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Background and Objectives: Autofluorescence and
diffuse reflectance spectroscopy have been used separately
and combined for tissue diagnostics. Previously, we
assessed the value of autofluorescence spectroscopy for
the classification of oral (pre-)malignancies. In the present
study, we want to determine the contributions of diffuse
reflectance andautofluorescence spectroscopy to diagnostic
performance.
Study Design/Materials and Methods: Autofluores-
cence and diffuse reflectance spectra were recorded from
172oral lesionsand70healthyvolunteers.Autofluorescence
spectra were corrected in first order for blood absorption
effects using diffuse reflectance spectra. Principal Compo-
nents Analysis (PCA)with various classifierswas applied to
distinguish (1) cancer and (2) all lesions from healthy oral
mucosa, and (3) dysplastic and malignant lesions from
benign lesions. Autofluorescence and diffuse reflectance
spectra were evaluated separately and combined.
Results:The classification of cancer versus healthymucosa
gave excellent results for diffuse reflectance as well as
corrected autofluorescence (Receiver Operator Character-
istic (ROC) areas up to 0.98). For both autofluorescence and
diffuse reflectance spectra, the classification of lesions
versus healthy mucosa was successful (ROC areas up to
0.90). However, the classification of benign and (pre-)malig-
nant lesions was not successful for raw or corrected
autofluorescence spectra (ROC areas <0.70). For diffuse
reflectance spectra, the results were slightly better (ROC
areas up to 0.77).
Conclusions: The results for plain and corrected auto-
fluorescence as well as diffuse reflectance spectra were
similar. The relevant information for distinguishing lesions
from healthy oral mucosa is probably sufficiently contained
in blood absorption and scattering information, as well as in
corrected autofluorescence. However, neither type of infor-
mation is capable of distinguishing benign from dysplastic
and malignant lesions. Combining autofluorescence and
reflectance only slightly improved the results. Lasers Surg.
Med. 36:356–364, 2005. � 2005 Wiley-Liss, Inc.
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INTRODUCTION

Early detection of pre-malignant lesions and malignant
tumors may reduce patient morbidity and mortality
because treatment at a less invasive stage is more
successful, and therefore is of great clinical importance
[1,2]. Unfortunately, (pre-)malignant lesions of the oral
mucosa frequently go by unnoticed. In high-risk groups,
pre-malignant and malignant lesions are therefore often
diagnosed in anadvanced stage.Once the patient or dentist
observes a lesion, it is generally unclear whether the lesion
is benign or (pre-)malignant. Current clinical diagnosis
procedure therefore includes a biopsy. However, determin-
ing the optimal, that is, most dysplastic, location for biopsy
is difficult. This leads to repeated biopsies and to the risk of
underdiagnosis, which delays the necessary treatment.
Autofluorescence and diffuse reflectance spectroscopy

have been studied as non-invasive in vivo tools for the
detection of (pre-)malignant tissue alterations [3–7].
Autofluorescence of tissues under excitation with light is
produced by several endogenous fluorophores. These
include fluorophores from tissue matrix molecules and
intracellular molecules like collagen, elastin, keratin, and
NADH. The presence of disease changes the concentration
of these fluorophores, which makes autofluorescence
spectroscopy sensitive to tissue alterations. Diffuse reflec-
tance is the result of single and multiple backscattering of
the white excitation light. Both autofluorescence and
diffuse reflectance signals are affected by the light scatter-
ing and absorption properties of the tissue. Light scattering
is affected by tissue morphology, such as nuclear size
distribution, epithelial thickness, and collagen content, all
of which can change with the presence of disease. For the
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relevant visible wavelength range, absorption is mainly
due to oxy- and deoxyhemoglobin. Therefore, absorption is
affected by changes in blood content and oxygenation,
which are known to accompany the presence of disease due
to altered tissue metabolism and, in some cases, neovascu-
larization. In summary, diffuse reflectance and autofluor-
escence spectroscopy can be used separately for detecting
tissue alterations based on their sensitivities to tissue
scattering and absorption properties and—in the case of
autofluorescence—fluorophore concentrations.
It has been suggested that the most relevant information

is contained in the fluorophore concentrations, and that
tissue scattering and absorption effects merely have a
negative effect on the performance of tissue diagnostic
algorithms, since they are assumed to be less specific for
malignant transformation [8–10]. For this reason, attempts
have been made to recover the so-called intrinsic autofluor-
escence from the recorded autofluorescence spectra by
combining autofluorescence and diffuse reflectance signals.
This approach is based upon the assumption that fluores-
cent and reflectedphotons experience similar scatteringand
absorption events, while travelling through the tissue.
In the present study, we will compare the diagnostic

potential of autofluorescence spectroscopy, as has been
described in our previous study [11], with the diagnostic
potential of diffuse reflectance spectroscopy and a simpli-
fied formof intrinsic autofluorescence, respectively. For the
extraction of our simplified form of intrinsic autofluores-
cence, which we will call ‘‘corrected autofluorescence,’’ we
apply a simple model of dividing autofluorescence spectra
by diffuse reflectance to a variable power. We will apply
various statistical methods including Principal Compo-
nents Analysis (PCA) and calculate areas under the
Receiver Operator Characteristic (ROC) curve for compar-
ison of the methods. Using these methods, we will try to
distinguish (pre-)malignant lesions from benign lesions,
cancer from healthy mucosa, and lesions of any type from
healthy mucosa. Furthermore, we will examine whether
raw autofluorescence, corrected autofluorescence, and
diffuse reflectance supply complementary information by
combining them in the classification.

MATERIALS AND METHODS

Volunteer and Patient Population

Autofluorescence and diffuse reflectance spectra were
collected from 70 healthy volunteers with no clinically
observable lesions of the oralmucosa and from 155 patients
with oral lesions after they had given their informed
consent. The population included volunteers from the
Department of Oral and Maxillofacial Surgery of the
University Hospital of Groningen, as well as patients who
had been referred to the same department because of an
oral lesion. This study was approved by the Institutional
Review Board of the University Hospital of Groningen.

Experiments

Avisual inspection of the oral cavitywas performed by an
experienced dental hygienist. In the volunteer group, this
was done to ensure that no oral lesions were present at the

time of measurement. In the patient group, the dental
hygienist located and described the lesions to bemeasured.
If present, the volunteers and patients were asked to
remove their dentures. All patients and volunteers rinsed
their mouth during 1 minute with a 0.9% saline solution in
order to minimize the influence of consumed food and
beverages.

The measurement set-up (Fig. 1) consisted of a Xe-lamp
with monochromator for illumination, a spectrograph, a
custom-made set of 460-nm longpass and shortpass filters
for autofluorescence measurements, and a neutral density
filter for decreasing the white light excitation intensity
during the diffuse reflectance measurements to prevent
saturation of the CCD. Autofluorescence excitation wave-
lengths were 365, 385, 405, 420, 435 and 450 nm
(bandwidth �15-nm full width half maximum). Using
different filter sets for different excitation wavelengths
would have extended the emission range, but this would
have been very impractical because of the requiredmanual
filter replacements. However, since the emission spectra of
the important tissue fluorophores are very broad, we
expected to collect at least part of the relevant information
[12,13]. For diffuse reflectance measurements, the trans-
mitting beam (zeroth order) of the monochromator was
used for excitation. The measurement probe was disin-
fected using 2% chlorhexidine digluconate in ethanol and
covered with plastic film. The probe was placed in contact
with the oral mucosa. The measurements were performed
in a completely darkened room to prevent stray light from

Fig. 1. Scheme of the experimental setup. For autofluores-

cence measurement, the monochromator picks an excitation

wavelength, a 460-nm shortpass filter is placed at A and a

460-nm longpass filter at B. For diffuse reflectance measure-

ments, the transmitting beam (zeroth order) of the mono-

chromator is used, a 0.1% neutral density filter is placed at

A and no filter is placed at B.
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entering the spectrograph. In our patient group, we
measured four positions for each lesion: the center of the
lesion, the border, the surrounding tissue, and the
supposedly healthy tissue at the contralateral position. In
the volunteer group, we measured 13 representative
anatomical locations. The dental hygienist performed the
measurements.
For each measured location and excitation wavelength,

autofluorescence was recorded in three sequential mea-
surements with a 1-second integration time. This allowed
us to remove occasional spectra containing extremely high
values for discrete pixels due to electronic noise. Diffuse
reflectancewas recorded in three sequentialmeasurements
of 0.25-second integration time for the same reason. On
each measurement day, a set of calibration measurements
was performed, including three sequential 0.25-second
integration time diffuse reflectance measurements of
spectralon. The diffuse reflectance spectra recorded in vivo
weredivided by the spectralondiffuse reflectance spectra to
ratio out the Xenon arc lamp spectrum. A total of 48 diffuse
reflectance spectra was missing in the dataset because of
problems with the experimental equipment or because the
anatomical location could not be measured in the patient.
In a previous study, in which we investigated the

autofluorescence properties of 13 anatomical locations in
the oral cavity, we concluded that oral mucosa can be
divided into three categories with different spectroscopic
characteristics [14]. These comprise (1) the dorsal side of
the tongue, (2) the vermilion border of the lip, and (3) all
other anatomical locations. In this study, we performed our
data analysis within location group 3 only, since the other
groups contained too few spectra for reliable analysis.

Sample Description

We measured diffuse reflectance and autofluorescence
spectra in 70 healthy volunteers (37 men and 33 women)
with a mean age of 50 years (range 18–85, standard
deviation 15 years). Of the 70 volunteers, 4 were measured
again on another occasion. Not in all volunteers could all 13
locations be measured, due to, for example, retching
reflexes or problems with opening the mouth. Only the
first measurement sessions were taken into account in
the data analysis, and measurements at the dorsal side of
the tongue or the vermilion border of the lip were omitted.

We removed the measurement sessions for which either
autofluorescence or diffuse reflectance spectra were miss-
ing due to problemswith the experimental equipment. As a
result, a total of 581 healthy oral mucosa spectra,
distributed almost equally over the 11 anatomical loca-
tions, could be included in the data analysis.
Our patient population consisted of 155 persons (mean

age 57, range 20–91, standard deviation 13 years). Some
patients suffered frommultiple lesions, so that a total of 172
unique lesions could be measured. Several lesions were
measured for two or three times at different occasions for
comparison, leading to a total of 199 lesion measurements
sessions. Only first measurements on a specific lesion were
included in the data analysis, resulting in 172 remaining
measurement sessions. We removed 28 sessions because
theywere recorded from the dorsal side of the tongue or the
vermilion border of the lip. A further 11 measurement
sessions were left out of the analysis for different reasons:
(1) because an accurate diagnosis was not available for the
lesion at the time of measurement, (2) we were not certain
enough that the probe had been located at the correct
position because the lesion was hardly visible or very
small, or (3) because the patient had already been receiving
therapy [11]. We removed measurement sessions recorded
frombenign lesions ofwhich the diagnosis was overly clear,
such as aphtous lesions or lingua geographica [11]. Finally,
we removed seven lesion measurement sessions for which
either autofluorescence or reflectance spectraweremissing
due to problems with the experimental setup at the time of
measurement. This resulted in a total of 115 lesion
measurement sessions, of which 88 were benign, 11
dysplastic, and 16 cancerous. Because of the relatively
small sample of dysplastic lesions, we decided not to
separate these into mild, moderate, or severe dysplasias.
We did not have permission to perform additional biopsies,
therefore only those lesions for which the dental surgeon
decided that a biopsy was necessary could be diagnosed by
means of histopathology. However, all dysplastic and
malignant lesions were histologically proven. Biopsies
were always performed after the spectra had been acquired
so as not to influence the spectra. If no histopathology was
available, diagnosis was obtained by visual inspection by
the dental surgeon. Details of lesions included in the data
analysis are summarized in Table 1.

TABLE 1. Description of Lesions Included in the Data Analysis

Lesion type Benign lesions Dysplastic lesions Malignant lesions

Oral leukoplakia (48) 40 8 —

Erosive leukoplakia (2) 1 1 —

Oral lichen planus (30) 30 — —

(Non-specific) ulcus (5) 5 — —

Candidiasis (10) 10 — —

Erythroplakia (2) — 2 —

Actinomycosis (1) 1 — —

Scar (1) 1 — —

Cancerous tumours (16) — — 16

Total 88 11 16
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Data Processing

Autofluorescence spectra preprocessing. After
manual removal of occasional spectra disturbed by electro-
nic noise, the three or remaining two sequentially recorded
autofluorescence spectra from each location and excitation
wavelength were averaged. Detection wavelength calibra-
tion was performed for all spectra using a mercury–argon
calibration lamp. Background spectra recorded from the
same tissue site at the same excitation wavelength were
subtracted. The spectral regions below 455 nm and above
867 nm were omitted since they contained no fluorescence.
Spectra were averaged per four CCD pixels and eventually
consisted of 199 sampling points.
Diffuse reflectance spectra preprocessing. After

preprocessing of the recorded spectra in a similarway as for
autofluorescence spectra, all diffuse reflectance spectra
recorded in vivowere divided by the spectralon spectrum to
ratio out the lamp spectrum.However, aXenon lamp shows
large peaks in the long wavelength part of the spectrum,
which are unstable in time. Dividing the tissue spectrum
by the spectralon spectrum therefore results in extreme
noise in the near infrared spectral region, even though
the maxima of the Xenon peaks maintain at the same
wavelength. For this reason, we cut the diffuse reflectance
spectra above 700 nm. Also, because the Xenon lamp has a
very low intensity around 350 nm, hardly any diffuse
reflectance is collected in this area. This also results in
extreme noise when the tissue diffuse reflectance is divided
by spectralon diffuse reflectance. We therefore skipped
the part below 400 nm as well. After preprocessing, the
spectra consisted of 556 points covering the 400–700 nm
range.
Corrected autofluorescence preprocessing. A first

order approximation of intrinsic autofluorescence spectra
was obtained by dividing the autofluorescence spectra by
diffuse reflectance spectra recorded at the same anatomical
location to some variable power. We have applied the
following model. For diffuse light, the total diffuse
reflectance Rd(l), which is expressed as a fraction of the
total incident flux, is related to the tissue absorption
coefficient ma(l) by

RdðlÞ ¼ e�maðlÞ<l>r;l

where<l> r,l is the expected mean pathlength traveled by
the diffuse reflectance photons in the tissue [15]. All these
variables are wavelength-dependent. The recorded auto-
fluorescence Fr is affected in the same way:

FrðlÞ ¼ e�maðlÞ<l>f ;l � FiðlÞ
where Fi(l) is the intrinsic fluorescence as evoked by the
fluorophores, and <l> f,l is the expected mean pathlength
traveled by the fluorescence photons in the tissue [15]. In a
simple model with a homogeneous distribution of scat-
terers and fluorophores, the absorption coefficient is
constant at all locations and only depends on the
wavelength of the photons.
For any given wavelength, there will be a difference in

mean expected pathlengths for diffuse reflectance and

fluorescence light.We canwrite<l> f,l¼ k(l) �<l> r,l, with
k(l) depending on the tissue under investigation. There-
fore,

FiðlÞ ¼ FrðlÞ
e�maðlÞ<l>f ;l

¼ FrðlÞ
e�maðlÞkðlÞ<l>r;l

¼ FrðlÞ
RdðlÞkðlÞ

We now assume that k(l), the ratio between the path-
lengths for fluorescence and diffuse reflectance light, is
independent of wavelength. In reality, this is not exactly
the case since the scattering properties of the tissue, which
for a large part define the pathlength, are wavelength-
dependent, too. However, based on the results that show
little blood absorption dips and for our simple purpose, we
are satisfied with this simplification. Our intrinsic auto-
fluorescence spectra to afirst approximationwere therefore
recovered by dividing the recorded fluorescence by the
diffuse reflectance to a variable power k. The variable
power was fitted in such a way that the blood absorption
dips that appear around 545 and 575 nm in the corrected
autofluorescence spectra were as small as possible. This
was achieved by minimizing an approximation of the area
of the 575 nm (second) blood absorption dip, which is
represented by a triangle spanned by the spectral data
points at wavelengths 563, 582, and 604 nm. These data
points were selected empirically by visual inspection of the
resulting spectra. For each wavelength point, three pixels
were averaged. Empirically, we found that including the
545-nm blood absorption dip in the algorithm made the
results worse, that is, the resulting spectra containedmore
blood absorption dips, probably because this 545-nm dip is
less pronounced, so that noise in the spectrum starts
playing a role. The samewas true for trying to approximate
the areawith a polynomial. Probably, the spectral details of
the blood absorption dip are more subject to noise than its
more robust triangular representation.

Various refined models have been developed to recover
intrinsic (auto)fluorescence spectra from recorded fluores-
cence spectra by means of a diffuse reflectance spectra
[9,16–18]. Thesemodels aremuchmore complete in taking
into account scattering effects, probe geometries, etc.
However, the models are also very complex and require
tissue phantom measurements, which introduce other
assumptions into the model. We therefore chose to use a
simple approximation in this study. To our opinion, this
was justified by the question that we wanted to answer:
whether the removal of blood absorption artifacts would
improve the classification. If this were the case, then
removingmost of the blood absorption artifacts up to a level
at which they were not visible in the spectra would already
imply an improvement in classification.

Statistical Analysis

Diffuse reflectance spectra. Diffuse reflectance spec-
tra were normalized using three different normalization
methods: normalization by the unit area (UA), Savitzky-
Golay smoothingþderivative (SGSþD), and by the stan-
dard normal variate transformation (SNV). Afterwards, we
performed PCA and applied Artificial Neural Networks.
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For classification based on the PCs, we used the Karhu-
nen–Loeve Linear Classifier (KLLC), also known as the
regularized linear classifier assuming normal distribu-
tions, the Quadratic Classifier assuming normal distribu-
tions (QNC), the 1-nearest neighbor classifier (1-NN), and
the Pseudo-Fisher Linear Discriminant (PFLD) based on
normal distributions of data classes. These classifiers were
applied to the retrieved first 5, 10, 20, or 30 PCs. We
calculated ROC curve areas using Leave-One-Out (LOO)
classification for all methods. In these curves, sensitivities
for detection of lesions are plotted against corresponding
values of (1-specificity). The more accurately a method
separates the data classes, the closer the corresponding
ROC-AUC (Area Under the ROC-Curve) approximates 1.
We compared the areas under different ROC curves. This
allowed us to make a fair judgment of the effectiveness of
different methods without being constricted to single
values of sensitivity and specificity, which largely depend
on the threshold value chosen [19]. The calculations were
repeated for the combined set of center and border
measurements to investigate whether this affected the
results.
Autofluorescence spectra. Autofluorescence spectra

that had been corrected for blood absorption as well as raw
autofluorescence spectrawere classified in the sameway as
described above.
Complementarity of diffuse reflectance and (cor-

rected) autofluorescence. Possibly, autofluorescence
and diffuse reflectance spectra can supply supplementary
information about the tissue properties. To test this
hypothesis, we compared the scores for all individual
lesions using different spectral information. We compared
autofluorescence and corrected autofluorescence, both at
the six excitation wavelengths using 10 PCs, and diffuse
reflectance spectra using 10 or 30 PCs. For all these
methods, we classified lesions versus healthy tissue using
the KLLC and investigated the correlations between the
predictions of the different classifiers.
Next, we applied six different combining rules to test

whether the combining of autofluorescence, corrected
autofluorescence and reflectance spectra could improve
the results and thus whether they contain complementary
information. The majority rule voting classifies the sample
into the class that is chosen in majority by the three
classifiers (for three types of spectra). A second combiner is
obtained by training the nearest mean classifier on the
three labels given by the separate classifiers. The remain-
ing combiners were based on posterior class probabilities.
Such probabilities are given by each classifier and repre-
sent its confidence that a sample belongs to a certain class.
For example, a tissue measurement can yield a confidence
of 0.9 of representing a lesion (Plesion¼ 0.9), and a
confidence of 0.1 of being healthy (Phealthy¼ 0.1). If only
one classifier is used, then thismeasurementwill, of course,
be classified as a lesion (Plesion>Phealthy). When three
classifiers are used, different combining rules can be
applied to the separate confidences. The product rule
defines the total confidence of representing a lesion as
the product of the confidences of representing a lesion for

the three different types of spectra, and similarly for
healthy tissue. The maximum rule defines the total
confidence as the maximum of the confidences of the three
classifiers, and themean rule defines it as theirmeanvalue.
The fixed combining rules (like the product, the mean,

and the maximum) ignore the distribution of the obtained
posterior probabilities (confidences) that might be very
informative. Therefore, besides the fixed combining rules,
we have applied the trained combiner (in our case, the
NMC) to posterior probabilities obtained by three classi-
fiers constructed on three types of spectra.

RESULTS

General Description of the Data

Examples of autofluorescence, corrected autofluores-
cence, and diffuse reflectance spectra of a single lesion
have been depicted in Figure 2. The shape of autofluores-
cence spectra in general has been described before [11].
Corrected autofluorescence appeared similar, but the
prominent blood absorption dipsweremissing. Frequently,
the intensity ratios for different locations changed after the
correction, as can be seen in Figure 2. The average power k
as fitted for optimal reduction of the blood absorption dips
was 0.84 with a standard deviation of 0.32 for the healthy
tissuedataset, and0.84� 0.33 for the lesion set.Thismeans
that in our model, the expected mean pathlength of the
fluorescence photons is approximately 84% of that of the
reflectance photons. That it is shorter is consistent with
reality, because fluorescence is evoked at a certain average
depth in the tissue, while reflectance photons travel from
probe through tissue to probe. Diffuse reflectance spectra
showed clear blood absorption dips around 400–450, 540–
550, and 570–580 nm. In general, the slope of the > 620 nm
part of the diffuse reflectance spectra appeared flat and no
further relevant spectral features could be distinguished.
Much variance was observed between different spectra,
especially in spectra recorded from the center or border of
lesions. There were no significant differences in diffuse
reflectance signal intensity between center, border and
surroundings of lesions. However, center, border as well as
surroundings of lesions showed significantly less diffuse
reflectance intensity than contralaterallymeasured diffuse
reflectance (P< 0.001). In about 89% of all cases, the
contralateral position yielded higher fluorescence intensity
than border, center, and surroundings of the lesion. We
believe that this decrease in intensity is caused by blood
absorption. Between the different types of lesions (benign,
dysplastic, and malignant), no significant differences in
diffuse reflectance intensity were observed for spectra
recorded at the center or border of the lesion.Other spectral
features than those related to blood absorption, in parti-
cular spectral slopes, did not show any trends in relation-
ship to lesion type or probe location at the lesion.

Statistical Results

Autofluorescence spectra corrected by diffuse
reflectance spectra. All statistical results are summar-
ized in Table 2. Distinguishing cancerous lesions from
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healthy tissue was very successful, resulting in ROC areas
of up to 0.98, in this case correspondingwith a sensitivity of
94% and a specificity of 94% (minimum Euclidian distance
to the maximum value of 100% for sensitivity and

specificity). For all methods, there seemed to be no clear
dependence of the results on the excitation wavelength.

For the classification of lesions of any type versus healthy
mucosa, the results were slightly less positive than for the
classification of cancer versus healthy tissue. However, the
best result still gave an ROC area of 0.90, in this case
corresponding with a sensitivity of 83% and a specificity of
86%. The results did not seem to depend much on the
excitation wavelength, however, 365 nm excitation was
slightly more successful.

The results for the relevant clinical question, distin-
guishing benign from dysplastic and cancerous lesions,
were all unsatisfying (ROC areas <0.70 for all excitation
wavelengths and classification methods).

Diffuse reflectance spectra. Distinguishing malig-
nant lesions from healthymucosa gave good results. For all
three normalization methods, the KLLC gave the best
results with ROC areas of 0.88–0.93 for 20 or 30 PCs (best
results: sensitivity 82%, specificity 88%). The classification
of all lesions combined against healthy mucosa gave
comparable results (best results: sensitivity 89%, specifi-
city 80%). The results for distinguishing benign from
dysplastic and cancerous lesions were slightly better than
for autofluorescence corrected by diffuse reflectance. Most
classifiers gaveROCareas<0.70, but some combinations of
normalization method and classifier gave values that were
higher (best results: ROC-AUC 0.77, sensitivity 69%,
specificity 77%). This can be considered as reasonable but
not good enough for clinical application.

Autofluorescence spectra. Our analysis of autofluor-
escence spectra that were not corrected for the influence of
blood absorption has been described more extensively
before [11]. The classification of malignant lesions versus
healthy oral mucosa was very successful, resulting in ROC
areas of 0.90–0.98 for different normalizations and classi-
fiers. Separating all lesion types combined from healthy
oral mucosa was best achieved by applying the KLLC,
resulting in a maximumROC area of 0.88 (sensitivity 89%,
specificity 71%). The results for the relevant clinical
question, that is to distinguish malignant and dysplastic
lesions from benign lesions, were all unsatisfying (ROC
areas <0.65).

Complementarity of Diffuse Reflectance and
(Corrected) Autofluorescence

The results based on raw and corrected autofluorescence
spectra all were highly correlated.We compared 12 auto-

Fig. 2. Example spectra of one single lesion (a) diffuse

reflectance, (b) autofluorescence, and (c) autofluorescence

corrected for blood absorption. Autofluorescence excitation

wavelength was 405 nm, the lesion was a benign lichen of the

ventral side of the tongue. Please note the disappearing of

blood absorption dips in the corrected autofluorescence

spectra, and the differences in intensity in comparison with

uncorrected autofluorescence spectra that were proved by this

correction.
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fluorescence methods (6 excitation wavelengths, 2 types of
autofluorescence spectra) pairwise, and found that, on the
average, the pairs predicted the same classification (lesion
or healthy) in 86% of the cases. The two types of diffuse
reflectance spectra (using 10 or 30 PCs) agreed on lesion
classification in 80% of the cases. However, the agreement
in classification between the methods based on diffuse
reflectance on one hand and those based on autofluores-
cence on the other, showed less agreement in lesion
classification. On the average, autofluorescence and reflec-
tance classifications agreed in 66% of the cases.
Next, we examined the possibilities of combining the

three differentmethods to see if any classification improve-
ment could be obtained, and thus to test whether the
methods contain complementary information. The best
result was obtained for the product rule (ROC area 0.90,
sensitivity 88%, specificity 74%). This was slightly higher
than the best result for uncorrected autofluorescence
spectra at 365-nm excitation (ROC area 0.88, sensitivity
89%, specificity 71%). Combining only reflectance and
corrected autofluorescence gave similar results (ROC area
up to 0.89). Combining was also tested for the classification
of malignant and dysplastic versus benign lesions. The
overall results for the KLLC were slightly better (best
result: ROC-AUC 0.73 for the product rule and the
maximum rule, sensitivity 68%, specificity 70%) than for
corrected autofluorescence and reflectance separately, but
still too low for clinical application. We can conclude that
combining autofluorescence and reflectance spectra has a
positive influence on the results, but the improvement is
small.

DISCUSSION

In agreement with our results for autofluorescence
spectra that had not been corrected for blood absorption
[11], the classification of cancerous lesions versus healthy
oralmucosawas excellent for corrected autofluorescence as
well as for diffuse reflectance spectra. The results for
corrected and uncorrected autofluorescence spectra were
almost equal (best results: ROC area 0.98 and 0.97,

respectively). The results for diffuse reflectance spectra
seemed to be slightly less positive (maximum ROC area
0.93). This can probably be explained by the loss of
information that was contained in the porphyrin-like peak,
which appears in fluorescence but not in diffuse reflectance
spectra and is especially useful for classifying ulcerating
tumors. However, these findings also mean that blood
absorption and scattering effects are very efficient for
distinguishing cancer from healthy mucosa.
While the influence of blood absorption has at least for a

large part been reduced, the corrected autofluorescpectra
give almost equal results as the raw autofluorescence
spectra. This means that the fluorescence in itself is
apparently also sufficient for distinguishing cancer from
healthy mucosa. We can conclude that absorption and
scattering effects as contained in reflectance spectra, as
well as corrected autofluorescence characteristics, inde-
pendently contain sufficient information for distinguishing
cancer from healthy oral mucosa.
The separation of all lesion types combined from healthy

oral mucosa was less successful but still gave good results,
in agreement with our previous study on autofluorescence
spectra that had not been corrected for blood absorption
[11]. The results for diffuse reflectance, plain autofluores-
cence, and corrected autofluorescence were similar (best
results: ROC area of 0.90, 0.88, and 0.90, respectively).
Although the differences are very small, the uncorrected
autofluorescence spectra gave a slightly worse result than
the other two, which could perhaps implicate that separat-
ing autofluorescence from blood absorption effects simpli-
fies the classification for our algorithms.
Three lesions were misclassified by means of (corrected)

fluorescence and diffuse reflectance spectra for almost all
classification methods. These lesions were studied in more
detail. They turned out to be a (benign) lichen planus of the
cheek, a benign leukoplakia of the cheek and a benign
hyperplastic, hyperkeratotic lesion of the lateral border of
the tongue. All these lesions showed higher fluorescence
intensity than their surrounding and contralateral healthy
tissue. We believe that this higher intensity was produced

TABLE 2. Best Results in Terms of Areas Under the ROC Curve, Applied Classifier Noted Between Brackets

Type of spectra (normalization) Corrected autofluorescence spectra Diffuse reflectance spectra

Distinguishing malignant lesions

from healthy oral mucosa

Unit area normalization 0.83–0.96 (KLLC with 5, 10, 20, or 30 PCs) 0.90–0.93 (KLLC with 20 or 30 PCs)

Savitzky–Golay smoothingþ
derivative

0.89–0.97 (NN-1 with 5, 10, 20, or 30 PCs) 0.88–0.89 (KLLC with 20 or 30 PCs)

Standard normal variate

transformation

0.89–0.98 (NN-1 with 10, 20, or 30 PCs) 0.89–0.92 (KLLC with 20 or 30 PCs)

Distinguishing all types of lesions

from healthy oral mucosa

Unit area normalization 0.83–0.88 (KLLC with 10, 20, or 30 PCs) 0.89–0.90 (KLLC with 20 or 30 PCs)

Savitzky–Golay smoothingþ
derivative

0.77–0.83 (NN-1 with 10, 20, or 30 PCs) 0.87–0.90 (KLLC with 20 or 30 PCs)

Standard normal variate

transformation

0.82–0.90 (QNC with 10, 20, or 30 PCs) 0.88–0.89 (KLLC with 20 or 30 PCs)
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by hyperkeratosis and that this produces the misclassifica-
tions. Probably, the algorithm relies for a large part on
autofluorescence and diffuse reflectance intensity in com-
bination with the relative depth of blood absorption dips.
Similar effects have been reported in the lungs [20].
We have seen that combining classifiers based on auto-

fluorescence and on reflectance spectra slightly improves
the result. However, for themost relevant clinical question,
the resulting sensitivities and specificities are still too low
for clinical application.
In the literature, in vivo diffuse reflectance spectroscopy

and autofluorescence spectroscopy have been applied for
distinguishing between benign and (pre-)malignant tissue
types in various organs. Georgakoudi et al. and others have
proposed a method called trimodal spectroscopy, in which
diffuse reflectance, autofluorescence and light scattering
spectroscopy are used together for tissue diagnosis
[8,13,21,22]. For this method, diffuse reflectance and
autofluorescence spectra are measured, and two models
are applied to extract intrinsic autofluorescence (IFS) and
light scattering spectra (LSS). DRS, IFS, and LSS are then
used in a majority rule to establish the diagnosis. This
method has proven successful in various organs. Studies
performed for Barrett’s esophagus (16 patients) and the
cervix (44 patients) gave higher sensitivities and specifi-
cities for the combinedmethods than for any of themethods
separately. For a study using the same techniques in 8
volunteers and 15 patientswith oral lesions, similar results
were obtained when distinguishing lesions from healthy
mucosa (sensitivity 96%, specificity 96%) [22]. These
results were again higher than for the separate spectro-
scopic techniques. The distinction between cancerous and
dysplastic tissue was made with a sensitivity of 64% and a
specificity of 90%. In comparison with our results for the
oral cavity, the results found by Muller et al. for
distinguishing lesions from healthy mucosa are better.
We believe that this is caused by the differences in patient
population. Our lesion set was very diverse, which may
complicate the classification. Unfortunately, the generally
more difficult benign versus dysplastic/malignant classifi-
cation was not performed by Muller et al. because of the
small amount of benign lesions included.
Lin et al. compared in vivo autofluorescence and diffuse

reflectance spectra from brain tumours and normal brain
tissue [23]. A two-step algorithm based on fluorescence and
diffuse reflectance intensity at 460 nm produced a sensi-
tivity of 89% and specificity of 76% for distuinguishing
tumor-bearing from normal brain tissue. Nordstrom et al.
measured autofluorescence and diffuse reflectance spectra
from the cervix and applied multivariate analysis [24].
Autofluorescence obtained high sensitivities (86–91%) and
specificities (87–93%) for distinguishing cervical intrae-
pithelial lesions from normal squamous tissue. However,
metaplasia (benign) and cervical intraepithelial lesions
could not be separated. For diffuse reflectance, the results
for distinguishing CIN from normal tissue were lower, but
the classification of metaplastic versus dysplastic lesions
wasmore successful (sensitivity 77%, specificity 76%). This
is a striking similarity with our own results, in which

diffuse reflectance spectra were more successful for
distinguishing different lesions types, too. No attempts
were made to develop an algorithm that combined the two
types of spectra.

Although other organs cannot truly be compared to the
oral cavity, which has a complex anatomy and in which
many diverse lesions occur, we can conclude that classifica-
tion of lesions by means of diffuse reflectance and
autofluorescence spectroscopy is fairly good. However, the
classification of (pre-) malignant versus benign lesions is
moredifficult. These results are inagreementwithour own.

Reflectance spectroscopy has also been studied on its own
as a method for distinguishing different tissue types.
Koenig et al. used diffuse reflectance spectroscopy to detect
bladder carcinoma [25]. They founda sensitivity of 91%and
a specificity of 60% for distinguishing nine malignant and
twodysplastic lesions fromsixnormal sites andninebenign
lesions, using an algorithm that was based on the total
amount of blood in the tissue. Ge et al. studied colonic
dysplasia and neoplasia by means of diffuse reflectance
spectroscopy in a large patient population [26]. They found
predictive accuracies of 81–85% for distinguishing adeno-
matous (dysplastic) from hyperplastic (benign) polyps
using different pattern recognition tools (sensitivity 89%,
specificity 75%). Zonios et al. studied colonic polyps with
reflectance spectroscopy as well [7]. The spectra were
analyzed using an analytical light-diffusion model. Differ-
ences in hemoglobin concentration and effective scatterer
size were observed between normal and adenomatous
tissue sites, but no classification was attempted. Mirabal
et al. have applied reflectance spectroscopy using variable
source-detector separation distances for the detection of
cervical neoplasia [27]. They found a sensitivity of 72% and
a specificity of 81% for distinguishing squamous intrae-
pithelial lesions from normal squamous mucosa, and
similar for squamous intraepithelial lesions versus normal
columnar mucosa.

From these studies, we can conclude that classification of
(pre-)malignant versus benign lesions is performed with
higher sensitivities and specificities than in the oral cavity,
although the results are still insufficient for clinical
application. From our studies and from the literature we
can conclude that although lesions of the oralmucosa canbe
reliably distinguished from healthy mucosa, correct classi-
fication of lesion types is not possible. Therefore, the
current setting in which fluorescence spectroscopy, reflec-
tance spectroscopy, or combination of these techniques are
used is not applicable in clinical use for the oral cavity.
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