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Abstract Investigating a data set of the critical size makes a classifica-
tion task difficult. Studying dissimilarity data refers to such a problem,
since the number of samples equals their dimensionality. In such a case,
a simple classifier is expected to generalize better than the complex one.
Earlier experiments [9,3] confirm that in fact linear decision rules perform
reasonably well on dissimilarity representations.
For the Pseudo-Fisher linear discriminant the situation considered is the
most inconvenient since the generalization error approaches its maximum
when the size of a learning set equals the dimensionality [10]. However,
some improvement is still possible. Combined classifiers may handle this
problem better when a more powerful decision rule is found. In this paper,
the usefulness of bagging and boosting of the Fisher linear discriminant
for dissimilarity data is discussed and a new method based on random
subspaces is proposed. This technique yields only a single linear pattern
recognizer in the end and still significantly improves the accuracy.

1 Introduction

A difficult classification task arises when the training samples are far from being
sufficient for representing the real distribution (the curse of dimensionality [8]).
Simple decision rules, as linear classifiers, are expected to give lower generaliza-
tion errors in such cases, since less parameters are to be estimated.
We are interested in applications in which the data is initially represented

by a n × n dissimilarity matrix, e.g. all distances between a set of curves to
be used for shape recognition. Our goal is to solve the recognition problem by
a linear classifier, i.e. a linear combination of dissimilarities computed between
the testing and training objects. In this representation the dimensionality k
equals the number of samples: k = n and one has to deal with the critical sample
size problem. The Fisher linear discriminant (FLD) fails in such a case [9,3], since
the estimated covariance matrix becomes singular.
The Pseudo-Fisher linear discriminant (PFLD) makes use of the pseudo-

inverse, instead. However, n = k reflects the worst situation for this classifier. It
has been derived [10] and observed in reality [11] that the PFLD learning curve
(generalization error as a function of training set size) is characterized by a peak-
ing behavior exactly for this point (Figure 1), which is of our interest. However,
some improvement is possible, either by using less objects or less features.
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Figure 1. A typical learning curve for the (Pseudo)-Fisher linear discriminant.

Recently, the idea of combining (weak) classifiers has gained more attention.
Combining simple pattern recognizers introduces some flexibility and can result
in a more powerful decision rule in the end. A number of successful methods in
this field exists. In this paper, we concentrate on boosting [4], bagging [1] and
the random subspace method (RSM) [6,7] applied to dissimilarity data.
The paper is organized as follows. Section 2 gives some insight into dissimilari-

ty-based pattern recognition. Boosting and bagging of the FLDs for distance
data are discussed in section 3. A new technique operating in random subspaces
is proposed in section 4. The simulation study on one artificial and two real
datasets, alongside with the experimental set-up, is described in section 5. The
results are discussed in section 6 and the conclusions are summarized in section 7.

2 The FLD for Dissimilarity-Based Pattern Recognition

In the traditional approach to learning from objects classifiers are constructed in
a feature space. Dissimilarity-based pattern recognition offers alternative ways
for building classifiers on dissimilarity (distance) representations. This can be es-
pecially of use, when the original data consist of a large set of attributes. In some
cases it may be also easier or more natural to formulate a dissimilarity measure
between objects than explicitly the features. Such measures differ according to
various datasets or applications. For classification purposes, it is assumed that
distances between two different objects are positive and zero otherwise.
A straightforward way of dealing with such a problem is based on relations

between objects, which leads to the rank-based methods, e.g. the nearest neigh-
bor rule. Another possibility is to treat distances as a description of a specific
feature space, where each dimension corresponds to an object. This does not
essentially change the classical feature-based approach, although a special case
is considered: n = k and each value expresses the magnitude of dissimilarity
between two objects. In general, any arbitrary classifier operating on features
can be used. In the learning process, the pattern recognizers are built on the
n × n distance matrix. The p test objects are classified by using their distances
to the n training samples (the test data consists of p × n dissimilarities).
Our earlier experiments [9] show that the feature-based classifiers operating

on dissimilarity data often outperform the rank-based ones. Linear classifiers
are of interest because of their simplicity. Distances are often built as a sum
of many values and, under general conditions, they are approximately normally
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distributed. Therefore, a normal-based classifier seems to be a reasonable one. Its
simplest representative is the linear decision rule, assuming the same covariance
matrix for all classes. For 2 equally probable classes it is given by [5]:

f(x) = [x − 1
2
(x(1) + x(2))]T S−1 (x(1) − x(2)) = wT x+ w0,

where: w = S−1 (x(1) −x(2)) and w0 = − 1
2 (x(1)+x(2))T w. This is equivalent

to the FLD, obtained by maximizing the ratio of between-scatter to within-
scatter (Fisher criterion [5]). Therefore, we refer to this function as to the FLD.
However, the rank r of the estimated covariance matrix S is smaller than n

and its inverse cannot be found. The PFLD, using a pseudo-inverse operation, is
proposed instead. The pseudo-inverse relies on the singular value decomposition
of the matrix S and it becomes the inverse of S in the subspace spanned by the
eigenvectors corresponding to r non-zero eigenvalues. The classifier is found in
this subspace and to which it is orthogonal in the remaining n − r directions.
A linear classifier can be also found by using the support vector approach [2].

However, in such a sparse distance space most of the objects become support
vectors which means that the classifier is based on a high number of learning sam-
ples. This is not optimal, since the training relies on solving a difficult quadratic
programming problem and the obtained result yields nearly no redundancy.

3 Boosting and Bagging for the PFLD

Boosting [4] is a method designed for combining weak classifiers, which are ob-
tained sequentially during training by using the weighted objects. At each step
the incorrectly classified objects from the previous step are emphasized with
larger weights. Such (misclassified) samples tend to lie close to the class bound-
ary, so they play a major role in building a classifier, indirectly approximating the
support vectors [2]. However, when the learning set is not large enough, nearly
all training objects are correctly classified. As a result, not much variation in
weights is introduced, which makes all constructed classifiers alike. Consequently,
very little can be gained by their combination [12]. Therefore, boosting seems
not to be an appropriate method for our distance representations, where n = k.
Studying the PFLD learning curve (Figure 1) two possible approaches can

improve the situation, when n = k. The first one tries to reduce the number of
objects (going to the left side of the peak), while the second - the number of
features (going to the right side of the peak, by shifting the curve to the left).
The first idea can be put into practice by bagging and the second - by combing
classifiers in random subspaces.
Bagging [1] is based on bootstrapping and aggregating, i.e. on generating

multiple versions of a classifier and obtaining an aggregated (combined) decision
rule. Using bootstrap replicates relates to unstable classifiers, for which a small
change in the learning set causes a large change in their performance. Combining
classifiers and emphasizing those which give better results, may finally lead to
substantial gains in accuracy. Many rules exist for combining linear classifiers,
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such as average (weighted) majority vote or by applying some operation (mean,
product etc) on posterior probabilities of the combined classifiers.
Because of bootstrap characteristics, bagging may be of use in our case. In the

training process the number of different objects is reduced, and we are practically
placed in a situation in which dimensionality is larger then the number of samples
(left side of the peak in Figure 1). This potentially enables us to construct a set
of better performing classifiers and a more powerful decision rule in the end.

4 The FLD in Random Subspaces

It is known that multiple-tree and nearest neighbor classifiers combined in ran-
dom subspaces [6,7] can gain a high accuracy. They outperform the single classi-
fier constructed in the original space. The RSM, as an indeterministic approach,
is based on a stochastic process in which a number of features is randomly se-
lected. A classifier is then constructed in a subspace defined by those features.
Proceeding in this way, a high-dimensional space can be exploited more effec-
tively. The individual classifiers are built in subspaces, in which they are better
defined. They are able to generalize well, although they do not have the full
discrimination power. This stochastic process introduces some independence be-
tween classifiers and by combining them a better performance may be achieved.
This approach seems to be suitable for our problem, since it can profit from

the high-dimensional data by exploring the possibilities in subspaces, thus it does
not suffer from the curse of dimensionality [8]. Hopefully, the chosen dimension-
ality will turn out to be small so that the classifiers can be built in a cheap way.
However, this issue has to be discussed and verified in practice. Another question
refers to the number of subspaces needed to get a high accuracy.
Our proposal is to combine the FLDs in this stochastic way. Since the PFLD

achieves its worst accuracy for n = k, the RSM may improve the performance in
this case. The individual classifiers are built in subspaces of the fixed dimension-
ality and combined by averaging their coefficients, which yields only one linear
classifier in the end. This is the advantage over combining rules based on pos-
terior probabilities of the classifiers, where all of them should be stored for this
purpose. Our RSM algorithm, called PF-RSM1, is briefly presented below:

K - the pre-defined number of selected features
for i=1 to N (the pre-defined number of combined classifiers) do
Select randomly K features: fip(1) , . . . , fip(K);
Build the FLD in a subspace obtaining the coef.: wip(1) , ..., wip(K) , wi0;
Set to zero all coefficients of the ignored dimensions;

end
Determine the final decision rule with the coefficients: w1, ..., wn, w0

by averaging the coefficients of all classifiers (including the
introduced zeros), i.e. w0 = 1

N

∑N
i=1 wi0 and wj = 1

N

∑N
i=1 wij , j = 1, ..., n;

A slightly different version of this algorithm, namely PF-RSM2, is considered
by using a validation set for the FLD trained in a subspace. This set is used to
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determine a scaling factor for the FLD’s coefficients. The scaling is done in such a
way that the classified objects represent as well as possible posterior probabilities
on the validation set. This does not influence the decision boundary itself.
In the proposed way of combining classifiers, although they are designed in

subspaces, they are finally treated in the original space. This is achieved by set-
ting the coefficients of the ignored dimensions to zero. Therefore, the final com-
bination procedure (averaging) addresses them in the original, high-dimensional
distance space. By doing this, the most preferable directions in the original space
are emphasized and by including more and more classifiers all coefficients of the
final decision rule become more accurate. It seems to be also possible to combine
the classifiers explicitly in subspaces, which is an interesting concept for further
research.

5 Datasets and Experiments

One artificial and two real datasets are used in our experimental study. The
first set consists of 200-dimensional correlated Gaussian data [11]. There are two
classes, each represented by 100 samples.
The second set is derived from NIST database [13] and consists of 2000 16×16

images of digits evenly distributed over 10 classes. In our simulations a 2-class
problem was considered, for digits 3 and 5, to which we refer as to Digit35.
Vibration was measured with 5 sensors mounted on a submersible pump

operating in one normal and 3 abnormal states [14]. The data consists of the
wavelet decomposition of the power spectrum. For each sensor the 100 coefficients
with the largest variances were considered. A 2-class problem was studied here
to which we refer as to Pump2. It is described by 500 features and 450 samples
equally distributed over 2 classes: bearing failure and loose foundation.
The squared Euclidean distance was considered for our experiments. For

each dataset, the dissimilarity representation was computed, which became then
our starting point for a recognition problem. Only the 2-class situations were
investigated, since for binary problems the linear classifier is uniquely defined
and our aim is to illustrate the potential of combination such simple pattern
recognizers. This dissimilarity measure was chosen as an example, since our goal
is not to optimize the classification error for the given data with respect to the
distance measure used, but rather present what may be gained by combining
single decisions for such problems.

Table 1. Characteristics of the datasets used in experiments.

Gaussian Digit35 Pump2
Original dimensionality 200 256 500
Number of samples for TR/TE 100 / 100 100 / 300 150 / 300
Distance representation for TR 100× 100 100× 100 150× 150
Distance representation for TE (no valid. set) 100× 100 300× 100 300× 150
Distance representation for TE (a valid. set) 66× 100 266× 100 250× 150
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A simulation study was done for boosting, bagging and the RSM. All the
experiments were run 25 times. For the artificial dataset, 25 different sets were
randomly drawn from the multi-normal distribution according to the specified
parameters. For the real datasets, they were randomly split into the training
and testing sets 25 times, each time taking care that prior probabilities for two
classes remain equal. Table 1 shows characteristics of the explored sets.

6 Discussion

Boosting (see [12]) performs poorly on the investigated datasets. It does not
improve accuracy of the single PFLD at all. In each run all objects are equally
weighted, so the final decision rule is based on multiple identical discriminants.
Therefore no boosting results are present in Figure 2.
Boosting relies on the weighted majority vote, the RSM is based on the aver-

age, therefore the bagging experiment is conducted for both cases. In Figure 2,
for clarity only, the error bar of bagging based on the average of 250 classifiers is
plotted. For all datasets, the generalization errors reached by this combination
rule and the weighted majority vote are very similar. The differences are how-
ever larger, when the number of combined classifiers is small, in disfavor of the
weighted majority. Bagging seems to work well for the datasets under study; the
accuracy is improved considerably by about 60% − 65%, which is a beneficial
achievement over the PFLD result. The details are shown in Table 2.

Table 2. The averaged generalization error and standard deviation (in %) for bagging.

No. of Gaussian Digit35 Pump
PFLD Average Majority Average Majority Average Majority

5 14.36 (0.67) 14.88 (0.63) 6.43 (0.29) 6.59 (0.25) 8.64 (0.34) 8.92 (0.40)
10 13.68 (0.69) 14.28 (0.66) 5.71 (0.26) 6.05 (0.26) 8.19 (0.38) 9.09 (0.38)
50 13.44 (0.73) 13.88 (0.77) 5.36 (0.24) 5.41 (0.24) 7.87 (0.39) 7.88 (0.38)
100 13.64 (0.74) 13.72 (0.77) 5.37 (0.24) 5.47 (0.24) 7.61 (0.38) 7.67 (0.34)
250 13.32 (0.75) 13.68 (0.80) 5.31 (0.21) 5.24 (0.20) 7.71 (0.37) 7.73 (0.37)

The RSM, as our proposal, is more thoroughly investigated. The dependency
on the number of combined classifiers is studied and the dimensionality of the
subspaces, as well. The results of our experiments are presented in Figure 2. The
left/right pictures represent the situation either without or with a validation set.
Its role is to scale the coefficients of the FLD found in a subspace so that the
classified objects can represent as well as possible posterior probabilities. The
number of samples used for a validation set was about 1/3 of the training set.
It seems to be enough for determination of one scaling factor.
In our experiments, the RSM seems to work very well, accomplishing in its

best case about 90%− 110% improvement over the PFLD result in the original
space, competing the bagging achievements. The curves of the generalization er-
ror versus the subspace dimensionality indicate that in fact a small number of se-
lected dimensions gives good results. This is essential, since in a low-dimensional
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(a) Gaussian data; PF-RSM1.
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(b) Gaussian data; PF-RSM2.
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(c) Digit35 data; PF-RSM1.
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(d) Digit35 data; PF-RSM2.
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(e) Pump2 data; PF-RSM1.
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(f) Pump2 data; PF-RSM2.

Figure 2. The generalization error (in %) of the PFLD compared to its bagging version
and to the RSM. The legend refers to the number of the FLDs combined.
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space, the FLD can be determined in a computationally cheaper way. The sub-
space dimensionality deviates around 7%− 15% of all features. The best result
is observed for the Pump2 case (see Figure 2(e)-(f)), when the gain in accuracy
is more than twice for 5 dimensions.
One notices also that already 5 or 10 combined FLDs decrease the generaliza-

tion error substantially. Considering, e.g. the Digit35 data, it can be seen from
Figure 2(c)-(d), that very small error is achieved in case of 5 combined classifiers
for 15-dimensional subspaces. It gives us not more than 75 dimensions needed in
total. For the Pump2 data (Figure 2(e)-(f)) this is even better, since the perfor-
mance is improved already for 5-dimensional subspaces. So, the method makes
use of not more than 25 features in the end. This is an important observation,
suggesting that in practice a part of information may be skipped (especially of
interest for large distance data), while gaining a high accuracy.

Table 3. The averaged error (in %) for the RSM with different combining rules.

No of. Gaussian
dim. Average Min Mean Median Max Product
5 22.08 18.04 22.60 25.12 18.04 22.08
10 14.36 13.12 14.44 14.56 13.12 14.36
15 11.68 12.36 11.64 11.80 12.36 11.68
20 11.36 11.40 11.56 11.36 11.40 11.36
35 10.96 12.28 10.84 10.96 12.28 11.08
50 12.08 15.36 11.92 11.94 15.36 14.60

Digit35

5 6.11 4.76 6.45 6.71 4.76 6.08
10 4.12 4.81 4.21 4.28 4.81 4.61
15 4.01 6.00 3.97 3.99 6.00 5.47
20 4.15 6.16 3.95 3.97 6.16 6.12
35 4.52 7.12 4.41 4.37 7.12 7.04
50 5.03 7.04 5.01 4.99 7.04 7.04

Pump2

5 5.05 5.29 5.05 5.00 5.29 5.05
10 5.21 5.48 5.21 5.16 5.48 5.21
15 5.41 5.72 5.43 5.41 5.72 5.41
20 5.68 6.00 5.65 5.61 6.00 5.69
35 6.23 6.64 6.21 6.17 6.64 6.53
50 6.70 8.60 6.64 6.60 8.60 8.37

With the growing number of subspace dimensions the generalization error
first decreases, reaches its minimum and then starts to increase. The rule of
thumb says that the classifiers generalize well when the number of training ob-
jects is e.g. 5-10 times larger than the number of features. Therefore, the increase
of generalization error with the dimensionality larger then 5 (the Pump2 data),
15 (the Digit35 data) or 25 − 30 (the Gaussian data) is not surprising. When
the number of features k slowly approaches the number of objects n (k → n),
the FLD is going in the direction of the PFLD. It is then characterized by worse
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performance (we are somewhat to the left of the peak in Figure 1), and their
combination yields a worse decision rule, as well. Using a validation set seems to
improve the results slightly, however one hoped that adjusting the FLD’s coeffi-
cients would give much better improvement. It is possible, however, that another
way of scaling may gain that.
One could argue whether other combing rules are not significantly better

than our average-based RSM. Therefore, some of them were also studied. The
comparison is presented in Table 3. As it can be noticed, the error obtained by
average is very close to that one obtained by the mean rule and similar to that
one gained by the median rule. This proves our point that averaging is useful,
also especially it is computationally more efficient and yields only one classifier.

7 Conclusions

Studying distance representations may become useful when the data is charac-
terized by many features or when experts cannot define the right attributes, but
they are able to provide a dissimilarity measure, instead. The classical approach
to such data is the rank-based one, namely the (condensed) nearest neighbor
rule. We argue [3,9] that the feature-based approach, in which linear classifiers
are built in the distance space can be more beneficial. However, in such a case
one deals with the critical training size problem, since the number of training ob-
jects equals their dimensionality. Therefore, the usefulness of boosting, bagging
and the RSM of the FLDs for dissimilarity representations has been investigated
here. The novelty of our approach is that we concentrate on distance data, which
is specific because of its n×n training size and because of its nature, i.e. relative
information on objects and the structure being given in the data values.
It is also important to emphasize here that the combined classifiers can be

advantageous when the generalization error of the single PFLD is higher than
the overlap between classes. When it approaches the Bayes error, not much
improvement may be gained. As an example, the squared Euclidean distance
was studied as a measure of dissimilarity. Our goal is to investigate what may be
achieved by combining single decisions for distance data. From our experiments
the following conclusions can be drawn:
Firstly, boosting is not advantageous for our problem. It does not improve

accuracy of the the single PFLD at all. No variation in weights is introduced
during the training and the final decision rule is built from multiple identical
discriminants. As suggested in [12], boosting is useful for large learning sizes.
Secondly, bagging, based either on the average or on the majority vote, im-

proves the PFLD performance for all datasets studied. The achievement is about
60% − 65%, which is a considerable value. By using bootstrap replicates, the
number of different samples is reduced, so bagging deals practically with the
situation when n < k. We are then placed on the left side of the peak of the
PFLD learning curve (see Figure (1)).
Finally, we have proposed to combine the FLDs in random subspaces. Our

technique yields a single linear classifier and gives the best improvement in
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accuracy, which is about 100% for our datasets. The method constructs the
FLDs in randomly selected subspaces of a fixed dimensionality and combines
them by averaging their coefficients in the end. The experiments show that the
best results are reached when a validation set was used and when the number
of chosen dimensions deviates between 4% (The Pump2 data) and 30% (the
Digit35 data) of all features. It allows for building classifiers in a cheap way.
Even for a small number of combined classifiers, e.g. 5 or 10, the generalization
error decreases substantially. This suggests that in practice some dimensions can
be skipped, which is important for high-dimensional data.
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