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Abstract. A large experiment on combining classifiers is reported and dis-
cussed. It includes, both, the combination of different classifiers on the same
feature set and the combination of classifiers on different feature sets. Vari-
ous fixed and trained combining rules are used. It is shown that there is no
overall winning combining rule and that bad classifiers as well as bad feature
sets may contain valuable information for performance improvement by
combining rules. Best performance is achieved by combining both, different
feature sets and different classifiers.

1 Introduction

It has become clear that for more complicated data sets the traditional set of classifiers
can be improved by various types of combining rules. Often none of the basic set of tra-
ditional classifiers, ranging from Bayes-normal to Decision Trees, Neural Networks
and Support Vector Classifiers (see section 3) is powerful enough to distinguish the pat-
tern classes optimally as they are represented by the given feature sets. Different clas-
sifiers may be desired for different features, or may reveal different possibilities for sep-
arating the data. The outputs of the input classifiers can be regarded as a mapping to an
intermediate space. A combining classifier applied on this space then makes a final de-
cision for the class of a new object.

Three large groups of combining classifiers will be distinguished here as follows:

• Parallel combining of classifiers computed for different feature sets. This may be
especially useful if the objects are represented by different feature sets, when they
are described in different physical domains (e.g. sound and vision) or when they
are processed by different types of analysis (e.g. moments and frequencies).
The original set of features may also be split into subsets in order to reduce the di-
mensionality and hopefully the accuracy of a single classifier. Parallel classifiers
are often, but not necessarily, of the same type.

• Stacked combining of different classifiers computed for the same feature space.
Stacked classifiers may be of a different nature, e.g. the combination of a neural
network, a nearest neighbour classifier and a parametric decision rule.
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• Combining weak classifiers. In this case large sets of simple classifiers are trained
(e.g. based on decision trees or the nearest mean rule) on modified versions of the
original dataset. Three heavily studied modifications are bootstrapping (bagging),
reweighting the data (boosting) and using random subspaces.

For all cases the question arises how the input classifiers should be combined. Var-
ious possibilities exist, based on fixed rules like maximum selection, product and ma-
jority voting. In addition one may also train a classifier, treating the classifier outputs
in the intermediate space as feature values for the output classifier. An important con-
dition is that the outputs of the input classifiers are scaled in one way or another such
that they constitute the intermediate space in some homogeneous way.

In this paper we illustrate some issues of combining on a large example. This ex-
ample has partially been published before [8] in the context of a review on the entire
field of statistical pattern recognition. Here additional details will be given, together
with a more extensive analysis that, due to lack of space, could not be presented in the
original paper. In the next sections the data, the input classifiers and the output classifi-
ers will be presented. Next the results are discussed and analysed. We like to emphasize
that it is not our purpose to classify the given dataset optimally, in one way or another.
It is merely our aim to illustrate various combining possibilities and analyse the effects
on the performance. Leading questions in this analysis will be: when are which combin-
ing rules useful? How does this depend on the dataset? How do the input classifiers
have to be configured? What is the influence of the combining rule on the final result?

2 The data set

The experiments are done on a data set which consists of six different feature sets for
the same set of objects. It contains 2000 handwritten numerals extracted from a set of
Dutch utility maps. For each of the ten classes’0’, ... ,’9’ a set of 200 objects is available.
In all experiments we assumed that the 10 classes have equal class probabilities
Pj = 0.1, j = 1, ..., 10. Each of the classes is split in a fixed set of 100 objects for learning
and 100 for testing. Because of computational limitations, we use a fixed subset of only
50 objects per class for training. The six feature sets are:

• Fourier: 76 Fourier coefficients of the character shapes.

• Profiles: 216 profile correlations.

• KL-coef: 64 Karhunen-Loève coefficients.

• Pixel: 240 pixel averages in 2 x 3 windows.

• Zernike: 47 Zernike moments.

• Morph: 6 morphological features.

A slightly different version of this data set has been used in [9]. The presently used data
is publicly available under the name ‘mfeat’ in the Machine Learning Repository [11].

All characters are originally sampled in a 30*48 binary image. The features are all
computed from these images and are therefore not strictly independent. In figure 1 the
performance for the Fisher classifier is shown for the first 9 principal directions in the
Fisher map (i.e. the subspace that maximizes the between scatter of the classes over the
averaged within scatter). In figure 2 the 2-dimensional Fisher maps are shown. It is
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hoped these mappings find the most separating directions in the data, and thus reveal
the clusters in the data. Each class is labelled in these figures by one unique marker in
all datasets. In the Morph dataset the features have discrete values. One class can be sep-
arated but for other classes (e.g. one with the white circular label) the discrete feature
deteriorates the cluster characteristics. In most feature sets nice clusters can be distin-
guished. The scaling of the features is comparable over all feature sets. This is caused
by the fact that as a part of the Fisher mapping the data is prewithened to unit variance.

Fig. 1 The Fisher classification error for the six feature
sets optimally projected on low-dimensional subspaces.
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Fig. 2 Scatter plots of all six datasets, mapped on the 2-dimensional Fisher map
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In figure 3 scatter plots of the first two principal components (PCA) of the six da-
tasets are shown. Note the differences in scaling for the various feature sets, which is
preserved in these mappings. The PCA plots are focused on the data distributions as a
whole, while the Fisher mapping emphasizes the class differences. Although it is not
possible to extract quantitative features from these plots, they show that the data sets
have quite distinct class distributions.

3 The classifiers

For this experiment we used a set of off-the-shelf classifiers taken from our Matlab tool-
box PRTools [12]. They were not optimized for the particular application. In this way
they illustrate well the differences between these classifiers, and, moreover, it serves
better the aim to study the effects of combining classifiers of various performances. As
argued in the introduction, it is important to make the outputs of the classifiers compa-
rable. We use estimates for the posterior probabilities or confidences. This is a number
pj(x), bounded between 0 and 1 computed for test objectsx for each of thec classes the
classifiers are trained on. These numbers are normalized such that:

(4)
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Fig. 3 Scatter plots of all six datasets, mapped on their first 2 principal components
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We will now shortly discuss the set of basic classifiers.

Bayes-normal-2: This is the Bayes rule assuming normal distributions. For each class
a separate covariance matrix is estimated, yielding quadratic decision boundaries. Be-
cause of the size of the training set (50 objects per class) and the large set of features,
regularization is necessary. This was done by estimating the covariance matrixC for the
scatter matrixS by

(5)

in which n is the dimensionality of the feature space. We usedα = β = 10-6. Posterior
probabilities are computed from the estimated class densitiesfj(x):

(6)

Bayes-normal-1: This rule is similar to Bayes-normal-2, except that all classes are as-
sumed to have the same covariance matrix. The decision boundaries are thereby linear.

Nearest Mean: Objects are assigned to the class of the nearest mean. Posterior proba-
bilities are estimated using a sigmoid function over the distance. This is optimized over
the training set using the maximum likelihood rule [10].

Nearest Neighbour (1-NN): Objects are assigned to the class of the nearest object in
the training set. Posterior probabilities are estimated by comparing the nearest neigh-
bour distances for all classes [10].

k-Nearest Neighbour (k-NN): Objects are assigned to the class having the majority in
thek nearest neighbours in the training set. Fork > 2 posterior probabilities are estimat-
ed using the class frequencies in the set of k neighbours. Fork = 1, see the 1-NN rule.
The value ofk is optimized for the training set using a leave-one-out error estimation.

Parzen Classifier: Class densities are estimated using Gaussian kernels for each train-
ing object. The kernel width is optimized for the training set using a leave-one-out error
estimation. Posterior probabilities are computed according to (6).

Fisher’s Linear Discriminant (FLD): We computed a FLD between each of the 10
classes and all other classes. For each of these classifiers posterior probabilities are
computed using a sigmoid over the distance to the discriminant. These sigmoids are op-
timized separately over the training set using the maximum likelihood rule [3]. Test ob-
jects are assigned to the class with the highest posterior probability. For two-class prob-
lems, this classifier is almost equivalent (except for the way posterior probabilities are
computed) to Bayes-normal-1. For multi-class problems these rules are essentially dif-
ferent.

Decision Tree: Our algorithm computes a binary decision tree on the multi-class data-
set. Thresholds are set such that the impurity is minimized in each step [1]. Early prun-
ing is used in order avoid overtraining [2]. Posterior probabilities are estimated by the
class frequencies of the training set in each end node.

Artificial Neural Network with 20 hidden units (ANN-20): This is a standard feed-
forward network with one hidden layer of 20 neurons and sigmoid transfer functions.

C 1 α– β–( )S αdiag S( )
β
n
--- diag S( )∑+ +=

p j x( )
P j f

j
x( )

Pi f i x( )
i
∑
-------------------------=
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The network is trained by the back-propagation rule using the Matlab Neural Network
toolbox [13]. The 10 output values are normalized and used as posterior probabilities.

Artificial Neural Network with 50 hidden units (ANN-50): The same algorithm as
above, but now using 50 neurons in the hidden layer.

Support Vector Classifier with linear kernel (SVC-1): This is the standard SVC us-
ing a linear inner product kernel [3]. The computation of the multi-class classifier as
well as the posterior probabilities is similar to the procedure described above for the
FLD.

Support Vector Classifier with quadratic kernel (SVC-2): In this case the squares of
the inner products are used as a kernel, resulting in quadratic decision boundaries.

4 The combining rules

Once a set of posterior probabilities {pij(x), i = 1,m; j = 1,c} for m classifiers andc class-
es is computed for test objectx, they have to be combined into a new setqj(x) that can
be used, by maximum selection, for the final classification. We distinguish two sets of
rules, fixed combiners and trained combiners.

4.1 Fixed combining rules
Fixed combiners are heavily studied in the literature on combining classifiers, e.g. see
[4], [5] and [6]. The new confidenceqj(x) for classj is now computed by:

(7)

(8)

The following combiners are used for rule in (7):Maximum, Median, Mean, Mini-
mum, Product. Note that the final classification is made by

(9)

The Maximum rule selects the classifier producing the highest estimated confidence,
which seems to be noise sensitive. In contrast, the Minimum rule selects by (9) the clas-
sifier having the least objection. Median and Mean average the posterior probability es-
timates thereby reducing estimation errors. This is good, of course, if the individual
classifiers are estimating the same quantity. This probably will not hold for some of the
classifiers discussed in section 3.

A popular way of combining classifiers isMajority: count the votes for each class
over the input classifiers and select the majority class. This fits in the above framework
if this rule is substituted in (7):

(10)

in which I() is the indicator function:  ify is true and  otherwise.

q j' x( ) rulei pij x( )( )=

q j x( )
q j' x( )

q j' x( )
j

∑
---------------------=

ω x( ) maxarg j q j x( )( )=

q j' x( ) I maxarg i pij x( )( ) i=( )
i
∑=

I y( ) 1= I y( ) 0=
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4.2 Trained combining rules
Instead of using fixed combination rules, one can also train an arbitrary classifier using
them x c values ofpij(x) (for all i and allj) as features in the intermediate space. The
following classifiers are trained as an output classifier, using the same training set as we
used for the input classifiers, see section 3:Bayes-normal-2, Bayes-normal-1, Near-
est Mean and1-NN.

It is point of discussion whether it is wise to use the posterior probabilities directly
for building the intermediate feature space. The classes may be far from normally dis-
tributed. It might therefore be advantageous to apply some nonlinear rescaling. The use
of the Nearest Mean classifier on the posterior probabilities is almost equivalent to the
procedure of fuzzy template matching as investigated by Kuncheva et. al. [7].

5 The experiment

In table 1 the obtained test errors x 1000 are listed. The top-left section of this table lists
the results for all 12 individual classifiers for all feature sets combined and for the 6 fea-
ture sets individually. The combined result is only occasionally somewhat better than
the best individual result. The is caused by the high dimensionality of the combined set
(649) as well as by differences in scaling of the features. The best results for each fea-
ture set separately (column) by an individual classifier are underlined. For instance, an
error of 0.037 is obtained, among others, by the 1-NN rule for the Pixels dataset. Be-
cause the entire test set contains 10 x 100 = 1000 objects the number 37 is in fact the
number of erroneously classified test objects. Due to the finite test set this error estimate

has a standard deviation of = 0.006, which is not insignif-
icant. All error estimates, however, are made by the same test set and are thereby not
independent.

The bottom-left section of the table deals with the stacked combining rules applied
on all 12 input classifiers for each feature set separately. Again, all best results for each
feature set are underlined. It appears that the Majority rule frequently scores a best re-
sult. In addition all combined results that are better than the best individual classifier are
printed in bold. For instance, for the Zernike feature set, the best individual classifier is
Bayes-normal-1 (0.180). Combining all classifiers using the Median rule, however, im-
proves this result (0.174). This combination rule is thereby useful.

In the entire right half of the table the results of parallel combining are shown.
Combining rules are applied on the 6 results for a single classification rule (e.g. Bayes-
normal-2), obtaining an error of 0.068 for the Product rule. The results of the combined
set of all 649 features (first column) are not used here. The best results over the 10 com-
bining rules for each classifier are underlined. For instance, the Median rule yields the
best combining result (0.028) of all combiners of the Bayes-normal-2 input classifiers.
Again all combining results that are better than the results for individual classifiers
(now compared over all feature sets) are printed in bold. All these combined classifiers
are also better than those the same input classifier trained by the entire feature set. E.g.,
the Parzen classifier trained on all features simultaneously yields an error of 0.036
(which is better than the best individual feature set result obtained by Parzen of 0.037).

0.037 1 0.037–( ) 1000⁄×
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Table 1: Summary of experimental results (error x 1000)a
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Bayes-normal-2 52 257 58 128 62 212 310 200 28 63 84 63 68 701 799 67 50

Bayes-normal-1183 213 34 57 99 180 291 52 37 34 44 31 51 75 99 39 42

Nearest Mean  87 224 181 99 96 278 540 540 62 45 80 46 75 124 20 103 46

1-NN  36 192 90 44 37 197 570 569 26 17 35 17 40 46 29 113 30

k-NN  36 189 92 44 37 193 510 192 54 60 82 42 51 97 27 36 26

Parzen  36 171 79 37 37 185 521 37 29 32 29 27 51 36 37 31 31

Fisher 408 248 47 82 153 210 282 39 32 33 65 52 57 48 45 35 36

Dec. Tree 480 454 403 400 549 598 329 275 134 113 262 110 218 283 104 102 108

ANN-20 896 900 46 146 852 900 328 900 177 784 900 900 327 45 27 26 21

ANN-50 900 245 130 823 810 265 717 692 244 290 805 807 163 42 31 55 33

SVC-1 500 246 66 61 77 294 848 123 108 59 190 101 47 74 69 60 58

SVC-2  96 212 51 40 60 193 811 40 36 37 42 38 38 40 40 40 40

F
ix

ed
 C
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Maximum 105 747 42 39 44 839 436 39 22 21 53 20 76 33 27 19 19

Median 34 190 43 36 45 174 287 50 23 25 39 25 50 195 58 19 50

Mean  53 190 35 45 56 176 285 34 20 21 37 20 46 57 34 20 19

Minimum 315 790 137 109 200 737 652 138 165 135 131 135 160 58 71 72 56

Product 215 294 131 44 82 401 412 86 234 86 84 86 568 47 860 851 685

Majority 33 175 35 32 37 169 318 34 23 20 122 20 48 198 27 21 20

T
ra

in
ed

 C
om

bi
ne

rs

Bayes-normal-2104 273 49 44 99 195 289 244 17 115 133 115 28 822 897 129 64

Bayes-normal-1  60 427 51 40 53 190 294 160 24 41 49 41 26 107 656 56 63

Nearest Mean 32 198 37 46 73 181 266 133 20 19 36 19 51 79 42 15 18

1-NN 33 186 38 41 72 170 328 212 18 18 38 18 41 49 36 19 18

a. ©IEEE
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Several combiners of these Parzen classifiers, however, yield even better results, e.g.
0.027 by the Product rule. This shows that combining of classifiers trained on subsets
of the feature space can be better than using the entire space directly.

6 Analysis

Our analysis will be focused on the combining of classifiers. The performances of
the individual classifiers as shown in the top left section of table 1, however, constitute
the basis of this comparison. These classifiers are not optimized to the data sets at hand,
but are used in their default configuration. Many classifiers would have performed bet-
ter if the data would have been rescaled or if other than default parameter values would
have been used. Especially the disappointing performances of the Decision Tree (most
likely by the way of pruning) and some of the neural networks suffer from this. It is in-
teresting to note that the use of the combined feature sets yields for some classifiers a
result better than by using each of the feature sets individually (Bayes-normal-2, Near-
est Mean, 1-NN, k-NN) and for other classifiers a result worse than by using each of the
feature sets individually (Fisher, ANN-50, SVC-1).

The first thing to notice from table 1 is that combining the results of one classifier
on different feature sets is far more effective than combining the results of different
classifiers on one feature set. Clearly the combination of independent information from
the different feature sets is more useful than the different approaches of the classifiers
on the same data. This is also visible in the performances of the different combining
rules. For combining the results of classifiers on independent feature sets the product
combination rule is expected to work very well. Kittler [4] showed that a product com-
bination rule especially improves the estimate of the posterior probability when poste-
rior probabilities with independent errors are combined. Unfortunately this product rule
is sensitive to badly estimated posterior probabilities. One erroneous probability esti-
mation ofp = 0 overrules all other (perhaps more sensible) estimates. On the other hand
for combining posterior probabilities with highly correlated errors, the product combi-
nation rule will not improve the final estimate. Instead a more robust mean, median rule
or even a majority vote rule is expected to work better. These rules are not very sensitive
to very poor estimates.

The results of combining the feature sets show that the product rule gives good re-
sults. The product combination of the Bayes-normal-1, 1-NN and Parzen results gives
(one of) the best performances over all combination rules. The posterior probabilities
of these classifiers on these feature sets appear to have independent errors. The combi-
nation results for classifiers trained on the same feature set reflect the fact that here the
errors are very correlated. From the fixed combination rules only the majority vote and
the mean/median combination improve the classification performance. The product
rule never exceeds the best performance obtained by the best individual classifier.

When the different classifiers from one feature set are combined, performance is
only improved in case of the Zernike and KL feature sets. For the other feature sets the
combining performances are worse than the best individual classifier. For the Morph
feature set all combining rules fail except for the Nearest Mean rule which is slightly
better than the best individual performance. The maximum, product and especially the
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minimum rule perform very poorly in combining the different classifiers. These rules
are extra sensitive to poorly estimated posterior probabilities, and suffer therefore by
the poor performance of the Decision Trees and ANNs.

The Bayes-normal-1 and Bayes-normal-2 combinations probably suffer from the
fact that they are trained on the (normalized) posterior probabilities of the first level
classifiers. The distributions in the new 120 dimensional space (12 classifiers times 10
classes) are bounded in an unit hypercube, between 0 and 1. Moreover many of these
estimated probabilities are 1 or 0 such that most objects are in the corners of the cube.
The model of a normal distribution is therefore violated. Remapping the probability to
a distance (e.g. by the inverse sigmoid) might remedy the situation.

The best overall performance is obtained by combining both, all classifiers and all
feature sets. Although combining the classifiers trained on one feature set does not im-
prove classification performance very much (only the majority and mean combining
rules give improvement), combining again over all feature sets show the best perform-
ances. Both the product and the median rules work well and give the best overall per-
formances, in the order of 2% error. Only the results obtained by the minimum and
product combination is very poor. These outputs are too contaminated by bad posterior
probability estimates. Finally the trained combination rules on the results of the fixed
combinations of the different classifiers work very well, while trained combiners on the
trained Bayes-normal combination of the classifiers seems to be overtrained. Combin-
ing the very simple classifier Nearest Mean with a Nearest Mean gives the overall low-
est error of 1.5%. To obtain this performance, all classifiers have to be trained on all
feature sets. Good performance can already be obtained when an 1-NN classifier is
trained on all feature sets and the results are combined by mean or product rule. This
gives an error of 1.7%, slightly but not significantly worse than the best 1.5% error.

Combining the estimates of the Parzen classification consistently gives good re-
sults, for almost all combining rules. The Parzen density estimation is expected to give
reasonable estimates for the posterior probabilities, and is therefore very suitable to be
combined by the fixed combining rules. The 1-NN classifier on the other hand gives
very rough posterior probability estimates. The fact that these probabilities are estimat-
ed in independent feature spaces, cause independent estimation errors, which is correct-
ed very well by the combination rules. Only the maximum combination rule still suffers
from the poor density estimates in case of the 1-NN classifiers, while for the Parzen
classifiers performance of the maximum rule is very acceptable. In some situations the
combining rules are not able to improve anything in the classification. For instance all
fixed combination rules perform worse on the ANN combination than the best individ-
ual classifier. Also combining SVC-1 and Bayes-normal-2 by fixed combining rules
hardly give any performance improvements. For other situations all combination rules
improve results, for instance the combination of the Decision Trees. Individual trees
perform very poorly, but combining significantly improves them (although perform-
ance is still worse than most of the other combination performances). Performances
tend to improve when the results of the Decision Trees, Nearest Mean, 1-NN and Parzen
classifier are combined.

It is interesting to remark that, similar to the Parzen classifier, all results of the
combined Decision Trees, although on a low performance level, improve those of the
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separate trees. Obviously the posterior probabilities, estimated in the cells of the Deci-
sion Trees can be combined well in almost any way. This may be related to the success-
es reported in combining large sets of weak classifiers often based on Decision Trees.

The trained combination rules work very well for combining classifiers which are
not primarily constructed to give posterior probabilities, for instance the ANN, Nearest
Mean and SVC. This can also be observed in the combinations of the maximum, mini-
mum and mean combination of the different classifiers. Especially for the minimum
rule the trained combination can in some way 'invert' the minimum label to find good
classification performance.

From the left upper part in table 1 it is clear that the data in the Profiles, KL-coef-
ficients and Pixel feature sets is better clustered and easier to classify than the Fourier,
Zernike and Morph features. Therefore one might expect that for these datasets the pos-
terior probabilities are estimated well. In table 2 six classifiers are trained on only the
good feature sets and then combined. In all cases the performances of the combination
rules are significantly lower than the individual best classifier. On the other hand, the
results are worse than the combination of all six original feature sets. This indicates that
although the individual classification performances on the 'difficult' datasets are poor,
they still contain valuable information for the combination rules.

Surprisingly the best performance is now obtained by applying the minimum rule
on the 1-NN outputs or the majority vote on the Parzen outputs. Only in one case the
product combination rule is best: in the combination of the Bayes-normal-2. There is no
combining rule which gives consistently good results. The overall performance im-
provement is far less than in the case of the combination of the six feature sets.

It appears to be important to have independent estimation errors. The different fea-
ture sets describe independent characteristics of the original objects. Within the feature
sets the features have a common, comparable meaning but between the sets the features

Table 2: Combining classifiers for good feature sets only (error x 1000)
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Bayes-normal-2 58 128 62 60 59 48 64 47 55 889 897 51 59

Bayes-normal-1 34 57 99 75 51 64 74 75 46 103 99 86 93

Nearest Mean 181 99 96 165 96 91 102 91 98 92 47 179 75

1-NN 90 44 37 80 36 36 33 36 37 61 65 70 37

k-NN 92 44 37 92 37 66 41 66 38 67 66 90 72

Parzen 79 37 37 39 34 36 40 39 33 46 37 36 37
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are hardly comparable (see also the differences in the PCA scatter plots in figure 3). The
classifiers which are used in this experiment, do not use prior knowledge about the dis-
tribution in the feature sets. When all features of the six feature sets are redistributed
into six new sets, again the classifiers can be trained and combined. The results are
shown in table 3. The first notable fact is that the performances of the individual clas-
sifiers over the different feature sets are far more comparable. This indicates that the
distribution characteristics of the sets do not differ very much. Furthermore the Bayes-
normal-1 works very well in all feature sets. This indicates that data described with the
large set of (mostly) independent features (more than 100) tends to become normally
distributed.

The results of combining these six new random sets, are comparable with the old,
well defined feature sets. Results of combining 1-NN and Parzen are again good, but
also combining k-NN and Bayes-normal-1 works well. Combining the Bayes-normal-
1 classifiers works very well and even gives similar results as the best combining rules
on the original feature sets. This may be interesting as this method is fast, in training as
well as in testing. This good performance of combining classifiers trained on randomly
selected feature sets corresponds with the use of random subspaces in combining weak
classifiers. The results of the 1-NN and Parzen combinations are quite acceptable, but
are not as good as in the original feature sets. Probably these classifiers suffer from the
fact that distances within one feature set are not very well defined (by the differences in
scale in the original feature sets, which are now mixed). The combined performance is
therefore not much better than the 1-NN and Parzen on the combined feature set with
649 features (left column in table 1).

So we can conclude that here, instead of carefully distinguishing the six separate
feature sets, we can train Bayes-normal-1 on random (disjunct) subsets of all features

Table 3: Randomized feature sets (error x 1000)
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Bayes-normal-2104 134 83 123 110 122 55 57 55 97 57 56 897 608 57 62

Bayes-normal-1 26 35 25 49 44 30 28 19 18 24 19 18 82 18 18 19

Nearest Mean 164 181 109 142 149 163 117 92 89 124 89 99 396 46 158 63

1-NN 87 93 69 86 101 83 67 34 31 40 31 42 50 57 48 34

k-NN 83 93 68 86 94 83 59 38 46 43 45 40 133 50 47 56

Parzen 75 83 65 74 95 76 37 31 31 37 31 40 119 67 31 31
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and combine the results using (almost) any combining rule. This gives comparable re-
sults as combining the results from the 1-NN on the original feature sets with a mean or
product rule.

Finally in table 4 the best individual classifiers are selected and combined (for the
Pixel feature set the Parzen classifier is chosen). All combining rules perform very
good, although the best performance does not match the best results in the original com-
bination of the 1-NN classifier. This results might even be somewhat biased, because
the best classifiers are selected by their performance on the independent test set. The
best performance is reached using the median combination, while the product combina-
tion is also very good. The Bayes-normal-1 combination rule now shows the worst per-
formance, although it is still very acceptable. Combining the best classifiers seems to
cause overall good performance for all rules, but it might remove some of the independ-
ent errors in the intermediate space, such that somewhat less classification errors can be
corrected.

7 Conclusions

It should be emphasized that our analysis is based on a single experiment for a single
dataset. Conclusions will thereby at most point in a possible direction. They can be sum-
marized as follows:

• Combining classifiers trained on different feature sets is very useful, especially when
in these feature set probabilities are well estimated by the classifier. Combining dif-
ferent classifiers trained on the same classifier on the other hand may also improve,
but is generally far less useful.

• There is no overall winning combining rule. Mean, median, majority in case of cor-
related errors, product for independent errors perform roughly as expected, but others
may be good as well.

• The divide and conquer strategy works well: the independent use of separate feature
sets works well. Difficult datasets should not be thrown away: they contain important
information! The use of randomly selected feature sets appears to give very good re-
sults in our example, especially for the Bayes-normal-1 classifier.

• The Nearest Mean and the Nearest Neighbour classifiers appear to be very useful and
stable when used as combiner.

Table 4: Combining the best classifiers (error x 1000)
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The best classifier for each feature set37 24 29 28 26 40 44 52 31 28
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In retrospection, our experiments may be extended as follows:

• A rescaling of all feature sets to unit variance, which might improve the performance
of a number of classifiers.

• Remapping the posterior probabilities to distances for the trained combiners.

• Combining results of combination rules on the different feature-sets (instead of the
different classifiers).
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