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ABSTRACT 

 

Automatic classification of seismic signals has been typically carried out on feature-based 

representations. Recent research works have shown that constructing classifiers on dissimilarity 
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representations is a more practical and, sometimes, a more accurate solution for some pattern 

recognition problems. In this paper, we consider Bayesian classifiers constructed on dissimilarity 

representations. We show that such classifiers, based on dissimilarities, are a feasible and reliable 

alternative for automatic classification of seismic signals. Our experiments were conducted on a 

dataset containing seismic signals recorded by two selected stations of the Nevado del Ruiz 

monitoring network. Dissimilarity representations were constructed by calculating pairwise 

Euclidean distances and a non-Euclidean measure on the normalized spectra, which is based on 

the area difference between spectral curves. Results show that even though Euclidean 

dissimilarities have advantageous properties, non-Euclidean measures can be beneficial for 

matching spectra of seismic signals. 
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RESUMEN 

 

La clasificación automática de señales sísmicas se ha llevado a cabo típicamente sobre 

representaciones de características. Trabajos de investigación recientes han mostrado que 

construir clasificadores sobre representaciones de disimilitud es una solución más práctica y, 

algunas veces, más precisa para ciertos problemas de reconocimiento de patrones. En este 

artículo consideramos clasificadores bayesianos construidos sobre representaciones de 

disimilitud. Mostramos que tales clasificadores, basados en disimilitudes, son una alternativa 

viable y confiable para la clasificación automática de señales sísmicas. Nuestros experimentos 
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fueron llevados a cabo sobre una base de datos que contiene señales sísmicas registradas por dos 

estaciones seleccionadas de la red de monitoreo del Volcán Nevado del Ruiz. Las 

representaciones de disimilitud fueron construidas mediante el cálculo de distancias euclidianas y 

de una medida no euclidiana sobre los espectros normalizados, ésta última está basada en la 

diferencia de área entre curvas espectrales. Los resultados muestran que aunque las disimilitudes 

euclidianas tienen propiedades ventajosas, las medidas no euclidianas pueden resultar benéficas 

para comparar espectros de señales sísmicas. 

 

Palabras claves: Clasificación, disimilitud, Ruiz, sísmica, señales, volcán. 

 

 

INTRODUCTION 

 

Nevado del Ruiz volcano is capped by a large volume of snow and ice, forming a glacier which 

has a volume of about 1200~1500 million cubic meters. Nevado del Ruiz has three craters: 

Arenas —the active one—, and two parasite craters: Olleta and Piraña. Since seismic activity has 

been digitally recorded by the Volcanological and Seismological Observatory at Manizales 

(VSOM), a large and increasing amount of data has been produced by the monitoring networks; 

such a database is suitable for applying automatic classification/learning  techniques. 

 

Classification of seismic signals is a crucial issue in order to discover the interaction between 

volcanic earthquakes and volcanic processes. In this study, we consider three classes of seismic 

signals originating from Nevado del Ruiz volcano: Volcano-Tectonic (VT) earthquakes, Long-
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Period (LP) earthquakes and Icequakes (IC); of course, for every volcano, the seismologists use 

their own classification with more detailed description of every subtype of earthquakes (Zobin, 

2003). VSOM staff currently classifies volcanic earthquakes by visual inspection; such a method 

supposes a great deal of workload for the seismic analysts. In consequence, an automatic 

classification tool dramatically reduces this arduous task and also turns classification reliable and 

objective, removing errors associated to tedious evaluations and changing of personnel.  

 

Among the applications of pattern recognition techniques to seismic-volcanic signals, two recent 

works are remarkable: automatic classification of seismic signals at Mt. Vesuvius volcano, Italy 

(Scarpetta et al., 2005) and automatic classification of seismic events at Soufrière Hills volcano, 

Montserrat (Langer et al., 2006). Both of them propose the application of Artificial Neural 

Networks (ANN) to classify seismic events. In (Scarpetta et al., 2005), a multilayer perceptron 

(MLP) is used to distinguish between VT events and transient signals due to other sources such 

as underwater explosions, quarry blasts, and thunders; spectral features and amplitude parameters 

are used for characterization. In (Langer et al., 2006), an ANN is used to classify five 

fundamental classes of signals: VT events, regional (RE) events, LP events, hybrid (HB) events 

and Rockfalls (ROC); autocorrelation functions, high order statistical moments and amplitude 

ratios are introduced as features to the input nodes; a mismatch rate of 30% is reported, which 

was reduced up to 20% after a manual revision of the original a-priori classification. Typically, in 

the context of volcanic seismology, neural networks have been preferred rather than other 

classical statistical pattern recognition methods; they are still being used for discrimination of 

seismic signals, including modifications in the feature-based representation, e.g. the modified 

approach used in (Benbrahim et al., 2005). The popularity of neural networks models to solve 
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pattern recognition problems has been primarily due to their seemingly low dependence on 

domain-specific knowledge and due to the availability of efficient learning algorithms (Jain et al., 

2000).  

 

Recently, a number of studies showed advantages of learning from dissimilarity representations 

instead of learning from feature-based representations (Duin et al., 1998; Pękalska et al., 2001; 

Pękalska and Duin, 2002; Paclík and Duin, 2003; Pękalska and Duin, 2005). A dissimilarity 

representation of objects, seismic events in our particular case, is based on pairwise comparisons 

and is expressed e.g. as an NN ×  dissimilarity matrix ),( TTD , where each entry corresponds to 

a dissimilarity between pairs of objects. Dissimilarity representations are more general than 

feature-based representations; in fact, the notion of dissimilarity is more fundamental than that of 

a feature (Pękalska and Duin, 2005). For dissimilarities the geometry is contained in the 

definition, giving the possibility to include physical background knowledge; in contrast, feature-

based representations usually suppose a Euclidean geometry. This paper is devoted to explore 

dissimilarity representations to classify volcanic-seismic signals. Dealing with this particular 

problem, we advocate the dissimilarity-based classification of seismic signals as an advantageous 

and feasible alternative to the feature-based classification. 

 

DATASET 

 

Nevado del Ruiz data set contains signals, which were selected from data collected by the 

monitoring network of the VSOM monitoring system. Stations of the monitoring network are 

located at strategic places; for instance near to the glacier and craters. Signals from two stations 
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(Olleta crater station and Glacier station) have been selected for the experiments because, 

according to the VSOM staff experience, they are a reference for the volcanic and ice-related 

events. Stations are located 4.08 km and 1.8 km from the active crater respectively. Signals were 

digitized at 100.16 Hz sampling frequency by using a 12 bits analog to digital converter. A 

description of the Nevado del Ruiz data set is provided in Table 1. Typical waveforms are shown 

in Figure 1. 

 

TABLE 1. Composition of the data set (number of events per class). VT and LP events were recorded at the Olleta 

crater station. IC events were registered at the glacier station. 

 

VT LP IC 

483 580 782 

 

 

0 5 10 15

1950

2000

2050

2100

Time [s]

C
ou

nt
s

Volcano−tectonic earthquake

0 0.5 1 1.5 2 2.5 3

1920

1940

1960

1980

2000

2020

2040

2060

Time [s]

C
ou

nt
s

Long period earthquake

 



 

 7

0 2 4 6 8

1800

1850

1900

1950

2000

2050

2100

2150

2200

Time [s]

C
ou

nt
s

Icequake

 

 

Figure 1. Typical waveforms of the three classes considered: VT, LP and IC events. 

 

VT and LP events are the most frequent earthquakes registered at Nevado del Ruiz volcano. In 

our experiments, the events VT and LP (the Ruiz-LP,VT two-class problem) are used as well as 

all the classes (the multi-class Ruiz-all problem).  

 

 

DISSIMILARITY REPRESENTATIONS AND CLASSIFIERS 

 

Dissimilarity representations can be derived in many ways, e.g. from raw (sensor) measurements 

such as images, histograms or spectra or from an initial representation by features, strings or 

graphs (Pękalska et al., 2006); nonetheless, the particular way dissimilarities are computed is 

crucial and relies on the additional knowledge experts —volcanic seismologists— have about the 

problem.  
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The spectra of seismic records are commonly used for classification and monitoring of seismic 

activity. Since differences in spectral content allow a visual discriminating of different types of 

volcanic earthquakes (Zobin, 2003), we have calculated the spectrum for each record by using 

two different approaches: (i) N-point Fast Fourier Transform (FFT) and, (ii) parametric 

estimation of the power spectral density (PSD). In such a way, we explore the difference between 

deriving dissimilarities from a data-based spectral estimation and from a model-based spectral 

estimation such as the Yule-Walker AR method. DC bias was removed before computing the 

spectra; in addition, when spectra are to be directly compared, they are required to be normalized 

and to have the same length. In consequence, considering the length of the shortest event and a 

length-resolution trade-off, we calculated 128-point spectra. 

 

Two different dissimilarities measures have been computed between spectra: (i) pointwise 

Euclidean distance and (ii) area difference: the area of non-overlapping parts ( 1L -norm) as shown 

in Fig. 2. 
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Figure 2. Dissimilarity measure as the difference between normalized spectra. 
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The k Nearest Neighbor classifier (k-NN) 

k-NN is considered a direct approach for dissimilarity-based classification. This rule classifies a 

new object by assigning it the class label most frequently represented among the k nearest 

prototypes; i.e., by finding the k neighbors with the minimum distances between the new object 

and all the prototypes. For 1=k , the rule is called 1-NN. Even though k-NN is asymptotically 

optimal in the Bayes sense, it is sensitive to noise and erroneously labelled prototypes. 

 

Linear and Quadratic normal density based classifiers 

Previous studies (Pękalska et al, 2001; Pękalska and Duin, 2002; Paclík and Duin, 2003) have 

shown that Bayesian (normal density based) classifiers, particularly the linear (LDC) and 

quadratic (QDC) normal based classifiers, perform well in dissimilarity spaces. For a 2-class 

problem, the LDC based on the representation set R  is given by 
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where C is the sample covariance matrix, ( )1C  and ( )2C  are the estimated class covariance 

matrices, and ( )1m  and ( )2m  are the mean vectors, computed in the dissimilarity space ( )RTD , . 

( )1P  and ( )2P  are the class prior probabilities. If C is singular, a regularized version must be used. 

In this study, the following regularization is used: 

                                                ( ) ( )CdiagCCreg λλλ +−= 1 .                                                 (3) 
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We have fixed λ  to be .01.0  Nonetheless, regularization parameter should be optimized in order 

to obtain the best possible results for the normal density based classifiers. 

 

 

EXPERIMENTAL RESULTS 

 

Experiments were conducted to compare the results of the k-NN rule and the LDC and QDC 

classifiers built on the dissimilarity representations described above. Experiments were 

performed 25 times for randomly chosen training and test sets. Since in this study we are 

particularly interested in recognition accuracy rather than in computational complexity and 

storage requirements, the entire training set T  has been used as the representation set R . 

Nonetheless, R  may be properly reduced by prototype selection procedures (Pękalska et al., 

2006). Training and testing sets were generated by selecting equal partitions for the classes. 

 

The results of our experiments are shown in Fig. 3 and 4. They present the generalization errors 

as a function of the number of training objects randomly chosen. Fig. 3 presents the results for 

four dissimilarity representations of the Ruiz-VT,LP subset; similarly, the results for the Ruiz-all 

subset are shown in Fig. 4. Standard deviations for averaged test error decrease rapidly, varying 

around 0.02 after at least 10 training objects per class are available; for clarity reasons, standard 

deviations are not presented in Fig. 3 and 4. 
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Figure 3. Ruiz-VT, LP data. Average classification error of the Bayesian classifiers and the 1-NN classifier in 

different dissimilarity spaces (FFT+Euclidean, FFT+areas, PSD+Euclidean and PSD+areas) as a function of the 

number of prototypes per class. 
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Figure 4. Ruiz-all data. Average classification error of the Bayesian classifiers and the 1-NN classifier in different 

dissimilarity spaces (FFT+Euclidean, FFT+areas, PSD+Euclidean and PSD+areas) as a function of the number of 

prototypes per class. 

 

 

DISCUSSION AND CONCLUSIONS 

 

We have explored and tested a dissimilarity-based strategy for classifying three different classes 

of seismic signals recorded by the monitoring network at Nevado del Ruiz volcano. Two 



 

 13

classification problems were conducted: a two-class problem including VT events and LP events 

and a multi-class problem including ice-related events. Several dissimilarity representations were 

derived by combining two different approaches for spectral estimation: N-point FFT and 

parametric PSD estimation, as well as two dissimilarity measures: Euclidean distance and area 

difference between spectral curves. These dissimilarity representations ( )TTD ,  allow us for 

using traditional statistical decision rules, particularly normal density based classifiers. The 1-NN 

rule was employed as a reference for performance comparison. 

 

The two-class Ruiz-VT,LP problem seems the easiest because it contains signals recorded and 

identified at the same station (Olleta crater station); in consequence, it is expected that sensor and 

noise conditions are the same, influencing the subsequent steps for representation and 

classification. In addition, it is well know that, in general, multi-class problems are more difficult. 

 

For the two-class problem, experiments based on parametric PSD estimation outperform those 

based on the FFT. It makes sense because event lengths are, in general, short and, consequently, a 

parametric spectral estimation yields a higher resolution; in addition, the autoregressive methods 

(AR) tend to adequately describe spectra of peaky data, which is precisely the nature of seismic 

volcanic signals. In contrast, for the multi-class problem, the FFT yields to better results but, in 

these particular cases, differences are not significant.  

 

Experiments confirm that Bayesian classifiers outperform the 1-NN classifier, when a sufficient 

number of prototypes is provided. The LDC constructed on the different dissimilarity 

representations, for both Ruiz-VT,LP and Ruiz-all problems, always outperforms the 1-NN rule. 
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LDC accuracies for the Ruiz-VT,LP problem vary between 85% and 87% when the average 

classification error curve reaches a steady state. Similarly, classification accuracies for the Ruiz-

all problem vary between 81% and 84%. 

 

QDC shows a loss of accuracy when certain number of prototypes is provided. Therefore, a 

further study on a proper regularization for the QDC should be conducted in order to obtain an 

improvement of this classifier. LDC accuracies could be an intrinsic limit of our classification 

problem; however, a further study on other dissimilarity-based classifiers is needed as well as a 

re-analysis of the original a-priori classification, in order to find more suitable classifiers and to 

confirm the labels assigned by the experts. 
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