s ¼ 1:0

pixel. The presented segmentation algorithm treats the

number of classes as an input parameter. The application

experts suggested to work with three classes because of

the three main components of a detergent powder: solids,

actives, and pores.

Fig. 2. Multi-spectral image with eight bands acquired by SEM/EDX method.

Fig. 3. Three hand-labeled images produced by different experts for the same multi-spectral dataset. The rightmost image highlights all differently labeled

pixels.
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3.4. Probabilistic relaxation

Probabilistic relaxation is a general approach to label a

group of objects using their features and context information

[1,18]. When applied in the field of image segmentation it

provides us with another way to combine the spectral and

spatial domain information. In this section we derive a

simple probabilistic relaxation model which is used later for

the sake of comparison.

The Probabilistic relaxation is an iterative procedure

assigning class labels to individual pixels on the basis of

estimated class conditional a posteriori probabilities. The a

posteriori probability of class membership Pðvlxi;C iÞ;

given spectral data xi; of pixel i and its context C i; may

be expressed as:

Pðvlxi;C iÞ ¼
Pðv; xi;C iÞXC

c¼1

PðvC; xi;CiÞ

ð5Þ

Assuming the statistical independence between pixel

features xi and its context Ci; we can express the probability

Pðv; xi;CiÞ as:

Pðv; xi;CiÞ ¼ Pðxi;CilvÞPðvÞ ¼ PðxilvÞPðCilvÞPðvÞ

¼ PðvlxiÞPðCilvÞPðxiÞ: ð6Þ

By substituting the result into the Eq. (5) we obtain:

Pðvlxi;CiÞ ¼
PðvlxiÞPðCilvÞXC

c¼1

PðvclxiÞPðCilvcÞ

: ð7Þ

The probability PðvlxiÞ represents the spectral properties of

given pixel. The probability PðCilvÞ reflects, on the other

hand, conditions in the pixel context. We model the context

as local pixel neighborhood and assume the statistical

independence between individual pixel neighbors:

Pðvlxi;CiÞ ¼

PðvlxiÞ
Y
j[Ci

PðxjlvÞ

XC
c¼1

PðvclxiÞ
Y
j[Ci

PðxjlvcÞ

ð8Þ

Actual pixel labels are then assigned using estimate of the a

posteriori probability P̂ðvlxi;CiÞ :

;i; i ¼ 1;…;N; li ¼ arg max
c

{P̂ðvClxiÞ}: L¼ {li}: ð9Þ

The segmentation based on the relaxation method is an

iterative procedure started form an initial labeling. In each

iteration, the posterior 8 is recomputed, based on an updated

labeling of a training set. The algorithm is terminated when

the segmentation becomes stable—when no single pixel

changes its label between iterations. The class conditional

probability PðxilvÞ is modeled by a Gaussian distribution

with an equal covariance matrix for all classes. We have

chosen this model because of its similarity to the nearest

mean classifier used in the spectral domain of the classifier-

based segmentation algorithm.

Let us now explain the differences between the

probabilistic relaxation and the presented classifier-based

segmentation algorithm. In the probabilistic relaxation

framework, spectral information and the pixel context

information are used in the Bayesian scheme. The relaxation

model, used in the experiments, works on the spectral

information in the local pixel neighborhood. It assumes

mutual independence of pixel spectral properties and its

context which implies the use of product combination rule.

On the contrary, the classifier-based segmentation algorithm

treats the spectral and spatial domains separately and

combines attained results in a general way be combining

corresponding classifiers.

3.5. Experimental results

3.5.1. Classifier-based segmentation

Fig. 4 illustrates the process of classifier-based segmen-

tation. The first image in each row represents the initial

labeling, generated by k-means clustering. This already

captures much of the underlying data structure but also

contains a lot of ‘noise’. By noise in the segmentation result

we mean inhomogeneous labeling. The noise is introduced

by the clustering algorithm operating only in the spectral

domain. Outcomes of the first two algorithm iterations and

the stable segmentation result are given, subsequently.

Finally, the hand-labeled image is presented.

Pixels changing their labels between algorithm iterations

are shown for the first image. The evolution of the number

of label changes for all five images is given in Fig. 5. The

number of label changes decreases in all cases quickly to

zero. The zero number of label differences corresponds to

the stable segmentation result. It follows from our

experiments with different classifiers and combination

rules that the number of label changes decreases in a similar

manner which leads to a stable segmentation.

3.5.2. The use of a priori information in segmentation

When a number of similar multi-spectral images is

analyzed at the same time the segmentation algorithm may

benefit from the use of a priori information. We have

investigated the possibility of using a trained spectral

classifier, which is a byproduct of the classifier-based

segmentation, for the generation of initial labeling on a set

of images with similar spectral properties.

In the experiment we use two multi-spectral images A

and B. In the first step, the segmentation algorithm is run on

both images generating label images LA and LB; respect-

ively. Then, the image B is segmented again but this time

using the initial labels provided by the trained classifier

CA
spec: The result is the labeling LBlA: Similarly, the image A

is processed starting from the classifier CB
spec producing
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Fig. 4. Segmentation results for five multi-spectral images. For each image, initial labeling L0 is given together with results of first two iterations (label images

L1; L2). Stable segmentations and hand-labeled images are then presented. For the first image, the differences between label images are also shown (diffðL0;

L1), diffðL1;L2Þ; and diffðL2;L13Þ).
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the labeling LAlB. Schematic overview of this cross-

segmentation experiment is given in Fig. 6.

Now, the results obtained by the complete segmenta-

tion algorithm (e.g. LA) may be compared with labeling

based on the a priori spectral information (LAlB). It

follows from our experiments, that segmentation quality

expressed by the label mismatch with hand-labeling is not

significantly different for complete and a priori infor-

mation-based segmentations. Nevertheless, the segmenta-

tion using the a priori information is considerably faster

than the complete segmentation (see results in Table 1).

While the spectral data clustering takes 30 s on average,

the initial labeling by the trained spectral classifier takes

just 0.8 s. These times were measured on a Pentium III

866 MHz processor. The execution time of initialization

by the trained spectral classifier does not differ for

different images as the same operation with the same

amount of the data is performed each time. On the other

hand, the speed of the initial clustering depends on

the processed dataset and is influenced by the random

initialization.

3.5.3. Comparison with probabilistic relaxation

The comparison of segmentation results obtained by the

presented classifier-based algorithm and using the probabil-

istic relaxation model, derived in Section 3.4, is given in

Fig. 7. The same initial labeling, generated by the k-means

clustering, was used for both algorithms. Segmentations

were stopped automatically reaching the stable labeling. For

each image, label mismatch with respect to the hand-

labeling is given. Based on this criterion, the presented

algorithm outperforms probabilistic relaxation in four from

five cases. Application experts were also asked to judge the

outcome. The results of the classifier-based algorithm were

considered satisfactory for the structural analysis of laundry

detergents. In some cases, the results appeared to reveal

more detailed structures than the over-smoothed images

painted by human.

We have also studied the behavior of both segmenta-

tion methods for variables sizes of local neighborhood.

The classifier-based algorithm uses Parzen classifier in the

spatial domain. Its local properties are determined by the

smoothing parameter s: Probabilistic relaxation approach

works with the local pixel neighborhood. To compare the

results of both methods, smoothing s of the Parzen classifier

was chosen to cover the neighborhood window of the

relaxation algorithm with probability 0.95. Both methods

were started from identical initial labeling. Segmentation

results are presented in Fig. 8. Both methods reduce the

noise of the initial labeling and deliver homogeneous

results. The results of the probabilistic relaxation contain

thin artifacts surrounding image regions. Their width

depends on the size of local pixel neighborhood. It follows

from experience of application experts, that these additional

artifacts do not corresponds to the evidence in the analyzed

images.

In the last experiment, we investigated stability of the

segmentation result regarding different initializations by

clustering. Complete cross-segmentation experiment (see

Fig. 6) was performed 30 times for each segmentation

method. Therefore, we have obtained four sets

of segmentation results for each method (two

complete segmentations and two a priori-informationFig. 6. Cross-segmentation of two images with a priori information.

Fig. 5. Number of label changes between subsequent segmentation results

during the iterative process (five different multi-spectral images 128 £ 128

pixels).

Table 1

Speed measurements (in seconds) for both segmentation methods on

Pentium III 866 MHz processor. Numbers are averages and standard

deviations for 40 experiments

Complete seg. Using a priori inf. Prob. relaxation

Initial labeling

[sec]

30.1 ðs ¼ 1:8Þ 0.8 30.1 ðs ¼ 1:8Þ

Time of one

iteration [sec]

2.7 ðs ¼ 0:8Þ 2.7 ðs ¼ 0:8Þ 7.0 ðs ¼ 1:4Þ

Number of

iterations [1]

16.5 ðs ¼ 0:9Þ 16.5 ðs ¼ 0:9Þ 18.1 ðs ¼ 1:4Þ
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based segmentations). We have estimated the probability

that a particular pixel will be labeled differently than in

the ‘most common’ way. This probability estimate was

computed for each pixel from number of occurrences of

the most frequent label and a number of ‘other’ labelings.

Results are given in Table 2 as the average number of

changing their labels. Fig. 9 then shows the pixels with

non-zero probability of a label change for the worst case

in our experiment (complete segmentation of image B). It

can be seen, that larger variations exist between the

segmentation results of the probabilistic relaxation method

than between the results of the classifier-based algorithm.

We have also found out that each set of segmentation

results contains several completely identical solutions

(label images).

Fig. 7. Segmentation results obtained from combined classifier method (upper row) and probabilistic relaxation (middle row). Numbers below images are label

mismatches with respect to hand-labeled images (lower row).

Table 2

Average number of image pixels ðm̂Þ changing their labels in a set of

segmentation results for classifier-based segmentation and for probabilistic

relaxation. Each table row represents a set of 30 randomly initialized

segmentations (experiment schema in Fig. 6). Total number of image pixels

is 16,384

Segmentation Classifier-based

segmentation

Probabilistic

relaxation

Image A, complete

segmentation

1.36 503.31

Image A, using a priori

inf. form B

0.0 616.55

Image B, complete

segmentaion

42.5 635.24

Image B, using a priori

inf. from A

1.15 499.21
Fig. 8. Segmentation results obtained by the classifier-based method (upper

images) and probabilistic relaxation (lower images). Value of smoothing or

local neighborhood size is given for each image.
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4. Conclusion

A new algorithm for the segmentation of multi-spectral

image has been presented. It is based on statistical pattern

recognition algorithms and combines spectral and spatial

domain information by a general approach of classifier

combination. In the first step of the algorithm, initial

image labeling is generated using the unsupervised

clustering method. Then, two different datasets are

constructed in both available data domains (spectral and

spatial) and a statistical classifier is built in each domain.

It is convenient to use Parzen classifier with Gaussian

kernel in the spatial domain due to its efficient

implementation by convolution. The selection of spectral

classifier depends on the actual segmentation problem. We

have used a nearest mean classifier in the spectral domain.

Results from both domains are put together by combining

corresponding classifiers. The combined a posteriori

probability then defines a new image labeling. The

presented segmentation algorithm is an iterative procedure

finished when no single pixel changes its label between

subsequent iterations.

The algorithm has been developed in order to segment

multi-spectral images of multi-component granules (e.g.

laundry detergent powders) obtained by the method of

SEM and energy-dispersive X-ray microanalysis

(SEM/EDX). Several experiments on a set of five

multi-spectral images have been performed. In our

application, the number of classes is determined by the

purpose of the analysis and by the structural properties of

the powder specimen. It was, therefore, chosen a priori

by the application expert. If automatic determination of

the cluster count is of interest, some of methods,

proposed in the literature, may be plugged in the initial

clustering step.

In order to evaluate the performance of segmentation

algorithms on this clustering problem, ground-truth was

created manually by the application experts.

Probabilistic relaxation is another approach combining

spectral and spatial information. We have built a

probabilistic relaxation model, comparable to the setup

of the presented algorithm and studied performance of

both methods. The main difference between them is in

the treatment of available data domains. The relaxation

technique operates on the spectral information in the

local neighborhood and its assumption of domain

independence implies the use of the product combination

rule. The classifier-based algorithm, on the other hand,

completely separates the processing of the spatial and

spectral domains and combines the outcomes in a general

way.

It follows from our experiments, that the classifier-

based segmentation method performed better than the

consider relaxation model on our dataset. Although both

algorithms provide a stable solution and their speed is

comparable, relaxation method labeled several images

erroneously. It also includes additional artifacts to the

particle borders, which is a serious flaw in the considered

application. The classifier-based segmentation method

appears to provide satisfactory results, resembling the

expert-made hand-labeling.

We have also investigated the use of a priori

information for the segmentation of more images with

similar spectral properties. A trained spectral classifier,

which is a byproduct of the classifier-based algorithm,

considerably speeds up the initial labeling step.

The use of the presented segmentation algorithm is

not limited to the analysis of multi-component granules.

It is a rather general approach for the combination of

spatial and spectral (feature) information in image

segmentation. The algorithm may be, therefore, applied

to different types of multi-band images, as long as

appropriate models are chosen for spectral and spatial

classifiers. In presented application, images are generated

pixel by pixel by an active scanner which produces high

amount of noise compared e.g. to images acquired by

CCD sensors. This noisy data is successfully modeled by

linear or quadratic classifiers. Different types of data such

as color images may require more sophisticated models

reflecting complex non-linear structures in a spectral

feature space. Future research will aim at the automatic

determination of the number of classes (clusters) in the

multi-spectral image of laundry detergents. A possibility

Fig. 9. Segmentation stability. The left image is a segmentation result. Binary images show pixels with a non-zero probability of label change in a set of

segmentations started by different random initialization of the initial labeling algorithm. The image in the middle corresponds to the classifier-based

segmentation and the rightmost image to the probabilistic relaxation.
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of further splitting of classes by hierarchical clustering

will be also investigated.
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