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Abstract

Usually, objects to be classified are represented by features. In this paper, we discuss an
alternative object representation based on dissimilarity values. If such distances separate
the classes well, the nearest neighbor method offers a good solution. However, dissimilarities
used in practice are usually far from ideal and the performance of the nearest neighbor rule
suffers from its sensitivity to noisy examples. We show that other, more global classification
techniques are preferable to the nearest neighbor rule, in such cases.

For classification purposes, two different ways of using generalized dissimilarity kernels
are considered. In the first one, distances are isometrically embedded in a pseudo-Euclidean
space and the classification task is performed there. In the second approach, classifiers are
built directly on distance kernels. Both approaches are described theoretically and then
compared using experiments with different dissimilarity measures and datasets including
degraded data simulating the problem of missing values.
Keywords: dissimilarity, embedding, pseudo-Euclidean space, nearest mean classifier,
support vector classifier, Fisher linear discriminant

1. Introduction

In this paper, we study the design of classifiers, directly based on a given set of dissimilarities
between objects using a generalized kernel approach. Kernels are often understood as
symmetric, positive definite functions of two variables, and thereby, they express similarity
between objects represented in a feature space. Here, we propose to address a kernel
in a more general way, i.e. as a proximity measure. The important difference is that a
kernel describes now a proximity relation between two objects, which may not be explicitly
represented in a feature space, or which may come from two different feature spaces. An
example is a dissimilarity measure defined between shapes or contours, or images of different
sizes. A suitable choice can be e.g. variants of the Hausdorff distance, comparing two sets
of points (Dubuisson and Jain, 1994). In such a case, there is no need to define a common
feature space, where the objects are represented. It means that there might be no functional
dependence given specifically. We simply assume that a dissimilarity representation is just
given.
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Since a lot of attention has been paid to similarity kernels, this paper is devoted to
classification aspects using dissimilarity (or distance) kernels. Here, we want to emphasize
the importance of recognition tasks for which dissimilarity kernels are built directly on
images or shapes. Therefore, no feature space is (or needs to be) originally defined, but
dissimilarities arise directly from the application. Examples are Jain and Zongker (1997)
and Jacobs et al. (2000). Therefore, concerning the notation, if we generally refer to objects,
like r, s or x, they will not be printed in bold, to emphasize that they are not (or might
not) be feature vectors. The distance kernel represents the information in a relative way, i.e.
through pairwise dissimilarity relations between objects. The goal now is to learn only from
such relational data, i.e. without any use (different than computing distances if necessary)
of a starting original representation. The question studied here is, therefore, how to learn
from data, given only dissimilarity kernels.

Recently, Schölkopf (2000) has proposed to treat kernels as generalized distance mea-
sures and also strengthened the link to algorithms based on positive definite kernels, such
as the support vector classifier (SVC) (Vapnik, 1995, Schölkopf, 1997) or the kernel prin-
cipal component analysis (Schölkopf et al., 1999, Schölkopf, 1997). There is, however, an
essential difference with our approach. Schölkopf starts his reasoning from a feature space
representation, where, in our case, this is not possible; we start a learning task from a
dissimilarity kernel. For a more elaborate discussion, see Section 4.4.

Our principal question is how, given a dissimilarity kernel, a recognition problem can be
tackled. To this end, we collected a set of methods which can be used by a researcher. In the
paper we analyze the problem and illustrate possible solutions. Given a good dissimilarity
measure, the k-nearest neighbor (k-NN) classifier is expected to perform well. It is, however,
difficult to build such a measure for a complex recognition problem. In case of imperfect
dissimilarities, the k-NN rule suffers from its sensitivity to noisy examples, but more global
classifiers can perform better. How to design them is the goal of this research.

Two distinct approaches for classification tasks are studied in this paper. In the first one,
a dissimilarity representation is isometrically embedded in a feature space, as presented in
Section 3. This is always possible for a finite representation, although such a space may be
pseudo-Euclidean (Goldfarb, 1985). Objects mapped to such a space preserve the structure
of the data revealed in original distances. It means that if the dissimilarity measure defines
classes which are bounded and compact, the configuration found in an underlying feature
space should reflect those properties. An underlying feature space is constructed in the
process of embedding. For this purpose, both the compactness hypothesis and its reverse
should hold (see Section 2). If the dimensionality of such a feature space is low, then a
classification task can be easily performed.

In the second approach, a dissimilarity kernel is interpreted as a mapping based on a
chosen representation set R of objects (Duin, 2000, P ↪ekalska and Duin, 2001), as presented
in Section 5. In this formulation, classifiers can be constructed directly on the dissimilarity
kernels, as in dissimilarity spaces.

The paper is organized as follows. Section 2 discusses dissimilarities in the light of
the compactness hypothesis, in general. Section 3 presents some mathematical formulation
of the linear embedding problem. Section 4 gives more details on building classifiers in
the embedded space. Section 5 addresses the classification problem by the direct use of
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dissimilarity kernels. Sections 6 and 7 describe the experiments conducted, and discuss the
results. Conclusions are summarized in Section 8.

2. On dissimilarity measures

In general, a classification problem can be solved based on the so-called compactness hy-
pothesis (Arkadev and Braverman, 1966, Duin, 1999), which states that objects that are
similar, are also close in their representations. Effectively, this puts a constraint on the
dissimilarity measure d, which has to be such that d(r, s) is small if objects r and s are
similar, i.e. it should be much smaller for similar objects than for objects that are very
different. For feature representations, the above does not hold the other way around: two
entirely different objects may have the same feature representation. This does not cause a
problem if these feature values are improbable for all or for all but one of the classes. For a
dissimilarity kernel, however, the reverse of the compactness hypothesis also holds provided
that the dissimilarity measure d poses some continuity. If we demand that d(r, s) = 0, if
and only if objects r and s are identical, this implies that they belong to the same class.
This can be extended somewhat by assuming that all objects s with a small distance to the
object r, i.e. for which d(r, s) < ε for a positive ε being sufficiently small, are so similar
to r, that they belong to the same class. Consequently, the dissimilarities of r and s to all
objects x under consideration should be about the same, i.e. d(r, x) ≈ d(s, x). We conclude,
therefore, that for dissimilarity representations satisfying the above continuity, the reverse
of the compactness hypothesis holds: objects that are similar in their representation are
also similar in reality and belong, thereby, to the same class (see Duin and P ↪ekalska, 2001).
As a result, classes do not overlap and the classification error may become zero for large
training sets.

In order to interpret further such a hypothesis, let us recall the notion of metric. A dis-
tance measure d is called a metric when the following conditions are fulfilled:

• reflectivity, i.e. d(x, x) = 0
• positivity, i.e. d(x, y) > 0 if x is distinct from y

• symmetry, i.e. d(x, y) = d(y, x)
• triangle inequality, i.e. d(x, y) < d(x, z) + d(z, y) for every z

Basically, reflectivity and positivity are crucial to define a proper dissimilarity measure.
We do not accept a dissimilarity measure which is zero for two different objects, because
it would violate the compactness hypothesis. On the other hand, negative dissimilarities
would be difficult to interpret. Therefore, reflectivity and positivity conditions should always
be fulfilled. If a distance measure is a metric, then the assumption on the continuity
is fulfilled and, thereby, also the reverse of the compactness hypothesis by the means of
symmetry and triangle inequality. However, whether the last two conditions are necessary
for a dissimilarity kernel is disputable. Non-metric distances often seem to arise when shapes
or objects in images are compared by template matching or when other type of distances are
built e.g. in computer vision (Dubuisson and Jain, 1994, Jacobs et al., 2000). It has been
also argued (Tversky, 1977, Jacobs et al., 2000) that the symmetry constraint might be too
strong, especially when dissimilarities come from psychological judgments. Therefore, in
some methods, asymmetric distances are also permitted. In this paper, symmetric distance
measures not obeying the triangle inequality, and therefore not proper metrics, are included.
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3. Linear embedding of dissimilarities

There is a number of ways to embed dissimilarity data in a feature space. Since, we are
interested in a faithful configuration, a (non-)linear embedding is performed such that the
distances are preserved as well as possible. Since nonlinear projections require more compu-
tational effort and, moreover, the way of projecting new points to the existing configuration
is not straightforward (or not defined), the linear mappings are preferable. Here, isometric
embeddings are considered.

3.1 Embedding of Euclidean distances

Let the representation set R = {p1, p2, . . . , pn} refer to n objects (Duin, 2000, P ↪ekalska
and Duin, 2001). Given an Euclidean distance matrix D ∈ Rn×n between those objects, a
distance preserving mapping onto an Euclidean space can be found. Such a projection is
known in the literature as a classical scaling or a metric multidimensional scaling (Young
and Householder, 1938, Borg and Groenen, 1997, Cox and Cox, 1995). In other words, the
dimensionality k ≤ n and the configuration X ∈ Rn×k can be found such that the (squared)
Euclidean distances are preserved. Note that having determined one configuration, another
one can be found by a rotation or a translation. To remove the last degree of freedom,
without loss of generality, the mapping will be constructed such that the origin coincides
with the centroid (i.e. the mean vector) of the configuration X.1

To define X, the relation between Euclidean distances and inner products are used.
First, it can be proven that

D(2) = b1T + 1 bT − 2B,

(see Borg and Groenen, 1997, Appendix A.2), where D(2) is a matrix of square Euclidean
distances, B is the matrix of inner products of the underlying configuration X, i.e. B =
XXT and b is a vector of the diagonal elements of B. B can also be expressed as:

B = −1
2
J D(2) J, (1)

where J is the centering matrix J = I − 1
n11

T ∈ Rn×n and I is the identity matrix. J
projects2 the data such that the final configuration has zero mean. B is positive definite since
it is a Gram matrix (Greub, 1975). Then, the factorization of B by its eigendecomposition
can be found as:

XXT = B = QΛQT , (2)

where Λ is a diagonal matrix with the diagonal consisting of the first non-negative eigen-
values, ranked in descending order, followed by the zero values, and Q is an orthogonal
matrix of the corresponding eigenvectors (Borg and Groenen, 1997). For k ≤ n non-zero
eigenvalues, a k-dimensional representation X can be then found as:

X = Qk Λ
1
2
k , Qk ∈ Rn×k, Λ

1
2
k ∈ Rk×k, (3)

1. It is also possible that any arbitrary point of X would become the centroid.
2. A more general projection can be achieved, imposing that a weighted mean becomes zero, by which

J = I − w 1T , where w is a weight vector, such that wT 1 = 1 and B = − 1
2

JT D(2)J .
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where Qk is a matrix of the first k leading eigenvectors and Λ
1
2
k contains the square roots

of the corresponding eigenvalues. Note that X, determined in this procedure, is unique
up to rotation (the centroid is now fixed), since for any orthogonal matrix T , XXT =
(XT ) (XT )T . Note also, that features of X are uncorrelated, since the estimated covariance
matrix of X becomes:

Cov(X) =
1

n− 1
XT X =

1
n− 1

Λ
1
2
k Q

T
k Qk Λ

1
2
k =

1
n− 1

Λk, (4)

because Qk is orthogonal.

3.2 Embedding of non-Euclidean distances

The matrix B = −1
2 J D

(2) J is positive definite if and only if the distance matrix D ∈ Rn×n

is Euclidean (Borg and Groenen, 1997, Gower, 1986, 1982). Therefore, for a non-Euclidean
D, B is not positive definite, i.e. B has negative eigenvalues. As a result, X cannot be
constructed from B, since it relies on the square roots of eigenvalues; see Formula (3). Two
approaches are possible to address this problem in an Euclidean space:

• Only p positive eigenvalues are taken into account, resulting in a p-dimensional con-

figuration X = Qp Λ
1
2
p (p < k), for which distances approximate the original ones.

Since the distances are positive, the largest negative eigenvalues in magnitude, are
smaller than the largest positive eigenvalues. Also the sum of the positive eigenvalues
is larger than the sum of magnitudes of the negative ones.

A justification for choosing only positive eigenvalues can be found in Section 3.4,
where the issue of noise influence is discussed. We argue that, in general, directly
measured distances may be noisy, and therefore, they may not be perfectly Euclidean,
which will result in small negative eigenvalues of B; see Figure 1 for an illustration.
Therefore, by disregarding them, noise can be diminished.

• It is known that there exists a positive constant c > |λ|, where λ is the smallest
(negative) eigenvalue of B, such that a new square Euclidean distance matrix might
be created from D(2) by adding c to off-diagonal elements (Cox and Cox, 1995, Gower,
1986), i.e.:

D(2)
n = D(2) + c (11T − I). (5)

Then, X can be again expressed in an Euclidean space. In practice, the eigenvectors
remain the same and the value c

2 is added to the non-zero eigenvalues, giving the new
eigenvalue matrix Λk + c

2 I. This is equivalent to regularizing the covariance matrix
of our configuration X, i.e. Cov(X) = 1

n−1 (Λk + c
2 I) and changing X respectively.

These two approaches transform the problem, so that a configuration X can be defined again
in an Euclidean space. This is especially useful when the negative eigenvalues are relatively
small in magnitude, which suggest, on the other hand, that the original distance measure
is close to Euclidean. In such cases, those negative eigenvalues can be interpreted as a
noise contribution. If the negative eigenvalues are relatively large, then by neglecting them,
possibly important information has been rejected. There is still an open question about the
consequences on classification tasks of transforming the problem into an Euclidean space,
either by neglecting the negative eigenvalues or by directly enlarging D(2) by a constant.
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Figure 1: An example on the usefulness of disregarding the negative eigenvalues. Assume
that the theoretical, original data is a perfect line, however due to the measure-
ment process, somewhat distorted, as observed in the first plot. The distance
kernel D is computed with distances dij = ||xi − xj ||1.004, which is nearly Eu-
clidean. During the embedding process 16 eigenvalues are revealed, where 14 are
negative (the largest negative in magnitude equals −0.042). This would suggest a
possible 16-dimensional configuration, however, one significant positive eigenvalue
indicates that the ‘real’ intrinsic dimensionality of the data is 1 (for an Euclidean
distance and a perfect line, the embedded configuration is 1-dimensional). The
second plot shows the projection onto first two dimensions (the configuration is
retrieved up to a rotation). The last plot presents the projection onto the 1st
and the 3rd dimensions, where the 3rd dimension corresponds to the largest (in
magnitude) negative eigenvalue (how the embedding is done in such a case is ex-
plained by Formula 8). Notice how a tiny change of both the theoretical data and
the Euclidean distance of a very simple problem enlarges the number of retrieved
dimensions, from 1, in the perfect case, to 16.

Another possibility exists for problems in which the Euclidean space is not ‘large enough’.
Goldfarb (1984, 1985) proposed to project the data onto a pseudo-Euclidean space, which
can be performed for any symmetric distance matrix. The pseudo-Euclidean space can
be seen as consisting of two Euclidean spaces, for which the inner product operation is
positive definite on the first space and negative definite on the second one (see Greub, 1975,
Appendix Appendix A.1). For a simple illustration, see Figure 2. To embed the data, the
same reasoning as for an Euclidean space is applied here. The essential difference refers to
the notion of an inner product and a distance. Now, B = −1

2 J D
(2) J , is still the matrix of

inner products, but it is expressed as (see Appendix A.1):

B = XM XT , (6)

where M is a matrix of the inner product operation in a pseudo-Euclidean space. Following
Goldfarb (1985), we can write (compare to Formula 2):

XM XT = B = QΛQT = Q |Λ| 12
[
M

0

]
|Λ| 12 QT , where M =

[
Ip×p 0

0 −Iq×q,

]
(7)

and p+q = k. Λ is now based on p positive and q negative eigenvalues, which are presented
in the following order: first, positive eigenvalues with decreasing values, then negative ones
with decreasing magnitude and finally, zero values. Therefore, X can be now represented
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Figure 2: A pseudo-Euclidean space R(1,1), where d2(x,y) = (x− y)TM(x− y). Here, the
length of any vector of the form [x1 ± x1]T , is zero. The orthogonal vectors are
mirrored w.r.t. the lines x2 = x1 or x2 = −x1, e.g. 〈OA,OC〉 = 0. Vector v
defines the plane vTMx = 0 in this space. Vector w = M v, a ‘flipped’ version
of v, describes the plane as if in an Euclidean space, i.e. it is perpendicular. This
explains that in any pseudo-Euclidean space, the inner product operation can be
seen as an Euclidean operation where one vector is ‘flipped’ by M . In general,
distances can be of any sign, e.g.: d2(A,C) = d2(F,G) = 0, d2(A,B) = 1,
d2(B,C) = −1, d2(D,A) = −8, d2(F,A) = 21 and d2(E,C) = 8.

in a pseudo-Euclidean space Rk = R(p,q) of, the so-called, signature (p, q) (Goldfarb, 1984),
as follows:

X = Qk |Λk|
1
2 . (8)

Note that X has uncorrelated features, since the estimated pseudo-Euclidean covariance
matrix (which is not positive definite as in an Euclidean space) is given as (Goldfarb, 1985):

Cov(X) =
1

n− 1
XT XM =

1
n− 1

|Λk|M =
1

n− 1
Λk. (9)

This means that X is a result of a mapping in the sense of the PCA projection and the
whole embedding procedure can be also interpreted as a sort of a kernel-PCA (Schölkopf
et al., 1999, Schölkopf, 2000) approach, where the kernel B is a reproducing kernel for the
pseudo-Euclidean feature space (see Section 4.4).

Computing square distances in a pseudo-Euclidean space R(p,q) can be interpreted as
computing the square Euclidean distance in a ‘positive’ space Rp and subtracting the square
Euclidean distance found in a ‘negative’ space Rq (see Appendix A.1). The distances com-
puted only in the ‘positive’ space are overestimated, therefore, the purpose of the ‘negative’
space is to correct them, e.g. make them be non-Euclidean. Since pseudo-Euclidean spaces,
we are going to use, will result from the embedding process of positive distances, the con-
tribution of the ‘negative’ space Rq to the overall distances is smaller than of the space Rp.
In such a case, due to the construction of X, X has relatively small feature values corre-
sponding to the space Rq. Practice confirms that many measured distances are close to
the Euclidean one, giving relatively small negative eigenvalues in the embedding procedure.
Note also, that the inner product vTM x can be interpreted as a traditional, Euclidean
inner product wT x, where w = Mv. Therefore, having found a pseudo-Euclidean configu-
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ration X, a linear classifier y = vTMx + v0 can be found by addressing it as in a standard,
Euclidean case, i.e. y = wT x + v0.

3.3 Embedding new points

Having found a configuration X in a pseudo-Euclidean space that preserves all pairwise
distances D(R,R), new objects can be can added to this space via the linear projection.
Given the square distance matrix D

(2)
n ∈ Rs×n, expressing dissimilarities between s novel

objects and all objects of the representation set R, a configuration Xn is to be determined
in a pseudo-Euclidean space Rk = R(p,q). First, the matrix Bn ∈ Rs×n of inner products
relating all new objects to all objects from R should be found, which becomes (see Appendix
A.3):

Bn = −1
2

(D(2)
n J − U D(2) J), (10)

where J is the centering matrix and U = 1
n 1

T1 ∈ Rs×n. Since Bn can be expressed as:

XnM XT = Bn, with

M =



I ∈ Rk×k if the space Rk is Euclidean,[
Ip×p 0

0 −Iq×q

]
∈ Rk×k if the space Rk is pseudo-Euclidean,

(11)

therefore, Xn is found as the mean-square error solution to XnM XT = Bn, i.e. Xn =
BnX (XT X)−1M . Knowing that XT X = |Λ| and X = Qk |Λk| 12 , Xn is alternatively
presented as:

Xn = BnX |Λ|−1M or Xn = BnQk |Λk|−
1
2 M.

3.4 Reduction of dimensionality

By adding one object to the representation set R, (and, therefore, to the dissimilarity
kernel D(R,R)), in practice one point is added to a finite pseudo-Euclidean space, but the
dimensionality k of the vector representation might increase by more than one, contrary to
the Euclidean case (Goldfarb, 1985). This means that both outliers and noise can contribute
significantly to the resulting dimensionality k. In practice, when new points are added, they
are projected onto the space determined by the starting configuration X. Therefore, the
reliability of X, i.e. whether D(R,R) describes a sufficiently well sampled representation
set, plays an essential role in the process of representing new data, and consequently, the
classification performance.

Originally, the (pseudo-)Euclidean configuration X is found such that the distances are
preserved exactly and the dimensionality of X is determined by the number of non-zero
eigenvalues of B. However, there might be many relatively small non-zero eigenvalues as
compared to the large ones. Knowing that dissimilarities are noisy measurements, the small
eigenvalues correspond to non-significant directions of X. In such a framework, neglecting
small eigenvalues stands for reducing noise contribution (see Figure 3 for an illustration) or
for finding a representation with the intrinsic dimension.
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Figure 3: Noise influence on eigenvalues of B. The first, leftmost plot presents the 2D the-
oretical banana data (consisting of 200 points), for which the Euclidean distance
matrix D has been computed. The second plot shows the result of the embedding
of D into a 2D space (note that the retrieved configuration is up to a rotation).
The third plot presents the projection onto the first 2 dimensions of the 199D
data obtained via embedding of distorted distances D̃, (where d̃ij = dij + sij

and sij ∼ N(0, 0.001)), which become non-Euclidean. The last plot presents the
projection onto the first 2 dimensions of the 4D data obtained via embedding
of D(Ã), where Ã consists of the theoretical data A to which 2 noisy features
were added. Note that the first 2 largest eigenvalues, as given under the graphs,
are about the same for non-distorted as well as for distorted data, which gives
practically the same results in all cases. Therefore, by rejecting relatively small
eigenvalues, noise is diminished.

In such a case, distances will be preserved approximately. One has, however, a control
over the dimensionality of the reduced vector representation. Basically, the dimensional-
ity reduction can be achieved by the orthogonal projection, governed by the PCA. The
particular construction of X = Qk |Λk| 12 and the fact that X is an uncorrelated vector
representation, i.e. Cov(X) = 1

n−1 Λk, stand for X being given in the form of the orthog-
onal PCA projection; see Formula (9). It means that the reduction of dimensionality is
performed in a simple way by neglecting directions corresponding to eigenvalues small in
magnitude. The reduced representation (being an orthogonal projection) is then deter-
mined by the p′ significant positive eigenvalues and q′ significant (in magnitude) negative
eigenvalues. Therefore, X ′ ∈ Rn×k′

, k′ < k, is found as X ′ = Qk′ |Λk′ | 12 , where k′ = p′ + q′

and Λk′ is a diagonal matrix of first, decreasing positive eigenvalues and then increasing
negative eigenvalues, and Qk′ is the matrix of corresponding eigenvectors.

4. Classification in a pseudo-Euclidean space

The symmetric dissimilarity kernel D can be seen as a description of an underlying, lower-
dimensional vector representation X. If X is determined in an Euclidean space, then any
traditional classifier can be constructed in such a space. If X happens to be a pseudo-
Euclidean representation, then the conventional classifiers should be redefined. Here, we
limit ourselves to simple, linear classification rules: nearest mean classifier, Fisher linear
discriminant and support vector classifier, but, more advanced classifiers can be built as
well.

183



P ↪ekalska, Pacĺık and Duin

4.1 Generalized nearest mean classifier

Nearest mean classifier (NMC) is the simplest linear classifier which assigns an unknown
object to a class of the nearest mean. In a (pseudo-)Euclidean space Rk, such a decision
rule is based on the (pseudo-)Euclidean distance. Given D, assume a 2-class problem with
the classes ω1 and ω2. The vector representation {x1, . . . ,xn} is such that it preserves the
originally considered squared distances D(2). Let x(i) be the mean vector of the class ωi.
For a new object z represented in this space, as zx, the classification rule is defined as:

Assign z to ω1 iff d2(zx,x(1)) < d2(zx,x(2))
Assign z to ω2 otherwise

where d2(x,y) = ||x − y||2 = 〈x − y, x − y〉 = (x − y)T M (x − y) and M is defined by
Formula (11). Embedding a dissimilarity kernel D can be avoided when only class mean
vectors and distances have to be computed. Therefore, we propose an alternative approach.
A similar classification process can be carried out, however, without performing the exact
mapping. As a result, the generalized nearest mean classifier (GNMC) will be obtained.

Assume first that a class ω is represented by a distance matrix D(R,R) based on the
representation set R = {p1, . . . , pn}. Let a new object z be represented by distances to the
set R. Then, the proximity of z to the class ω is measured by the function fω defined as:

fω(z) = 1
n

∑n
j=1 d

2(z, pj) − Vd(R),

Vd(R) = 1
2n2

∑n
j=1

∑n
k=1 d

2(pj , pk),
(12)

where Vd(R) is a generalized variability of the underlying feature space. It can be shown
(see Appendix A.4) that the following holds:

fω(z) = ||zx − x||2 = d2(zx,x),

Vd(X) = 1
n

∑n
j=1 ||xj ||2 − ||x||2, (13)

where {x1, . . . ,xn} is found by a linear embedding, as introduced in Section 3 and zx is
the representation of the object z in space Rk.

From dependencies given in (13), two important observations can be made. The first one
refers to Vd expressing a variability in X. If X is a 1-dimensional vector, then Vd coincides
with the variance of X. For X being a higher dimensional Euclidean representation, Vd is
equal to the sum of variances, i.e. trace (cov(X)). For a pseudo-Euclidean space, Vd stands
for a generalized variability, based on the pseudo-Euclidean covariance matrix; see Formula
(9). The second observation refers to the function fω(z) which measures the distance of
the point zx to the mean of the class ω, both represented in the space Rk. The interesting
point is that such a distance can be computed without performing the embedding process
explicitly, since it operates only on the given distances D, as presented in (12).

This result allows us to define a generalized nearest mean classifier as follows:

Assign z to ωj : fωj (z) = min
i
{fωi(z)}, (14)

where fωi is defined as in (12). In other words, z is assigned to a class of the nearest mean
(centroid), where each centroid is described in an underlying space defined by the within-
class distances. Note that in the formulation given by (14), the classification rule holds for
any number of classes.
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The NMC and the GNMC in a pseudo-Euclidean space are not, in general, identical
classifiers. The NMC finds a linear embedding onto a feature space Rk based on the whole
distance matrix D(2). Therefore, the dimensionality of such a space is determined by both
the within-class and between-class distances. The GNMC operates only on the within-class
distances. Although the embedding is not performed directly, the GNMC works in the
underlying feature spaces Rk

ωi
, for each class separately. It may happen that the signatures

of feature spaces Rk
ωi

are not the same. In such a case, the performances of the the NMC and
the GNMC differ, because the NMC unifies pseudo-Euclidean space and the signature for
all classes, while the GNMC treats them separately, which allows to describe them properly.
Since the GNMC makes use of the distinct signatures, its accuracy is expected to be higher
for problems in which the classes behave differently.

4.2 Fisher linear discriminant

The linear classifier (or a separating hyperplane) in a pseudo-Euclidean space Rk = R(p,q)

is defined as follows (Greub, 1975, Goldfarb, 1985):

f(x) = vT M x + v0, where M =
[
Ip×p 0

0 −Iq×q

]
(15)

To construct the Fisher linear discriminant (FLD), the notion of a pseudo-Euclidean co-
variance matrix is needed. For the representation X, it is defined as (Goldfarb, 1985):

cov(X) =
1

n− 1

[
n∑

i=1

(xi − x) (xi − x)T

]
M, where x =

1
n

n∑
i=1

xi.

Making use of the above definition and following Goldfarb (1985), the FLD, obtained by
maximizing the ratio of between-scatter to within-scatter (Fisher criterion) (Fukunaga,
1990), for a 2-class problem is given by:

v = M C−1
W (m1 − m2), n

v0 = −1
2 (m1 + m2)T MM︸ ︷︷ ︸

=I

C−1
W (m1 − m2),

where CW M is the pooled within-class covariance matrix in a pseudo-Euclidean space (CW

is the pooled within-class covariance matrix as computed for the Euclidean case) and m1

and m2 stand for the class means. The FLD in a pseudo-Euclidean space can be constructed
as the hyperplane f(x) = wT x + v0, where w = Mv and wT x refers to an Euclidean inner
product. See Figure 4 as an illustration of a simple problem.

4.3 Support vector classifier

Let n points xi, i = 1, 2, . . . , n be given in an Euclidean space Rk. Each point xi belongs to
one of two classes as described by the corresponding label yi ∈ {−1, 1}. The goal for non-
overlapping classes is to find the optimal hyperplane: f(x) = wT x + w0, which maximizes
the margin, i.e. 2

||w||2 (Vapnik, 1995, Burges, 1998) (or, alternatively, minimizes ||w||2). For
non-linearly separable classes, non-negative slack variables ξi are introduced, allowing for
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Figure 4: An illustration of the decision boundary of the FLD in an embedded space. The
leftmost plot presents a 2D theoretical, artificial data. There are 3 training points,
marked by circles. Only 3 objects are taken for training, because then the data
can be perfectly embedded in not more than 2 dimensions. The remaining points,
marked by ‘+’ and ‘*’ belong to the examples of testing data, which illustrate
how the new objects are projected on the retrieved (pseudo-)Euclidean space.
The following plots show the embedding results of the Lp distance D, where
dij = (

∑2
k=1 |xik −xjk|p)1/p, for p = {0.6, 0.9, 1.5, 2}. For positive p smaller than

1, the Lp distance is not metric and in such cases the distances between close
objects are emphasized. In all subplots, the FLD, determined by the 3 circles,
in the original (first subplot) or the embedded spaces is drawn. For p = 2, the
original, theoretical data is retrieved up to a rotation.

classification errors, so that the soft margin linear support vector classifier (SVC) (Vapnik,
1995, Burges, 1998) is found as the solution of the quadratic programming procedure:

Minimize 1
2w

T w + C
∑n

i=1 ξi

s.t. yi (wT xi + w0) ≥ 1 − ξi, i = 1, 2, . . . , n
ξi ≥ 0

(16)

The term
∑n

i=1 ξi is an upper bound on the misclassification of the training samples and
C can be regarded as a regularization parameter, a trade-off between the number of errors
and the width of the margin. The dual programming formulation is given as follows:

Maximize −1
2 αT diag(y)K diag(y) α + αT1

s.t. αT y = 0
0 ≤ αi ≤ C, i = 1, 2, . . . , n

(17)

where K is an n × n kernel matrix such that Kij = 〈xi,xj〉. After solving the problem
(17), the weight vector w is found to be a linear combination of the data vectors, giving
w =

∑n
i=1 αi yi xi. Since many αi become zero, the data points xi with positive αi, are the

so-called support vectors. Only they contribute to the hyperplane equation. As a result,
the discrimination function can be presented in terms of inner products as follows:

f(x) =
∑
αi>0

αi yi 〈x,xi〉 + w0. (18)

Note that in the training stage, the kernel matrix K becomes K = XXT , which equals B,
the matrix of inner products (see Formula 1), i.e. K = B.
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Since the linear SVC is based only on inner products, and by the linear relation (1)
between D(2) and B (= K), the SVC can be easily constructed in the underlying feature
space without performing the embedding explicitly, provided that the distances are Eu-
clidean. For novel objects, represented by the distances to the representation set R, the
SVC can be immediately tested by using Bn, the matrix of inner products between new
objects and objects embedded originally, as provided by Formula (10).

For a non-Euclidean dissimilarity matrix D, the matrix of inner products is not positive
definite, resulting in a pseudo-Euclidean space, The configuration X is given by (8), i.e.
X = Q |Λ| 12 , for which a linear classifier is defined by (15). If we now assign wT = vT M ,
then the classifier f(x) = wT x+ v0 can be treated in an Euclidean space. The operation of
vT M is seen as flipping the values of the w vector in all ‘negative’ directions of the pseudo-
Euclidean space. As suggested by Graepel et al. (1999a), this is equivalent to flipping the
negative eigenvalues to positive ones, and considering the inner product B′ = Q |Λ|QT in
an Euclidean space as being positive definite.

Summarizing, for a dissimilarity kernel D, the SVC classifier can be built in the under-
lying feature space as follows. First, the matrix B is computed according to (1). If B is not
positive definite, then the matrix B′ is computed as B′ = Q |Λ|QT , otherwise B′ = B. It
describes a positive definite kernel, used to construct the SVC according to (18). Note also
that any polynomial SVC classifier (Vapnik, 1995) can be built by using B′ directly.

4.4 Discussion on the kernel trick for distances

Recently, Schölkopf (2000) has considered kernels as generalized dissimilarity measures. His
reasoning starts from the observation that a Mercer kernel K (Vapnik, 1995), i.e. a positive
definite kernel, can be seen as a (nonlinear) generalization of the similarity measure based
on inner products. This is possible because such a kernel can be expressed as an inner
product operation in some high-dimensional feature space G, i.e. K(x,y) = 〈φ(x), φ(y)〉,
where φ is a mapping, φ : F → G and φ(x) is the image of x in the space G. Following
the same idea, Schölkopf considers a generalization of the squared Euclidean distance in the
space G, by using, the so-called kernel trick :

||φ(x) − φ(y)||2 = K(x,x) +K(y,y) − 2K(x,y),

which allows to express this distance only by using the kernel, without explicitly performing
the mapping. Next, Schölkopf argues that a larger class of kernels, namely the conditionally
positive definite kernels, can be used. A symmetric function K : F × F → R which for all
m ∈ N , all vectors c ∈ Rm×1 and all xi ∈ F fulfills:

cT K c ≥ 0, where Kij = K(xi,xj) (19)

is called a positive definite (p.d.) kernel. When the inequality (19) is satisfied for c such
that cT1 = 0, the kernel is called conditionally positive definite (c.p.d.). A relation between
the p.d. and c.p.d. kernels can be established as (‘†’ stands for a conjugate transpose):

K̃ =
1
2

(I − 1w†)K (I − w1†), where w1† = 1 (20)

i.e. K̃ ∈ Rn×n is p.d. if and only if K is c.p.d.
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In the simplest case, ci = 1
n for all i, (20) is then equal to Formula (1), if we read B = K̃

and D(2) = −K. This means that D is an Euclidean distance matrix, if and only if −D(2)

is a c.p.d. kernel.
For K, being a c.p.d. kernel, with K(x,x) = 0 for all x ∈ F , there exists a Hilbert

space H of real-valued functions on F and a mapping φ : F → H, such that

||φ(x) − φ(y)||2 = −K(x,y). (21)

This supports the fact that an Euclidean distance kernel D can be embedded in an Euclidean
space, which is an example of a Hilbert space. This is justified by K = −D(2) being a c.p.d.
kernel. This means that in this paper a particular case of the mapping φ is considered.

More generally, Schölkopf proves that for a real-valued, symmetric kernel K̃, there exists
a linear space H (which might not be a Hilbert space) of real-valued functions on F , endowed
with a symmetric, bilinear form Q(·, ·) and a mapping φ : F → H, such that

K̃(x,y) = Q(φ(x), φ(y)).

K̃ is then a reproducing kernel for a feature space H (Wahba, 1999).
According to the definition, a pseudo-Euclidean space (Greub, 1975)is equipped with a

non-degenerate, indefinite, symmetric bilinear form Q = 〈·, ·〉, seen as a generalized inner
product (see Appendix A.1). This justifies that for a non-Euclidean distance kernel D,
K̃ = B = 1

2 J K J , where K = −D(2) (see Formula 1), is a reproducing kernel for a pseudo-
Euclidean feature space H.

Schölkopf argues also that the c.p.d. kernels K are ‘ a natural choice whenever we are
dealing with a translation invariant problem’, where the SVC or the kernel-PCA are of an
example. From Formula (21) it follows that −K is the squared Euclidean distance in some
Hilbert space.

In summary, Schölkopf provides a new framework for distance based algorithms. The
squared Euclidean distance can now be realized in another feature space by using a suitable
kernel function, which should be conditionally positive definite. Using Formula (20), a c.p.d.
kernel can be transformed into a p.d. kernel, to which, again, the kernel algorithms could be
applied. In this way, Schölkopf’s work provides a mathematical context of our approach of
embedding distances. It gives more information on relations between the c.p.d. kernels and
p.d. kernels, or in other words, it names the class of c.p.d. kernels that can be isometrically
embedded in an Euclidean space. However, Schölkopf starts from a given feature space and
a known dissimilarity measure. We assume that a distance kernel is given implicitly by a
dataset, maybe not even knowing what type of a measure it is or how it was computed. One
of our approaches relies on a linear embedding, which is a particular case of a mapping φ
considered by Schölkopf. While Schölkopf focuses mostly on a mathematical formulations,
we try to study how the methods work in practice.

5. Classification on dissimilarities

The second approach, mentioned in the introduction, addresses the dissimilarity kernel as a
mapping defined by the representation set R = {p1, . . . , pn}. A mapping D(z,R) : F → Rn

is defined as D(z,R) = [d(z, p1) d(z, p2) . . . d(z, pn)]T . Notice that F expresses an original
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Figure 5: A simple illustration of a 2D dissimilarity space. The first and third plots show the
theoretical, artificial data, with a quadratic classifier. The Lp distance D, where
dij = (

∑2
k=1 |xik−yjk|5/2)2/5 was computed for this data. The representation set

consist of two objects, i.e. R = [p1, p2]. The second and the fourth plots present
the dissimilarity spaces D(·, R), where the representative objects are marked by
circles on the first and third plots. Note that if R is well chosen, a linear classifier
on a dissimilarity kernel D(·, R) separates the data very well.

feature space of objects, which might not be given explicitly. The dimensionality of such
a dissimilarity space is controlled by the size of R. Using this formulation, classifiers can
be constructed directly on the dissimilarity kernels, as in the dissimilarity space.

A justification to construct classifiers in dissimilarity space is as follows. The property
that distances should be small for similar objects, i.e. belonging to the same class, and
larger for objects of different classes, gives a possibility for a discrimination and, thereby,
D(·, pi), defined by the distances to the representative pi, can be interpreted as a feature.
If, pi is a characteristic object of a particular class, then the discrimination power of D(·, pi)
can be large. On the other hand, if pi is a non-typical object of its class, then the D(·, pi)
may discriminate poorly.

Defining a well-discriminating dissimilarity measure for a non-trivial recognition prob-
lem is difficult. On the other hand, when a good distance measure is derived, we almost
solved our classification problem. It is still a challenge, especially if such a measure should
preferably incorporate invariances. Building such a measure is equivalent to defining good
features for a traditional classification problem. If a good measure can be found, then the
k-nearest neighbor (k-NN) method is expected to perform well provided that D is metric
or nearly metric. The decision of the k-NN is based on local neighborhoods only and it is,
in general, sensitive to noise. It means that k nearest neighbors found might not include
the best representatives of a class to which an object should be assigned. Moreover, the
k-NN does not work for an asymmetric distance measure or might perform very badly for
dissimilarities which strongly do not obey the triangle inequality. In such cases, a better
generalization can be achieved by a classifier built in a dissimilarity space.

It might be better to include all the distances to determine the good representatives in a
training process. For instance, a linear classifier in a dissimilarity space is a weighted linear
combination of dissimilarities between an object and the representation set R. The weights
are optimized on the training set, and large weights (in magnitude) emphasize objects which
play an essential role during discrimination. By doing this, a more global classifier can be
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built, by which its sensitivity to noisy representative examples is reduced. Our experience
confirms that a linear or quadratic classifier can often generalize better than the k-NN rule,
especially for a small representation set R (see (P ↪ekalska and Duin, 2001)).

A linear classifier built on the dissimilarity kernel D is given by:

f(D(x,R)) =
n∑

j=1

wj d(x, xj) + w0 = wT D(x,R) + w0 (22)

and a linear classifier on the dissimilarity kernel D(2) is expressed as:

f(D(2)(x,R)) =
n∑

j=1

wj d
2(x, xj) + w0 = wT D(2)(x,R) + w0. (23)

There is an essential difference between those two separating hyperplanes. Because of the
linear relation between the square distance matrix D(2) and the matrix of inner products,
the classifier (23) built on D(2) is, in fact, a quadratic classifier in the underlying space. The
linear classifier (22), constructed on dissimilarity kernel D, is, in general, non-quadratic,
nonlinear classifier in the underlying feature space, since there is a nonlinear relation between
the inner products and the kernel D.

5.1 The Fisher Linear Discriminant (FLD)

In general, any traditional classifier operating on feature spaces might be used on dissimi-
larity kernels. Since most of the commonly-used dissimilarity measures are based on sums
of differences between measurements, the choice of the linear Bayesian classifier, assuming
normal densities, is a natural consequence of the central limit theorem applied to them. In
principle, the quadratic Bayesian classifier could be even better, but it requires much more
training objects for estimation of the class covariance matrices. It is known that for 2-class
problems with equally probable classes, this classifier is equivalent to the Fisher linear dis-
criminant (FLD), obtained by maximizing the so-called Fisher criterion, i.e. the ratio of
between-scatter to within-scatter (Duda et al., 2001, Fukunaga, 1990). Therefore, we refer
to this separating hyperplane as to the FLD.

The FLD can be now constructed on D in the form of (22). As a starting point, the
representation set R, consisting of n objects, and the training set T coincide, i.e. T = R.
In such a case, we have to deal with a small sample size classification problem, i.e. with n
vectors D(xi, R) in n dimensions. We have recently proposed to use a reduced representation
set R′ of the size r < n, which is especially of importance when the distances are expensive to
compute (P ↪ekalska and Duin, 2001). The easiest way to choose R′ is by a random selection.
Also r objects can be chosen such that the minimum distance between any of them is
maximized. Another possibility is based on a greedy approach. Starting from a randomly
chosen object, in an iterative procedure, an object is added, which is the most dissimilar to
all objects already chosen. It might be done globally or for each class separately. In case
the most dissimilar objects are chosen they are likely to be outliers or positioned on the
boundary. There exist many other ways to determine a reduced representation set R′, but
they will not be investigated here.
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After R′ has been established, a linear classifier is built on D(T,R′). For a new object,
only distances to the set R′ have to be computed. For a 2-class problem, with the prior
probabilities pω1 and pω2 , the linear Bayesian classifier (Fukunaga, 1990) is constructed on
the dissimilarity kernel D as follows:

f(D(x,R′)) = wT D(x,R′)T + w0,

where w = C−1
W (m1 − m2) and w0 = −1

2 (m1 + m2)T C−1
W (m1 − m2) + log(pω1

pω2
). CW is

the pooled within-class covariance matrix and mi, i = 1, 2, stands for the class mean in the
dissimilarity space D(·, R).

When T and R′ are identical (or R′ = R), CW becomes singular, and the linear classifier
cannot be built. Regularization can be used instead, yielding an approximated covariance
matrix (1 − λ)CW + λ I. A classifier based on the regularized covariance matrix is called
the regularized linear discriminant (RLD).

5.2 Linear programming (LP) machines

With a properly defined objective function and constraints for a dissimilarity kernel, a sep-
arating hyperplane can be obtained by solving a linear programming problem. Assume a
2-class problem, with classes ω1 and ω2 of the cardinality n1 and n2, respectively, and the la-
bels yi = {1,−1}. Let f be the separating hyperplane, built for the complete representation
set R (i.e. R = T ) as given by (22). Then, the simple optimization problem, minimizing
the number of misclassification errors ξj , can be defined as:

Minimize
∑n

i=1 si ξi

s.t. yi f(D(xi, R)) ≥ 1 − ξi, i = 1, . . . , n

ξi ≥ 0

(24)

where si = 1 for all i, or si = 1
ni

depending on a class label yi. It is argued by Bennett
and Mangasarian (1992) that the latter formulation can guarantee a nontrivial solution
even when mean vectors of two classes happen to be the same. Such a problem can be
solved by the standard optimization methods, such as simplex algorithm or interior-point
methods. Since no other constraints are included, the hyperplane is constructed in an n-
dimensional dissimilarity space D(·, R). It is possible, however, to impose a sparse solution,
by minimizing the norm L1 of the weight vector w of the hyperplane (22) i.e. ||wj ||1 =∑n

j=1 |wj |. In order to formulate such a minimization task in terms of a LP problem (i.e.
to eliminate the absolute value |wj | from the objective function), wj is expressed by non-
negative variables αj and βj as wj = αj − βj . The minimization problem becomes thereby:

Minimize
∑n

i=1(αi + βi) + C
∑n

i=1 ξi

s.t. yi f(D(xi, R)) ≥ 1 − ξi, i = 1, . . . , n

αi, βi, ξi ≥ 0

(25)

A more flexible formulation of a classification problem has been proposed by (Graepel et al.,
1999b). Now, the problem is to minimize ||w||1−µρ, which basically means that the margin
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ρ becomes a variable of the optimization problem. Note that ρ = 1 for the formulation (25).
By imposing ||w||1 to be constant, the modified version of (25) can be introduced as:

Minimize 1
n

∑n
i=1 ξi − µρ

s.t.
∑n

i=1(αi + βi) = 1

yi f(D(xi, R)) ≥ 1 − ξi, i = 1, . . . , n

ξi, αi, βi, ρ ≥ 0

(26)

In this approach, a sparse solution w is obtained, which means that important objects are
selected (by nonzero weights) from the original representation set R (R = T ), resulting in a
reduced set R′. This solution is a similar adaptation of the SVC for feature representations
defined with the LP machines (Smola et al., 1999, Schölkopf et al., 2000). It is of essential
importance since for novel objects only dissimilarities to the objects from R′ have to be
computed.

5.3 Support vector classifier

The support vector classifier can be built on the dissimilarity kernel. Recall, that for a
chosen representation set R = {p1, p2, . . . , pn}, a dissimilarity mapping D(z,R) : F → Rn

is defined as D(z,R) = [d(z, p1) d(z, p2) . . . d(z, pn)]T . Since the linear decision function
in such a space is given by (22), the support vector kernel K consists of the elements:

Kij = 〈D(xi, R), D(xj , R)〉,
where 〈·, ·〉 stands here for the Euclidean inner product. Therefore, in the formulation of
the linear support vector classifier (see Section 4.3), the matrix K is given by K = DDT ,
which is positive definite and can be used for the construction of the SVC. In such a case,
however, a sparse solution, provided by the method, is obtained in the whole dissimilarity
space D(·, R). It means that for evaluation of new objects, still the dissimilarities to all
training objects should be computed, because our SVC is in the form of (22).

6. Experiments with the NIST digits

All experiments in this section are based on a 2-class problem, i.e. the recognition of digits
3 and 8 from a NIST database (Wilson and Garris, 1992). In total, the data consist of
2000, equally sampled, 128× 128 binary images. Since no features are given to describe the
images, they are represented by dissimilarity kernels.

The aim of this paper is to illustrate the potentials of dissimilarity kernels as well as
studying the behavior of simple classifiers constructed by using such kernels. Therefore, we
are not going to use perfect distance kernels (constructed for the specific problem such that
the 1-NN gives a perfect result). Instead, our goal is to investigate what can be done in other
cases. Of course, the ultimate goal is to build well-discriminating dissimilarities, however,
it might be not possible as it is not always possible to find well-discriminating features for
traditional classification tasks. The first series of experiments focuses on the comparison
between two distance kernel approaches to classification: via the linear embedding or via
dissimilarity spaces.
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(a) No degradation; P = 0 (b) P = 0.2 (c) P = 0.6

Figure 6: Degradation of images of handwritten digits 3 and 8. Subplot a shows exam-
ples of 16×16 binary digits used in our experiments. Images of degraded digits
are presented in subplots b and c. The level of degradation is governed by the
probability P that an individual pixel is set to background.

Two different dissimilarity measures are considered here: Euclidean on blurred images
and modified-Hausdorff (Dubuisson and Jain, 1994) on digit contours. They were chosen
to illustrate the behavior of our kernel approaches with respect to the distance properties.
While the first distance is a metric, the second one is not, as it violates the triangle inequality.

The modified-Hausdorff distance, applied on digit contours, is used here, since it is
found useful for template matching purposes (Dubuisson and Jain, 1994). It measures the
difference between two sets A = {a1, . . . , ag} and B = {b1, . . . , bh} and is defined as:

DMH(A,B) = max{hM (A,B), hM (B,A)} and hM (A,B) =
1
g

∑
a∈A

min
b∈B

||a− b||.

To calculate such a distance between two images, first the digits are detected and then the
dissimilarity is computed with respect to the boxes surrounding them, which means that it
is shift-invariant.

To find the second dissimilarity measure, images are first blurred with the Gaussian
function with the standard deviation of 8 pixels (which is similar to the distance transform
of an image). The motivation for such preprocessing is to avoid sharp edges of the digits.
We, thus, make our technique robust to small tilts or variable thickness. Then, the Euclidean
distance is computed between the blurred versions.

Experiments are performed 20 times and the results are averaged. In each single ex-
periment, the data is randomly split into a training set and a testing set. The testing set
consists always of 1000 samples (i.e. 500 per class). A number of different training sets are
chosen, with the sizes varying from 10 to 250 objects per class. Our goal is to investigate
three different directions: the behavior of the (generalized) nearest mean classifier, the be-
havior of the Fisher linear discriminant (Fukunaga, 1990) and the use of representation sets
for classifiers constructed directly on the dissimilarity kernels.
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Table 1: Dissimilarity coefficients for the binary images r and s.

Similarity measure Metric Euclidean Similarity Dissimilarity
Jaccard Yes Yes Srs =

a

a+ b+ c
Drs =

√
1 − Srs

Simple matching Yes No Srs =
a+ d

a+ b+ c+ d
Drs = 1 − Srs

Yule No No Srs =
ad− bc

ad+ bc
Drs = 1 − Srs

In the second type of experiments, our goal is to study the usefulness of dissimilarity
kernels for data with missing values. We think that dissimilarity kernels are designed for
tackling such types of problems. In order to study the performance of classifiers as a
function of the number of missing values, we simulated such data by randomly corrupting
the images of 3 and 8. The level of degradation is governed by a probability P that a
particular image pixel is set to the background. We used four different degradation levels in
our experiments, i.e. P = {0.0, 0.2, 0.4, 0.6}. Although this type of a procedure can be seen
as introducing extra noise, it still simulates the missing values problem, since we assumed
that the corrupted pixels had originally unknown values, and because the images are binary,
the values can be just assigned to the background pixels. To simplify our experiment (to
make the computation of distances less expensive), we used a resampled dataset, for which
the original binary images were rescaled to a 16×16 raster; see Figure 6 for an illustration.

The usual way to compute dissimilarities on the binary data object s
1 0

object r
1 a b
0 c d

Figure 7: Similarity for
binary images.

is to construct a similarity measure first, and then, transform it
to a corresponding distance. Similarity measures for binary ob-
jects s and r are often based on variables a, b, c and d reflecting
the number of elementary matches between objects (see Fig-
ure 7). For instance, the variable a reflects the number of cases
where both objects scored 1. For our experiments, three mea-
sures were chosen, yielding different properties: Jaccard, simple
matching and Yule similarities (Cox and Cox, 1995, Gower, 1986); see summary in Table 1.
Jaccard measure is of interest, because it is an overlap ratio excluding all non-occurrences,
and, thereby, disregarding the information on matches between background pixels. On the
contrary, the simple matching measure, describing the proportion of matches to the total
number of instances (pixels), might not be useful in our case. This comes from the fact
that it counts matches between the background pixels, where some of them are considered
as unknown. The Yule similarity is of different type, i.e. a cross-product ratio, measuring
association between pixels as a predictability of one, given another.

Our aim is to compare the behavior of the above presented methods on these dissim-
ilarities with respect to different degradation. For each level of degradation, complete
2000 × 2000 distance matrices were computed. We assume that both, the training and the
testing data, are degraded in a similar way. A training set of a fixed size of 250 samples
per class was randomly chosen. All the classifiers are tested on the independent testing set
containing 500 samples per class. The testing procedure is repeated again 20 times and the
results are averaged.
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(a) Nearest mean classifiers constructed in the embedded spaces
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(b) The FLD and the SVC functions built in the embedded spaces
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(c) Classifiers built on dissimilarity kernels, using the notion of the representation set

Figure 8: Comparison of different classification methods with blurred Euclidean (left col-
umn) and modified-Hausdorff (right column) dissimilarity kernels.
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6.1 Results and discussion on kernel approaches to dissimilarities

For both dissimilarity kernels, modified-Hausdorff and blurred Euclidean, two experimental
directions are considered. In the first direction, linear classifiers are built in the embedded
space, while in the second one, linear classifiers were constructed in dissimilarity spaces,
i.e. built directly on dissimilarity kernels. The results are presented with reference to the
1-NN rule, as the one, commonly applied to dissimilarity representations (for both distance
kernels, the 1-NN rule is mostly the best among k-NN rules for larger k).

Concerning embedded spaces, three decision functions were used: the nearest mean clas-
sifier, the Fisher linear discriminant and the support vector classifier. They are applied in
an Euclidean space, based on only positive eigenvalues, in a pseudo-Euclidean space and in
an Euclidean space, obtained from the embedding of the ‘corrected’ dissimilarity kernel; see
Formula (5). Note that the last classifier makes only sense for a pseudo-Euclidean space.
For Euclidean dissimilarity measures, Euclidean and pseudo-Euclidean spaces coincide. Be-
cause, in such a case, both embeddings are the same, results in the pseudo-Euclidean case
are not reported.

Figure 8a presents the performance of all nearest mean classifiers with reference to the
1-NN rule. For both distance measures, it can be observed that such classifiers are not
complex enough for this problem to give a good performance. They perform much worse
than the 1-NN rule, especially, in the case of the modified-Hausdorff kernel. This suggests
that for this dissimilarity, the classes revealed in an embedded space are not of a Gaussian
shape. Concerning the pseudo-Euclidean space, the GNMC reaches a higher accuracy than
the NMC, however, the NMC built in an Euclidean space, based on only positive eigenvalues
behaves nearly the same as the GNMC. This indicates that the ‘negative’ directions in a
pseudo-Euclidean space are not of much significance. An interesting observation is also
that the nearest mean classifiers do not nearly improve their accuracy with the increase of
training size larger than 50 objects per class. This indicates that this number of objects
represents well the classes in the underlying feature space.
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Figure 9: The eigenvalues of the matrix B of inner products for the blurred Euclidean (left)
and modified-Hausdorff (right) dissimilarity kernels of the size 200 × 200.

Next, we studied the behavior of the FLD and the SVC constructed in the embedded
spaces. Here, the FLD and SVC are built on the reduced representations, as described in
Section 3.4. Such a reduced representation can be achieved as the solution of the PCA
projection. The dimensionality was assigned to a value of 10% or 25% of the training size
for the blurred Euclidean and the modified-Hausdorff distances, respectively. Such choices
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were motivated by visual exploration of the eigenvalues of the inner product matrix B and
selecting the number of values significantly large in magnitude (see Formulas (1)–(3)) for
the embedding purpose and compare Figure 9. The results are presented in Figure 8b, for
which the following conclusions can be drawn:

• For the blurred Euclidean dissimilarity kernel, both the SVC and the FLD, constructed
in the embedded space, outperform the 1-NN rule. The good performance, especially
of the FLD, indicates a Gaussian description of the classes (although overlapping) as
revealed by original distances.

• For the modified-Hausdorff dissimilarity kernel, a linear classifier in the embedded
space seems not to be complex enough, in a similar way as the NMC. The 1-NN
method mostly outperforms all other decision rules considered. Note also that for the
training size larger than 100 objects, the 1-NN rule here gives lower errors than the
1-NN rule on blurred Euclidean kernel.

Concerning the behavior of different variants of the FLD and the SVC for the modified-
Hausdorff distances, the pseudo-Euclidean embedding allows for reaching a higher accuracy
than either an Euclidean part described only by the positive eigenvalues of B (see Formu-
las 1–3) or an Euclidean embedding of the enlarged dissimilarity kernel (see Formula 5).
This still shows that using the ’negative’ directions makes sense. For the embedding into
Euclidean spaces, the FLD performs worse than the SVC, but in a pseudo-Euclidean space,
they behave similarly.

In these experiments, the results depended on the training size while the dimensionality
was fixed. An additional experiment was also performed, where the training size was fixed
to 100 objects per class, and the constructed dimensionality was varied. As before, the test
size was set to 500 samples per class. The goal is to illustrate the performance of the FLD
as a function of retrieved dimensionality. Analyzing Figure 10, the following observations
can be made:

• For the blurred Euclidean dissimilarity kernel, the FLD in an embedded (Euclidean)
space outperforms significantly the FLD built on the dissimilarity kernel D for dimen-
sionalities smaller than 50. The best result is reached for the dimensionality in the
range 20 − 30. For larger dimensionalities, the error increases. Judging from Figure
9, left, we observe that there are at most 20 essential eigenvalues, since the remaining
ones seem not to have a significant contribution for the FLD in the embedded space.
The classifier behavior for those two error curves indicates that the classes are again
linearly separable.

• For the modified-Hausdorff dissimilarity kernel, the FLD in an embedded pseudo-
Euclidean space performs mostly better than the FLD in an embedded Euclidean
space. Here, however, the FLD on distance kernel D reaches the highest accuracy.
This confirms that the classes can be separated best in a nonlinear way, since a linear
classifier built on the dissimilarity kernel can be interpreted as a nonlinear decision
function in an underlying feature space.

In the second direction of our experiments, we focussed on building linear classifiers
in the dissimilarity space (i.e. directly on the kernel D) and on the importance of the
representation set R. Until now, R was identical to the training set T . In such a case,
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Figure 10: The performance of the FLD for blurred Euclidean (left) and modified-Hausdorff
(right) dissimilarity kernels as a function of retrieved dimensionality for the fixed
training size of 100 objects per class.

distances to all representation (training) objects have to be computed for an evaluation of
new objects. Therefore, the reduction of the size of R is essential from the computational
point of view.

In Sections 5.1 and 5.2, two different approaches were proposed. The first possibility is
to reduce R by selecting objects according to a pre-specified criterion. Here, for simplicity,
the random selection of objects is used, since we found that this often gives reasonable
results (Duin et al., 1999, P ↪ekalska and Duin, 2001). In the experiments, the FLD is built
on the kernel D(T,R), where R is always randomly reduced to 25% of the training size. We
also studied the RLD with the fixed regularization parameter of 0.01, constructed on the
complete dissimilarity kernel D(R,R).

Another possibility is to enforce a sparse solution in a dissimilarity space in a way similar
to solving the feature selection problem. This can be achieved, e.g. via linear programming
schema (Bradley et al., 1998) and the classification problem can be formulated in terms of
the sparse LP, as given by (26). For comparison, also an LP non-sparse solution was found,
as described by (24). As a reference to all methods used, the 1-NN rule is also given.

Experimental results are presented in the Figure 8c. In case of the blurred Euclidean
distances, the reduced representation sets lead to lower accuracy in comparison to the
classifiers based on identical T and R. The loss in accuracy is on average 1.4%, however
it is gained by using only 25% of the training samples to build R for the FLD, and by
≈ 15%− 20% of the training samples in case of the LP formulation. The representation set
R is chosen in a different manner for these classifiers. In the case of the FLD, R is arbitrarily
chosen beforehand. For the LP, it is, on the contrary, provided as a sparse solution of the
corresponding optimization task. The classification error for this method is not provided in
the case of 250 training objects in Figure 8c since the minimization problem was infeasible
and the solution could not be found.

Most linear classifiers reach higher accuracy than the 1-NN rule (only the FLD with a
randomly chosen R shows somewhat worse performance), thereby, it confirms that building
linear classifiers on dissimilarity kernels may be beneficial.
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For the modified-Hausdorff distances, most linear classifiers perform worse than in case
of the blurred distances. The worst results are reported for the FLD based on the reduced,
randomly selected R. The 1-NN rule is the best for training sizes larger than 100 objects
per class. For smaller training sizes, it is outperformed, especially by the RLD and the
non-sparse LP.

In summary, from this series of experiments, we can conclude that the blurred Eu-
clidean dissimilarity kernel describes more compact and bounded classes than the modified-
Hausdorff kernel. Also, most of the linear classifiers, both in the underlying space or on the
dissimilarity kernel, perform worse in the latter case. This is probably caused by the fact,
that the modified-Hausdorff distance, as applied here, does not offer rotation invariance,
needed for this problem. Blurred Euclidean distance is, on the other hand, partially robust
against tilting due to the initial blurring step. The 1-NN method for larger training sizes
is of the best classifiers for the modified-Hausdorff case. Only the RLD and the non-sparse
LP perform about the same, and for smaller training sizes, outperform the 1-NN rule.

6.2 Results and discussion on kernel approaches to dissimilarities for missing
values problem

In the second track of our experiments, we studied the applicability of dissimilarity kernels to
data with missing values. In order to keep a similar line of reasoning, as in the previous part,
we simulated the missing values problem by setting some pixel values to the background.
Both the training and testing sets have now fixed sizes and the varying quantity is the level
of image degradation which was described in Section 6.

Figure 11 presents the generalization error rate as a function of increasing data degra-
dation for Jaccard and Yule measures and three discussed groups of kernel methods: the
variants of the NMC, the FLD and methods based on the representation set R. Since the
results of the Yule measure and the simple matching dissimilarities are similar, we have cho-
sen for a presentation the Yule distance kernel as the distance which is both non-Euclidean
and non-metric. As an indication, the most distinct results are presented in Figure 12. The
following conclusions can be made in overall:

• The nearest mean classifiers are surprisingly robust against the increase of data dete-
rioration, see Figure 11a.

• The FLD functions are less robust to data degradation, but they achieve higher ac-
curacy than any of the NMC.

• Classifiers constructed directly on the dissimilarity kernel D, as observed in Figure 11c
and 12a, generally outperform the 1-NN rule. They are also more robust against the
degradation of images. Comparing all results, the 1-NN rule deteriorates the most.

• Surprisingly, the performance of classifiers does not deteriorate much for increasing
image degradation. In the best cases, the error between 8%− 10% is achieved for the
degradation of P = 0.6 (see Figure 11 and Figure 6 for reference). It suggests that
simple dissimilarity kernels based on binary images are highly robust against missing
information.

• Besides the NMC variants, the accuracy of classifiers on simple binary dissimilarity
kernels, applied to non-degenerated data (P = 0), are often 1.5− 2 times higher than
of the same classifiers on more complicated dissimilarity measures such as the blurred

199



P ↪ekalska, Pacĺık and Duin
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(a) Nearest mean classifiers constructed in the embedded spaces
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(b) The FLD built in the embedded spaces
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(c) Classifiers built on dissimilarity kernels, using the notion of the representation set

Figure 11: Comparison of different classification methods with the Jaccard (left column)
and Yule (right column) dissimilarity kernels. The training size was fixed to 100
objects per class. 200
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Figure 12: Comparison of methods using the notion of the representation set on the simple
matching and Yule dissimilarities.

Euclidean and modified-Hausdorff (compare Figures 11–12 for the training size of 100
objects with Figure 8). One of the reasons is that the binary distances are applied on
the rescaled images, where the digits are more ‘aligned’ than in case of the original
128 × 128 binary images.

• Surprisingly, for the Yule dissimilarity kernel, the performance of the sparse LP is
better than for the non-sparse LP, when the level of degradation is higher (see Figure
11c, right).

• For the Jaccard dissimilarity kernel, both the RLD and the LP classifiers applied to
the degraded images at the level P = 0.4 perform still comparably to the best results
on the blurred Euclidean or modified Hausdorff dissimilarities.

• On average, Jaccard dissimilarity kernel allows for a better separability of classes than
the Yule distance (being observed in Figure 11).

• In case of the Jaccard distance measure, two methods give identical solutions: the
RLD and the LP formulation (both with R = T ). These methods also achieve the best
overall classification results compared to all other classifiers and distance measures we
have investigated (error 1.7% for not degraded Jaccard distance; compare Figure 11
for P = 0 with Figure 8 for the training size of 100 objects).

It is interesting, that a simple distance measure (like Jaccard), operating on binary
images of digits, outperforms the modified-Hausdorff dissimilarity, computed on the con-
tours. A possible explanation is that in the latter case, the modified-Hausdorff was not
implemented to be robust against tilting or stretching, while in the first case, by rescaling
images to a lower raster, the digits became aligned. The binary dissimilarity measures are
also considerably robust against the data degradation. For example, both the RLD and the
LP classifiers, based on images with a high level of degradation, achieve the performance
comparable to the best classifiers built on intact blurred Euclidean or modified-Hausdorff
dissimilarities.
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In summary, we have to conclude that the presented dissimilarity measures (especially
the Jaccard one) are in general robust against degradation. Among all classifiers considered,
the 1-NN rule shows the highest sensitivity to data degradation, which is to be expected
due to its sensitivity to noisy examples. Most classifiers outperform the 1-NN rule, even
the variants of the NMC for p = 0.6 and the FLD based on a random R for Yule and
simple matching measures. This again proves our point, that often more can be achieved
by constructing more complex classifiers making use of dissimilarity kernels than by the
1-NN rule. The most robust are the variants of the NMC, especially the GNMC and the
NMC in an embedded Euclidean space determined by the positive eigenvalues, however,
the overall performance is not the highest. The best results are achieved by the RLD and
the LP.

7. Experiments with the Kimia dataset

In this experiment, we want to show how the k-NN result, based on noisy prototypes, can
be outperformed by other types of more advanced classifiers constructed via embeddings or
in the dissimilarity spaces. For this purpose, we use the Kimia dataset (Sebastian et al.,
2001) with binary shapes. Sebastian et al. (2001) proposed to compare shapes by computing
an edit-distance between their medial axes. In this type of a distance, all the efforts are
put into its construction. They report that such a dissimilarity measure allows for a very
good performance of the k-NN. Here, we used the same dataset but with a ‘less-perfect’
dissimilarity measure, i.e. the modified-Hausdorff distance. As studied here, it is not robust
against rotation.

Figure 13: Group A, left, and group B, right, of the binary images, used in our experiments.

The Kimia dataset consists of 18 categories, where each category contains 12 binary
images of shapes. For our experiment, to make it both illustrative and feasible, we created
two groups of images, each of 6 categories, as presented in Figure 13. Notice that the
images are of different sizes, which supports our idea of not starting from feature space
representations. Since the classes have a small number of objects, the classification is done
by using the leave-one-out procedure. It means that the dissimilarity measure is built each
time on the representation set consisting of 71 objects, and one object, each time different,
is used for testing. The procedure is repeated 72 times and the results are averaged.
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Table 2: The leave-one-out results for two groups of binary images. The average number of
support vectors or the size of the representation set R is given in parenthesis; when
not given, the complete dissimilarity kernel is used. Note that a misclassification
of one object gives an error of 1.39%. This means that the error of 6.94% or 12.5%
stands for 5 or 9 wrongly assigned objects, respectively.

Classifier Group A Group B
NMC; Eucl. emb. 18.06 12.50
GNMC 16.67 15.28
NMC; ps-Eucl. emb. 20.83 16.67
NMC; Eucl. emb; D(2) + c 27.78 12.50
FLD; Eucl. emb. 18.06 18.06
FLD; ps-Eucl. emb. 13.89 8.33
SVC; Eucl. emb. 12.50 (46) 16.67 (57)
SVC; ps-Eucl. emb. 11.11 (54) 9.72 (45)
FLD on D; R by Dmax crit 6.94 (18) 8.33 (18)
FLD on D; random R 12.50 (32) 6.94 (18)
RLD; R = T 8.33 6.94
LP; sparse, choosing R 6.94 (55) 5.56 (44)
LP; R = T 11.11 12.50
SVC on D; R = T 8.33 (42) 5.56 (32)
1-NN 12.50 6.94
3-NN 13.89 11.11
5-NN 16.67 11.11
7-NN 16.67 16.67

The results of our classifiers are presented in Table 2. In case of the support vector
classifiers, a number of different values for the parameters C or µ (see Formulas 16 and 26)
have been considered and the best results are reported.

Group A is an example of a problem, where the k-NN error is relatively high, i.e. the
smallest 1-NN error equals 12.5%, which means that 9 objects are wrongly classified. More
advanced classifiers can, however, outperform the k-NN method. The best result of 6.94%
is given here by the FLD constructed on the dissimilarity kernel with the representation set
R of 18 objects, reduced by randomly initialized Dmax criterion operating on a dissimilarity
kernel. The criterion looks for such k (here k = 18) objects that the distances between
them are maximized. The same performance of 6.94% is achieved by the LP classifier with
the optimized R of 55 objects. Good results are also provided by the RLD and the SVC
built in the dissimilarity space.

Group B is an example, where the performance of the 1-NN rule is significantly better
than in the previous case, but it deteriorates much when more neighbors are taken into
account. In such a case, when the 1-NN generalizes much better than the k-NN for larger
k, other type of classifiers may have difficulties to outperform this method. Still, some
improvement can be gained, which is reached here by the SVC and the sparse formulation
of the LP classifier in the dissimilarity space. Notice, however, that many classifiers (besides
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the NMCs) perform better than 3-NN, 5-NN, or 7-NN, which proves our point, that they
profit from a larger number of objects and are able to reduce the noise in local (of a few
neighbors) neighborhoods.

For both groups, the linear classifiers built in the embedded spaces perform much worse
than the linear classifiers on the dissimilarity kernel. This, however, does not exclude yet
embedded spaces as being not useful in this case; it shows only that a linear classifier might
be not the best solution (remember that a linear classifier on the dissimilarity kernel is a
nonlinear classifier in the underlying space), while e.g. polynomial one could be.

Studying the behavior of classifiers, a few important conclusions can be made:
• The nearest mean classifiers generalize relatively poorly, which suggest that the classes

are rather elongated. This can be also concluded, observing the images in Figure 13,
where some classes include rotated variants of the shapes. Since our dissimilarity is
not robust against rotation, those shapes differ significantly within one class.

• The FLD and the SVC perform better in a pseudo-Euclidean space than in an Eu-
clidean space, which suggests that employing this space is profitable.

• The LP classifier with a sparse formulation generalizes well. However, since it is
trained always one class against all other classes, in the end, the optimized represen-
tation set becomes large. The FLD, with the reduced representation set, gives also
good results, and it is based on a much smaller number of objects, which decreases
the computational load for evaluation of novel objects.

In summary, for imperfect dissimilarity measures, the k-NN method can be outperformed
by more sophisticated classifiers, taking into account a number of representative objects,
thus becoming more global in their decisions.

8. Conclusions

Objects are usually described by features. In this paper, an alternative approach is dis-
cussed, where objects are represented by their mutual proximities. This allows us to extend
the notion of a kernel as a general proximity relation. In this paper, dissimilarity kernels
are discussed, as started also by Schölkopf (2000). Such a framework is advantageous in
situations, where the feature representation is not straightforward, for example when recog-
nizing objects by their contours, for highly-dimensional data such as hyperspectral images
or when dealing with missing information. Two different ways for building classifiers using
dissimilarity kernels are discussed. In the first approach, dissimilarities are isometrically
embedded in a (pseudo-)Euclidean space and the classification is performed there. In the
second approach, classifiers are built directly on distance kernels.

We conducted a number of experiments for both approaches. This is illustrated by a 2-
class digit recognition problem, for which various dissimilarity measures were investigated,
and two 6-class shape classification problems based on the modified-Hausdorff distance.
The experiments include also randomly distorted digit images, simulating the problem of
missing values.

If a dissimilarity kernel separates the classes well, the k-NN method is supposed to
achieve a good performance. However, in this paper, we focus on imperfect dissimilarity
measures. Our main point is to show that in such cases, other, more advanced classifiers
will usually outperform the k-NN rule.
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An example when the performance of the 1-NN rule may be improved by other tech-
niques is the blurred Euclidean distance computed on the NIST digits. Nearly all presented
methods offer a higher accuracy. The best classifiers are a non-sparse LP formulation on
a dissimilarity kernel and the FLD in the embedded space. Two methods do not give sat-
isfactory results. These are the nearest mean classifiers as they do not fit the structure of
the data well and the FLD classifier based on randomly chosen R. We can conclude that
there is still space to improve the performance of the 1-NN rule by more global approaches,
when the distance measure is not sophisticated enough for the given problem.

Another example is the modified-Hausdorff distance. The measure is built specifically for
template matching purposes and it separates both digit classes well. It is almost impossible
to improve the performance of the 1-NN method any further by other, more advanced
approaches. Only for smaller training sizes, the accuracy of the non-sparse LP and the
RLD is higher. Also, the absolute performance of the 1-NN rule is better for the modified-
Hausdorff kernel than for the blurred Euclidean kernel for larger training sets. It is, however,
interesting that, the non-sparse LP classifier built on a blurred Euclidean kernel outperforms
the 1-NN method on the modified-Hausdorff . This shows that a more advanced classifier,
constructed on a simpler dissimilarity representation, may be better than the simple 1-NN
rule applied on a more sophisticated measure.

This can best be illustrated by analyzing the digit recognition problem on degradated
data. The performance of the 1-NN rule seriously deteriorates with the increase of data
degradation. At the same time, dissimilarities, based on less information, become simpler.
In such a case, more global techniques work better than the 1-NN method. The simpler the
dissimilarity, the larger the potential for improvement of the global classifiers. Even nearest
mean classifiers in the embedded space or the FLD based on randomly chosen R provide
better results for high data degradation.

Our experiments with the Kimia dataset confirms that in cases where the 1-NN rule
gives a high error, other, more complex techniques, built on dissimilarity kernels, achieve
better results.

Concerning pseudo-Euclidean spaces, we confirm the conclusion of Goldfarb (1985) that
reduction of dimensionality is essential to diminish the influence of noise. The use of a
pseudo-Euclidean space is often more advantageous than addressing the problem in an
Euclidean space, which can be observed for both the digit and the Kimia datasets.

Building classifiers in an embedded space might be preferable to constructing them on a
dissimilarity kernel, when a training set, consisting of representative objects, is sufficiently
large and the retrieved dimensionality is small. This assures then a good generalization for
novel objects, which can be observed in case of the blurred Euclidean distances, where the
classes are well linearly separable for at least 100 training objects.

Linear classifiers operating on complete dissimilarity kernels often achieve a higher ac-
curacy than methods with the reduced representation sets. The latter offer, however, sparse
solutions, advantageous from the computational point of view. They can also achieve very
good results, like in the case of the Kimia dataset. Linear classifiers, like the FLD or the
SVC, generalize well in dissimilarity spaces, and often provide a better performance than
the 1-NN rule.
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In summary, our main conclusion is that for dissimilarities, which do not separate the
classes well enough, the 1-NN, or, in general, the k-NN method can be outperformed by
more advanced classifiers built either in an embedded space or on distance kernels.
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Appendix A. On pseudo-Euclidean spaces

This appendix is meant to provide additional information and make the picture more com-
plete with respect to the embedding problem and pseudo-Euclidean spaces. Most of the
derivations presented here are based on the following references (Borg and Groenen, 1997,
Greub, 1975, Goldfarb, 1984, 1985, Gower, 1986, 1982).

A.1 A pseudo-Euclidean space

A pseudo-Euclidean space E is a real linear vector space equipped with a non-degenerate,
indefinite, symmetric bilinear function 〈·, ·〉, called inner product (Greub, 1975). Such
a space can be interpreted as composed from two Euclidean subspaces, i.e. E+ of the
dimensionality p and E− of the dimensionality q such that E = E+ ⊕ E− (E+ ∩ E−) = {0}
and the inner product is positive definite on E+ and negative definite on E−. E is therefore
characterized by the signature (p, q) (Goldfarb, 1984). A basis {e1, e2, . . . ,ep+q} is called
orthonormal in a pseudo-Euclidean space if

〈ei, ei〉 =

{
+1, i = 1, . . . , p
−1, i = p+ 1, . . . , q

and 〈ei, ej〉 = 0 for i �= j. It is known that such a basis can always be constructed (Greub,
1975). Therefore, if the orthonormal basis is chosen, the inner product between two vectors
x and y is given by:

〈x,y〉 =
p∑

i=1

xiyi −
p+q∑

j=p+1

xjyj = xT M y, M =
[
Ip×p 0

0 −Iq×q

]
(27)

Note that the ‘norm’ of a non-zero vector x in a pseudo-Euclidean space is defined as:

||x||2 = 〈x,x〉 = xT M x,

which can be positive, negative or zero. In the latter case, a non-zero vector x is called a
light vector (Greub, 1975). The squared distance can be then defined in a similar way as
in an Euclidean space using the notion of inner product:

d2(x,y) = ||x − y||2 = 〈x − y, x − y〉 = (x − y)T M (x − y) (28)
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which can be, in general, positive, negative or zero. Note that, even when x and y are
different, their distance might still equal to zero.

Alternatively, a pseudo-Euclidean space can be expressed as: E = R(p,q) = Rp × iRq,
where i =

√−1, which justifies again Formulas (27) and (28) and allows one to express the
square distance as:

d2(x,y) = d2Rp(x,y) − d2Rq(x,y),

where the distances on the right side are Euclidean. Note also, that an Euclidean space
Rp = R(p,0), is a special case of the pseudo-Euclidean space.

A.2 Relation between distances and inner products

Assume n vectors given in an Euclidean space: {x1,x2, . . . ,xn}. Based on the definition
of the Euclidean distance and the properties of the inner product (Greub, 1975), one may
write:

d2(xi,xj) = 〈xi − xj ,xi − xj〉
= 〈xi,xi〉 + 〈xj ,xj〉 − 2〈xi,xj〉
= d2(xi,0) + d2(xj ,0) − 2 〈xi,xj〉,

(29)

where 0 is the origin in this space. Based on the above dependence, the inner product
〈xi,xj〉 can be then expressed as:

〈xi,xj〉 = −1
2

[
d2(xi,xj) − d2(xi,0) − d2(xj ,0)

]
. (30)

Making use of well known properties of the inner products and Formula (30), the distance
d2(xi,x) can be expressed only in terms of distances as follows (Goldfarb, 1985):

d2(xi,x) = ||xi − x||2 = 〈xi − x, xi − x〉
= 〈xi, xi〉 + 〈x, x〉 − 2 〈xi, x〉
= d2(xi, 0) + 1

n2

∑n
p=1

∑n
s=1〈xp, xs〉 − 2

n

∑n
s=1〈xi, xs〉

= d2(xi, 0) + 1
2n2

∑n
p,s=1

[
d2(xp,0) + d2(xs,0) − d2(xp, xs)

]
− 1

n

∑n
s=1

[
d2(xi, 0) + d2(xs, 0) − d2(xi, xs)

]
= 1

n

∑n
s=1 d

2(xi, xs) − 1
2n2

∑n
p,s=1 d

2(xp, xs)

= d2i . − 1
2d

2
..,

(31)

where d2i . stands for the mean computed on each row of the kernel D(2) and d2.. is the overall
mean value.

Without loss of generality, let us further assume that the mean vector coincides with
the origin, i.e. x = 0. It implies that d2(xi,0) = d2(xi,x), which can, therefore, be used in
Formula (30) and by plugging (31), one obtains:

〈xi,xj〉 = −1
2


d2(xi,xj) − 1

n

n∑
s=1

d2(xi,xs) − 1
n

n∑
s=1

d2(xs,xj) +
1
n2

n∑
p,s=1

d2(xp,xs)



(32)
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Let X ∈ Rn×k be a representation of all vectors and let B be the matrix of inner products,
i.e. B = XXT , such that bij = 〈xi,xj〉. Then, Formula (32) becomes:

bij = −1
2

(d2ij − d2i . − d2. j + d2..)

Let D(2) be an n×n square Euclidean distance matrix. Substituting d2i . = 1
n D

(2)(xi, ·)1T ,
d2. j = 1

n D
(2)(·,xj)T 1T and d2.. = 1

n2 1D(2) 1T , and after some mathematical operations, B
is found to be:

B = −1
2
J D(2) J, where J = I − 1

n
1T1 (33)

Using Formula (29), alternatively, D(2) can be expressed as:

D(2) = b1T + 1 bT − 2B, (34)

where b is a vector of the diagonal elements of the matrix B.
Note that precisely the same reasoning follows for a pseudo-Euclidean space R(p,q), since

the relation between square distances and inner products in both spaces is the same. There-
fore, Formula (32) holds for a pseudo-Euclidean space with 〈·, ·〉 being the inner product
defined by (27). As a consequence, B, the matrix of inner products, should now be presented
with respect to the pseudo-Euclidean space, i.e.:

B = X

[
M

0

]
XT .

This leads to the fact that Formulas (33) and (34) remain true for a pseudo-Euclidean space,
as well.

A.3 Adding new points to an embedded space

Let X ∈ Rn×k be a configuration found in a (pseudo-)Euclidean space (for a pseudo-
Euclidean space k = p+ q) and D

(2)
n ∈ Rs×n be the square distance matrix between s

new objects v1, v2, . . . , vs and n objects of the representation set R. Let yi be the vector
representation of a novel object projected onto space Rk. It follows from Formula (30) that
the inner product between a new vector and the original points is given by:

〈yi,xj〉 = −1
2

[
d2n(yi,xj) − d2n(yi,0) − d2(xj ,0)

]
.

Making use of Formula (31) and the fact that the centroid coincides with the origin, the
inner product becomes:

〈yi,xj〉 = −1
2

[
d2n(yi,xj) − 1

n

∑n
s=1 d

2
n(yi,xs) − 1

n

∑n
s=1 d

2(xs,xj) + 1
n2

∑n
p,s=1 d

2(xp,xs)
]

= −1
2 (d2n(yi,xj) − (d2n)i . − d2. j + d2.. ),

(35)
where (d2n)i . stands for the mean computed on each row of the dissimilarity matrix D

(2)
n .

Let Bn ∈ Rs×n be the matrix of inner products between s new vectors and n original ones.
Using elementary matrix operations, (35) can be rewritten as:

Bn = −1
2

(D(2)
n J − U D(2) J),
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where J = I − 1
n 1

T1 and U = 1
n 1

T1 ∈ Rs×n. The configuration Xn is found as a solution
to XnM XT = Bn, yielding

Xn = BnX|Λ|−1M.

A.4 Generalized variability

In an embedded Euclidean or a pseudo-Euclidean space E , the generalized variability of
the configuration X with the vectors {x1,x2, . . . ,xn} can be defined as the trace of the
covariance matrix of X, i.e. the sum of variances, as follows:

Vd(X) =
1
n

n∑
j=1

||xj ||2 − ||x||2 (36)

Note that ||.|| is a norm defined in a space E . Since X reflects the same geometry as imposed
by the distance matrix D(2)(R,R), based on the representation set R = {p1, p2, . . . , pn}, it
is possible to express Vd(X) only in terms of those distances as follows:

Vd(R) =
1

2n2

n∑
j=1

n∑
k=1

d2(pj , pk) (37)

We will show now the equivalence of (37) and (36) by using equivalent transformations.
Making use of Formula (34) and the facts that 1T1 = n, and 1T b = tr(B) =

∑n
j=1 ||xj ||2,

one gets:
Vd(R) = 1

2n2

∑n
j=1

∑n
k=1 d

2(pj , pk)

= 1
2n2 1TD(2) 1

= 1
2n2 [1T b1T1+ 1T1 bT1− 21TB 1]

= 1
2n 1

T b + 1
2nbT1− 1

n2 1TB 1

= 1
n 1

T b − 1
n21T B 1

= 1
n

∑n
j=1 ||xj ||2 − ||x||2,

since 1T B 1 = 1T XM XT 1 = xM x = ||x||2, for M being the matrix of inner products
in the space E (M = I in case of an Euclidean space). Note that by following the reasoning
given in (31) for an arbitrary point zx, the equivalence between (12) and the second equation
of (13) for the proximity function can be proven.
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