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Abstract. For learning purposes, representations of real world objects
can be built by using the concept of dissimilarity (distance). In such a
case, an object is characterized in a relative way, i.e. by its dissimilarities
to a set of the selected prototypes. Such dissimilarity representations are
found to be more practical for some pattern recognition problems.
When experts cannot decide for a single dissimilarity measure, a num-
ber of them may be studied in parallel. We investigate two possibilities
of combining either dissimilarity representations themselves or classifiers
built on each of them separately. Our experiments conducted on a hand-
written digit set demonstrate that when the dissimilarity representations
are of different nature, a much better performance can be obtained by
their combination than on individual representations.

1 Introduction

An alternative to the feature-based description is a representation based on dis-
similarity relations between objects. In general, dissimilarities are built directly
on raw or preprocessed measurements, e.g. based on template matching. The use
of dissimilarities is especially of interest when features are difficult to obtain or
when they have a little discriminative power. Such situations are encountered in
practice when there is no straightforward manner to define features, when data is
highly dimensional or when features consist of both, continuous and categorical
measurements. The choice in favor of dissimilarity representations depends also
on the application or the data itself. For instance, some particular characteristics
of objects or measurements, like curves or shapes, may naturally lead to such
representations, since they make recognition tasks more feasible.

To construct a decision rule on dissimilarities, the training set T of size n and
the representation set R [2] of size r will be used. R consists of prototypes which
are representatives of all classes present. In the learning process, a classifier is
built on the n × r dissimilarity matrix D (T, R), relating all training objects to
all prototypes. The information on a set S of s new objects is provided in terms
of their distances to R, i.e. as an s × r matrix D (S, R).

A conventional way to discriminate between objects represented by dissimi-
larities is the nearest neighbor rule (NN) [1]. This method suffers, however, either
from a potential loss of accuracy when a small set of prototypes is selected or
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from its sensitivity to noise. To overcome these limitations, we have proposed
an another approach. Our suggestion is to treat the dissimilarity representation
D (T, R) as a description of a space where each dimension corresponds to a dis-
tance to an object. D (x, R) can be, therefore, seen as a mapping of x onto an
r-dimensional dissimilarity space. The advantage of such a representation is that
any traditional decision rule operating on feature spaces may be used.

Most of the commonly-used dissimilarity measures, e.g. the Euclidean dis-
tance or the Hamming distance, are based on sums of differences between mea-
surements. The choice of Bayesian classifiers [4], assuming normal distributions,
is a natural consequence of the central limit theorem applied to them, when a
large number of measurements is considered. The LNC (Linear Normal densi-
ties based Classifier) [4] is especially of interest because of its simplicity. Such a
suggestion is strongly supported by our earlier experiments [7,8].

Selecting a good dissimilarity measure becomes an issue for the classifica-
tion problem at hand. When considering a number of different possibilities, it
may happen that there are no convincing arguments to prefer one measure over
another. Therefore, the interesting question is whether combining dissimilarity
representations might be beneficial. Two possibilities are here consider to study
this problem. In the first one, the base classifiers (the LNC or the NN rule)
are found on each dissimilarity representation separately and then combined
into one decision rule. If the representations differ in character, a more powerful
decision rule may be constructed by combining them. Secondly, instead of com-
bining classifiers, representations are combined to create a new representation
for which only one classifier has to be trained.

The paper is organized as follows. Section 2 gives some insight into the dissim-
ilarity representations, classifiers and combining rules used. Section 3 describes
the dataset and the experiments conducted. Results are discussed in section 4
and conclusions are summarized in section 5.

2 Combining Dissimilarity Representations

Assume that we are given the representation set R and p different dissimilarity
representations D(1)(T, R), D(2)(T, R), ..., D(p)(T, R). Our idea is to combine
good base classifiers, but on distinct representations. It is important to emphasize
that the distance representations should have different character, otherwise they
convey similar information and not much can be gained by their combination.

Two cases are here considered. In the first one, a single LNC is trained on
each representation D(i)(T, R) separately and then all of them are combined in
the end. In the second case, the NN rule is also included. The NN rule and
the LNC differ in their decision-making process and their assignments. The NN
method operates on dissimilarity information in a rank-based way, while the
LNC approaches it in a feature-based way. Although the recognition accuracy of
the NN method is often worse than of the LNC [8], still better results may be
obtained when both types of classifiers are included in the combining procedure.
Although many possibilities exist for combining classifiers [5], we limit ourselves
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to fixed rules operating on posterior probabilities. For the LNC, the posterior
probabilities are based on normal density estimates, while for the NN method,
they are estimated from distances to the nearest neighbor of each class [3].

Another approach to learning from many distinct dissimilarity representa-
tions is to combine them into a new one and then train e.g. a single LNC. As
a result, a more powerful representation may be obtained, allowing for a bet-
ter discrimination. The first method for creating a new representation relies on
building an extended representation Dext, in a matrix notation given by:

Dext(T, R) =
[
D(1)(T, R) D(2)(T, R) . . . D(p)(T, R)

]
(1)

It means that a single object is now characterized by pr dissimilarities coming
from p various representations, but still computed to the same prototypes. The
requirement of having the same prototypes is not crucial, however, for the sake
of simplicity, the same representation sets are used here.

In the second method, all distances of different representations are first scaled
so that they all take values in a similar range. Then, the final representation is
created by computing their sum, as shown below:

Dsum(T, R) =
p∑

i=1

D(i)
max(T, R), (2)

where D
(i)
max(T, R) = αi D(i)(T, R) and αi’s scale all representations so that their

maximum values become equal. (Note that now the representation sets should
be identical to perform the sum operation.) The scaling procedure is necessary,
otherwise the new representation will copy the character of a representation con-
tributing the most to a sum, i.e. one with the largest distances. Scaling changes
the orders of magnitude, but not the rankings, therefore all neighbor informa-
tion is preserved. More sophisticated possibilities of scaling can be considered, as
well, e.g. the weighted sum or the median from a sequence of dissimilarity values
of different representations but relating a training object to the same prototype.

3 Dataset and Experiments

To illustrate our point, we investigate a 2-class classification problem between
the NIST handwritten digits 3 and 8 [10]. The digits are represented as 128×128
binary images. Since no natural features arise from the application, constructing
dissimilarities is an interesting possibility to deal with such a recognition prob-
lem. Three dissimilarity measures are considered: Hamming, modified-Hausdorff
[6] and ’blurred’, resulting in the representations: DH , DMH and DB corre-
spondingly. The Hamming distance counts the number of pixels which dis-
agree. The modified-Hausdorff distance is found useful for template match-
ing purposes [6]. It measures the difference between two sets (here two con-
tours) A = {a1, . . . , ag} and B = {b1, . . . , bh} and is defined as DMH(A, B) =
max(hM (A, B), hM (B, A)), where hM (A, B) = 1

g

∑
a∈A minb∈B ||a−b||. To find
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Fig. 1. Spearman coefficients (top) and traditional correlation coefficients (bottom)
comparing dissimilarity representations.

DB , images are first blurred with the Gaussian kernel and the standard devia-
tion of 8 pixels. Then the Euclidean distance is computed between the blurred
versions. The resulting distances are referred as to the ’blurred’ distances.

Each of the distance measures uses the image information in a particular way:
binary information, contours or blurring. From the process of the construction,
it follows that our dissimilarity representations differ in properties. To prove,
however, their different characteristics, the Spearman rank correlation coefficient
is used to rank the distances computed to each prototype. Basically, we want
to show that the rankings differ between representations. Therefore, for each
pair of representations, the Spearman coefficients between the distance rankings
to all prototypes are computed. Histograms of their distributions are presented
in Fig. 1. All coefficients are between −0.05 and 0.4, where most of them are
smaller than 0.2, which implies that the rankings differ significantly.

The traditional correlation coefficient is used to check whether the dissimilar-
ity spaces of the individual representations (and, therefore, linear classifiers built
there) are different. Such correlation values are higher than those given by the
Spearman rates. It is to be expected, since now the exact distances are consid-
ered, which cannot completely vary from one representation to another, since the
representations are descriptions of the same data and the same relations. On av-
erage, the correlations are found to be (see Fig. 1): 0.39 between the blurred and
modified Hausdorff, 0.56 between the blurred and Hamming and 0.28 between
the modified Hausdorff and Hamming. In the end, most coefficients are smaller
than 0.6, thereby, they indicate only weak linear dependencies. Consequently,
we can say that our dissimilarity representations differ in character.

The experiments are performed 25 times and the results are averaged. In a
single experiment, the data, consisting of 1000 objects per class, is randomly
split into two equally-sized sets: the design set L and the test set S. Both L
and S contain 500 examples per class. The test set is kept constant, while L
serves for obtaining the training sets T1, T2, T3 and T4 (being subsets of L)
of the following sizes: 50, 100, 300 and 500 (= L). For each training set, the
experiments are conducted with varying size of the representation set R. Here,
for simplicity, R is chosen to be a random subset of the training set.
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Fig. 2. Averaged classification error of the individual LNC’s (left) and NN rules (right)
as a function of the representation set size for the training set T4.
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Fig. 3. Averaged classification error as a function of the representation set size for the
individual NN rules trained on the sets T3 (left) and T4 (right).

4 Discussion

Considering single classifiers, it appears that the LNC consistently outperforms
the NN rule for training sets: T1 − T4. Also, the LNC built on the blurred
dissimilarities reaches a higher accuracy than for the other two representations.
Since this behavior is repeated over all training sets, only the performance of
the individual classifiers for the largest training set T4 is presented in Fig. 2.

The results of combining either classifiers or representations for different
training sets are presented in Fig. 3 – 6. These small, moderate and large train-
ing sets are considered to investigate the influence of the training size on our
combining results. All plots in Fig. 3 – 6 show curves of averaged classification
error (based on 25 runs) together with its standard deviation. Each error curve
is a function of the representation set size, where the largest representation set
considered is about half of the training set. Since our goal is to improve the
performance of single classifiers by combining the information, all the results are
presented with respect to the behavior of the LNC on the blurred representation
DB , as to the one that reaches the highest individual accuracy overall.
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Fig. 4. Averaged classification error as a function of the representation set size for the
individual LNC’s combined by the product, mean or max rule or for both the LNC’s
and the NN methods combined by the mean operations.

Fig. 3 presents the generalization errors obtained for combining three indi-
vidual NN methods by the mean, maximum and product rules. Operating on
posterior probabilities is motivated by the intention of combining both the LNC
and the NN method further on. Although the estimation of these probabilities is
rather crude for the NN method, it still allows for an improvement of the com-
bined rules. In all cases, the combination by the mean, max or product operation
gives significantly better results than each individual NN rule. The larger, both
training and representation sets, the more indicative gain in accuracy.

Fig. 4 shows the error curves obtained for three individual LNC’s combined
by the mean, maximum and product rules. For all training sets and small rep-
resentation sets (in comparison to the training set size) considered, the product
and maximum rules give slightly better results than the mean rule. However, for
larger representation sets, the mean rule performs better. In addition, the error
curve for the mean combiner of both the LNC and NN method is also shown. It
can be observed, that incorporating the NN rule to the combiner, lowers some-
what the classification errors for larger representation sets. (This does not hold
for small representation sets due to bad performance of each individual NN rule.)

Fig. 5 presents the error curves of a single LNC operating on new dissimilar-
ity representations constructed from the three given: DB , DMH and DH . Two
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Fig. 5. Averaged classification error of the LNC as a function of the representation set
size for the combined representations.

different cases are here considered: an extended representation Dext (1) and the
combined representation Dsum (2). The LNC on Dsum significantly outperforms
the individual LNC’s (it reaches higher accuracy than the best individual result
on DB), which is observed for all training sets. The LNC on Dext can gain even
better accuracy, however, the comparison between the representations Dsum and
Dext should be explained carefully. If the LNC is trained on Dsum using, say,
r prototypes per class, then the representation Dext is built from three such
representations, each based on r prototypes, thereby the LNC operates in a
3r-dimensional space. It means that for larger representations sets, the total
number of dimensions exceeds the training size. The LNC is then not defined
since the sample covariance matrix becomes singular and its inverse cannot be
determined. In such cases, a fixed, relatively large regularization is used [4]. For
moderate representation sizes (for which the dimensionality of Dext approaches
the number of training examples) the error curve of the LNC shows a peaking
behavior (characteristic for this classifier). Therefore, worse performance is ob-
served when number of prototypes is close to one third of the training size. For
either small or larger representation sets, a very good performance is reached.

Fig. 6 presents the comparison between the mean combiner of individual
classifiers and the LNC trained on the combined representation Dsum. For larger
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Fig. 6. Comparison between the accuracy of the combined classifiers found on each
representation separately and one LNC on the combined representation Dsum. The
classification error is as a function of the representation set size.

representation sets, the LNC trained on Dsum works somewhat better than the
combined decision rule consisting of the LNC’s and NN methods.

Summarizing, most of the combining rules
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perform significantly better than the individ-
ual classifiers. For small dissimilarity spaces,
the representations tend to be independent
and, therefore, the product rule based on the
LNC’s is expected to give better results than
the mean rule [9] (here observed only slightly).
For larger dissimilarity spaces, the posterior
probabilities are not well estimated, and the
product rule deteriorates; then the mean com-
biner is preferred. For the NN rule, the posterior probabilities are estimated from
distances to the nearest neighbor and do not depend on the dimensionality of
the problem. Therefore, both combiners perform about the same.

To illustrate the importance of dissimilarity representations of different na-
ture, we present an example where the Hausdorff dissimilarity DHS is used
instead of the Hamming distance. Therefore, a triple {DB , DMH , DHS} is con-
sidered. The Hausdorff distance and the modified Hausdorff distance are similar,
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Fig. 7. Comparison of the classification error for the combined LNC’s (left) and NN
rules (right) and for two representation triples: {DB , DMH , DH} and {DB , DMH , DHS}
and the training set T4. Combining is done by applying the mean rule.

however, the latter violates the triangle inequality. Therefore, in the modified
Hausdorff representation the dissimilarity rankings are changed with respect to
the Hausdorff one. However, the dissimilarity spaces DMH and DHS are rather
similar. In Fig. 8 histograms of both the Spearman and traditional correlation
coefficients for these two representations are plotted. The Spearman values are
similar to those obtained before (compare Fig. 1), but the traditional correlations
become much higher, on average 0.91, indicating high dependence between those
two dissimilarity spaces. It means that although by combining the individual NN
rules for DB , DMH and DHS an essential improvement may be gained, it does
not necessarily hold for combining the LNC’s. Fig. 7 presents the comparison
between the performances of such classifiers combined by the mean rule for the
training set T4. It can be clearly observed that when DHS is used instead of
DH , the performance of the combined LNC’s deteriorates. Still, the combined
NN rules are behaving only somewhat worse than for the triple {DB , DMH , DH}.

When the Hausdorff representation is added to the original three, the perfor-
mances of the combined individual classifiers or the LNC on Dsum are slightly
better or not at all. The only significant improvement is observed for the ex-
tended representation Dext.

5 Conclusions

Combining a number of distance representations may be of interest when there is
no clear preference for a particular one. It can be beneficial when the dissimilarity
representations emphasize different data characteristics. This is illustrated by a
2-class recognition problem between the digits 3 and 8 for three dissimilarity
representations: Hamming, modified Hausdorff and blurred.

We have analyzed two possibilities of combining such information, either by
combining classifiers or by combining representations themselves. In the first
approach, individual classifiers are found for each representation separately and
then they are combined into one rule. Our experiments show that the mean
combining rule works well, especially for larger representation sets (with respect
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to the training size). In comparison to the best results of individual classifiers, the
mean combiner based on three LNC’s (built on each representation separately)
or even better, the mean combiner based on three LNC’s and three NN methods,
performs significantly better.

In the second approach, dissimilarity representations are combined into a
new one on which a single LNC is built. They are first scaled so that their maxi-
mal values are equal and then summed up, resulting in the representation Dsum

(see (2)). We have also investigated scaling, e.g. by making the means identical
or the maximum values for each prototype equal. They gave worse results and,
therefore, are not reported here. The LNC on Dsum significantly improves the
results of each individual LNC. It appears that the combined representation,
built in this way, has a more discriminative power. As a reference, the extended
representation Dext is also considered (see (1)). The LNC on such a representa-
tion reaches even better results than on Dsum, provided that the number of all
prototypes is either small or large in comparison with the training set size.

In conclusion, when dissimilarity representations differ in character, com-
bining either individual classifiers or by creating a new representation can be
beneficial. In our experiments, we have shown that when distinct representa-
tions are combined into Dsum, as a result, a representation which allows for a
better discrimination can be obtained. This not only improves the classifier, but
also it is of interest because of the computational aspect.
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