
A Discussion on the Classifier Projection Space

for Classifier Combining
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Abstract In classifier combining, one tries to fuse the information that
is given by a set of base classifiers. In such a process, one of the difficulties
is how to deal with the variability between classifiers. Although various
measures and many combining rules have been suggested in the past, the
problem of constructing optimal combiners is still heavily studied.
In this paper, we discuss and illustrate the possibilities of classifier em-
bedding in order to analyse the variability of base classifiers, as well as
their combining rules. Thereby, a space is constructed in which classi-
fiers can be represented as points. Such a space of a low dimensionality
is a Classifier Projection Space (CPS). In the first instance, it is used to
design a visual tool that gives more insight into the differences of various
combining techniques. This is illustrated by some examples. In the end,
we discuss how the CPS may also be used as a basis for constructing new
combining rules.

1 Introduction

When a pattern classification problem is too complex to be solved by training a
single (advanced) classifier, the problem may be divided into subproblems. They
can be solved one per time by training simpler base classifiers on subsets or
variations of the problem. In the next stage, these base classifiers are combined.
Many strategies are possible for creating subproblems as well as for constructing
combiners [11]. Base classifiers are different by nature since they deal with dif-
ferent subproblems or operate on different variations of the original problem. It
is not useful to store and use sets of classifiers that perform almost identically.
If they differ somewhat, as a result of estimation errors, averaging their outputs
may be worthwhile. If they differ considerably, e.g. by approaching the problem
in independent ways, the product of their estimated posterior probabilities may
be a good rule [8]. Other combining rules, like minimum, median or majority
voting behave in a similar way. Having significantly different base classifiers in
a collection is important since this gives raise to essentially different solutions.
The concept of diversity is, thereby, crucial [9]. There are various ways to de-
scribe the diversity, usually producing a single number attributed to the whole
collection of base classifiers. Later in this paper, we will use it differently.
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A basic problem in classifier combining is the relation between base classifiers.
If some are, by accident, identical, and others are very different, what is then
the rationale of choosing particular combining rules? The outcomes of these rules
depend on the distribution of base classifiers, but there is often no ground for
the existence of such a distribution. Other combining rules, like maximum or
minimum, are sensitive to outliers. Moreover, most fixed rules heavily rely on
well established outputs, in particular, their suitable scaling.

One way to solve the above drawbacks is to use a trained output combiner. If
the combiner is trained on a larger set, most of the above problems are overcome.
Nevertheless, many architectures remain possible with different output combin-
ers. A disadvantage of a trained combiner is, however, that it treats the outputs
of base classifiers as features. Their original nature of distances or posterior
probabilities is not preserved. Consequently, trained output combiners need a
sufficiently large set of training examples to compensate this loss of information.

What we are looking for is a method of combining base classifiers that is not
sensitive to their defects resulting from the way their collection is constituted.
We want to use the fact that we deal with classifiers and not with arbitrary
functions of the original features. To achieve that, we propose to study the col-
lection of classifier pairwise differences, an n × n dissimilarity matrix D, before
combining them into an output combiner. The dissimilarity value may be based
on one of the diversity measures [9], like the disagreement [7]. Such a matrix
D can be then embedded into a space Rk, k < n, in a (non-)linear way. This
means that classifiers are represented as a set of n points in Rk such that their
Euclidean distances are identical to the original dissimilarities, given by D. It is
also possible to perform an approximate embedding, where a space of a lower,
fixed dimensionality is determined for an optimal approximation of D. We call
this a Classifier Projection Space (CPS).

If the CPS is 2-dimensional, it can be visualised. Then, the collection of base
classifiers, various combiners and, if desired, also other classifiers can be pre-
sented in a single 2D plot. The exact way of visualisation is explained in section
2. In sections 3 and 4, some examples are given for various sets of base classifiers
constructed on real data. We will discuss how this illustrates some of the char-
acteristics of the various techniques to generate both base classifiers and some
combiners. We see it as a challenge to make use of the CPS for building a new
type of combining classifier. This will be a trained output combiner, as it uses
the training set. The construction of the CPS will be based on classifiers them-
selves and not on arbitrary feature functions. The possibilities will be discussed
in the final section.

2 Construction of the Classifier Projection Space

Let us assume n classifiers trained on a dataset. For each pair of classifiers, their
diversity value is determined, by using an evaluation set. This gives an n × n
symmetric diversity matrix D. To take into account the original characteristics
of the base classifier outputs, a suitable diversity measure should be chosen
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to establish the basic difference between classifiers. A spatial representation of
classifiers can be found by a projection to a CPS such that the points correspond
to classifiers and the diversities, reflected by Euclidean distances between the
points, are preserved as well as possible. Studying the relations between classifiers
in the CPS allows us for gaining a better understanding than by using the mean
diversity only. The latter might be irrelevant e.g. for an ensemble consisting of
both similar and diverse classifiers, where their contributions might average out.

The joint output of two classifiers, Ci and Cj can be re- Ci(1) Ci(0)
Cj[1] a b

Cj[0] c d

Fig. 1. Ci vs. Cj .

lated by counting the number of occurrences of correct (1) or
wrong (0) classification, e.g. a is the number of correct classi-
fications for both Ci and Cj in Fig. 1. This requires the knowl-
edge of correct labels (e.g. not available for a test set), which
can be avoided when the outputs of classifiers are compared
and (1) describes the agreement between them. Many known (dis)similarity mea-
sures can be used; see e.g. [4, 9]. Here, we will consider a simple diversity measure,
the disagreement [7], which for Ci and Cj is defined as (see Fig. 1)

Di,j =
b + c

a + b + c + d
, i, j = 1, . . . , n (1)

Given the complete diversity matrix D, reflecting the relations between clas-
sifiers, the CPS can be found by a (non-)linear projection, a variant of Mul-
tidimensional Scaling (MDS) [4]. Such a mapping is insensitive to redundant
classifiers and perhaps also to outlier classifiers that do not have much support
from the data. It is, however, sensitive to noise in the estimates of the dissimilar-
ities. Below, we explain how from a dissimilarity matrix D one obtains a spatial
representation.

2.1 Classical Scaling and Generalization to New Objects

Given an n × n Euclidean distance matrix D, between the elements of a set T ,
a configuration X of n points in Rm (m≤n) can be found, up to rotation and
translation, such that the distances are preserved exactly. The process of such a
linear mapping is called embedding and it is known as classical scaling [4]. With-
out loss of generality, the mapping is constructed such that the origin coincides
with the mean. X is determined, based on the relation between distances and
inner products. The matrix of inner products B can be expressed only by using
the square distances D(2) [4, 14] as B = − 1

2JD(2)J , where J = I − 1
n
11T ∈Rn×n

(I is the identity matrix) projects the data such that X has a zero mean. By the
eigendecomposition of B=XXT , one obtains B = QΛQT , where Λ is a diagonal
matrix of decreasing positive eigenvalues, followed by zeros. Q is the matrix of
the corresponding eigenvectors. Then, X can be represented in an uncorrelated
way in the space Rm as X = Qm Λ

1
2
m.

To add s novel objects, represented by an s × n matrix of square distances
D

(2)
s , relating s objects to the set T , a configuration Xs, projected onto Rm, is
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Table 1. Disagreement values, D*100, between classifiers built on the morpho-
logical features of the MFEAT set; since D is symmetric, only the upper part is
presented.

NMSC LDC UDC QDC 1-NN k-NN Parzen SVC1 SVC2 DT ANN20 ANN50
NMC 47.1 47.3 43.4 50.3 53.5 30.9 24.1 63.1 71.4 50.4 77.5 72.8
NMSC – 13.7 43.3 30.2 54.0 46.9 46.8 54.7 59.9 21.9 71.5 69.1
LDC – – 48.5 24.1 53.9 49.0 48.4 53.0 58.0 24.3 72.1 69.1
UDC – – – 53.8 64.8 54.5 50.5 55.5 76.8 54.7 72.1 75.2
QDC – – – – 53.8 39.5 39.9 50.3 65.5 31.5 67.5 57.1
1-NN – – – – – 48.5 49.5 65.5 78.7 53.9 77.7 77.0
k-NN – – – – – – 7.5 56.5 75.5 48.0 68.1 72.2
Parzen – – – – – – – 56.7 73.2 48.1 68.8 71.2
SVC-1 – – – – – – – – 79.1 54.2 36.7 89.9
SVC-2 – – – – – – – – – 65.0 84.2 86.7
DT – – – – – – – – – – 70.1 71.4
ANN20 – – – – – – – – – – – 100.0

then sought. Based on the matrix of inner products Bs = − 1
2 (D

(2)
s J − UD(2)J),

where U = 1
s
11T ∈Rs×n, Xs becomes Xs = BsXΛ−1

m [6, 14].
In practice, often m≈n, but the intrinsic dimensionality of the data is much

smaller. Since X is an uncorrelated representation, the reduced configuration,
preserving the distances approximately, is determined by k largest eigenvalues
[4, 14]. Therefore, Xred∈Rk, k<m, is found as Xred = QkΛ

1
2
k . If D is the matrix

of diversities values between classifiers, Xred is the configuration in the sought
CPS.

For a non-Euclidean distance, B has negative eigenvalues [4, 6] and X can-
not be determined. One possibility is to consider a pseudo-Euclidean space, see
[6, 14], another one is to skip the directions corresponding to the negative eigen-
values.

2.2 Multidimensional Scaling - A Nonlinear Projection

For an n × n dissimilarity matrix D, Sammon mapping [4] is a nonlinear MDS
projection onto a a space Rk such that the distances are preserved. For this
purpose, an error function, called stress, is defined, which measures the difference
between the original dissimilarities and Euclidean distances of the configuration
X of n objects. Let D be the given dissimilarity matrix and D̃ be the distance
matrix for the projected configuration X . A variant of the stress [4] is here
considered as

S = 1Pn−1
i=1
P

n
j=i+1 d2

ij

∑n−1
i=1

∑n
j=i+1(dij − d̃ij)2.

To find an MDS representation, one starts from an initial representation and
proceeds in an iterative manner until a configuration corresponding to a (local)
minimum of S is found [4]. Here, for a stable solution, classical scaling is used
to initialize the optimization procedure. If D is the matrix of diversities values
between classifiers, X is the configuration in the CPS. Since there is no straight-
forward way of adding new objects to an existing MDS map, a modified version
of the mapping has been proposed, which generalizes to new objects; see [3, 13].
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Fig. 2. A 2-dimensional CPS for the MFEAT dataset. Points correspond to
classifiers; numbers refer to their accuracy. The ’perfect’ classifier is marked as
TRUE.

2.3 An Example

To present a 2-dimensional CPS, the 10-class MFEAT digit dataset [12] is con-
sidered. For our presentation, Fourier (74D) and morphological (6D) feature sets
are chosen with a training set consisting of 50 randomly chosen objects per class.
The classifiers considered are: the nearest (scaled) mean classifier NM(S)C, lin-
ear/uncorrelated quadratic/quadratic discriminant classifier LDC/UDC/QDC,
1/k-nearest neigbour rule 1-NN/k-NN, Parzen classifier, linear/quadratic sup-
port vector classifier SVC-1/SVC-2, decision tree DT and feed-forward neural
network with 20/50 hidden units ANN20/ANN50. For each feature set, the dis-
agreement matrix between all classifiers and two combiners, the mean (MEANC)
and the product (PRODC) rules, is computed by formula (1); see also Table 1.
This is done for the test set of 150 objects per class. The diversity matrix served
then for a construction of a 2-dimensional CPS by the MDS procedure, described
in section 2.2. Such examples of the CPS can be seen in Fig. 2. Note that the
points correspond to classifiers. The distances between them approximate the
original pairwise disagreement values, by which we can visually judge the sim-
ilarities between classifiers. The hypothetical perfect classifier, i.e. given by the
original labels, marked as TRUE, is also projected. The numbers in the plots
show the accuracy reached on the test set. Let us emphasize that the axes cannot
be interpreted themselves; it is simply distances that count.

In both cases, we can observe that the mean combiner is better than the
product combiner. The latter, apparently deteriorates w.r.t. some, although di-
verse, but very badly performing classifiers. The mean rule seems to reflect the
averaged variability of the most compact cloud. Note also that diversity might
not be always correlated with accuracy. See, for instance, the right plot in Fig.
2, where the NMSC is more similar (less diverse) to the hypothetical classifier
than ANN20, although the accuracy of the latter is higher.
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3 Bagging, Boosting, and the Random Subspace Method

Many combining techniques can be used to improve the performance of weak
classifiers. Examples are bagging [2], boosting [5] or the random subspace
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Fig. 3. A 2-dimensional CPS; Ionosphere
dataset trained with T1.

method (RSM) [7, 15]. They
modify the training set by sam-
pling the training objects (bag-
ging), or by weighting them
(boosting), or by sampling data
features (the RSM).

Next, they build classifiers on
these modified training sets and
combine them into a final deci-
sion. Bagging is useful for lin-
ear classifiers constructed when
the training size is about the
data dimensionality. Boosting is
effective for classifiers of low-
complexity built on large train-
ing sets [15]. The RSM is ben-
eficial for small training sets of
a relatively large dimensionality,
or for data with redundant fea-
tures (where the discrimination
power is spread over many fea-
tures) [15].

To study the relations within
those ensembles, the 34-dimen-
sional, 2-class ionosphere data
[1] is considered. The NMC is
used for constructing the ensem-
bles of 50 classifiers. The train-
ing is done on T1=100 and
T2=17 objects per class (ran-
domly chosen) to observe a dif-
ferent behaviour of base clas-
sifiers. The following combining
rules are used: (weighted) major-
ity voting, mean, product, min-
imum, maximum, decision tem-
plates and naive bayes (NB).
The test set consists of 151 ob-
jects for which the disagreement
matrix between the base clas-
sifiers of the mentioned ensem-
bles and the combiners is com-



A Discussion on the Classifier Projection Space for Classifier Combining 143

puted. Such a matrix serves for obtaining the CPS by using the MDS map-
ping, as described in section 2.2. The hypothetical, perfect classifier, repre-
senting true labels (marked as TRUE) has been added, as well; see Fig. 3.
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Fig. 4. Accuracy vs. 1D CPS; Ionosphere
dataset trained with T1.

To understand better the re-
lation between the diversity and
accuracy of the classifiers, while
maintaining the clarity of presen-
tation, another plots have been
made; see Fig. 4 – 5. They show
a 1-dimensional CPS (represent-
ing the relative difference in di-
versity) vs accuracy. So, the dif-
ferences between classifiers in the
horizontal and vertical directions
correspond to the change in diver-
sity and accuracy, respectively.

Analysing Fig. 3, 4 and 5,
the following conclusions can be
made. First of all, in the CPS,
the classifiers obtained by bagging
and the RSM are grouped around
the single (original) NMC, creat-
ing mostly a compact cloud. The
variability relations between the
bagged and RSM classifiers might
be very small. On the contrary,
the boosted classifiers do not form
a single cloud. In terms of both
diversity and accuracy, they are
reduced to 9 – 14 different ones
(depending on the training set).
A group of 5 – 8 poor classifiers
is then completely separated from
the others, as well as from the
bagged and RSM classifiers.

Secondly, for a small training
size T2, Fig. 5, the RSM and bag-
ging create classifiers that behave
similarly in variability, since the
classifier clouds in the 1D CPS are
in the same range and of a similar
size. For a larger training size T1,
Fig. 4, the diversity for the RSM
classifiers is larger.
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Thirdly, the classifiers in all ensembles, even in boosting, seem to be con-
structed in a random order w.r.t. the diversity and accuracy.
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Fig. 5. Accuracy vs. 1D CPS; Ionosphere
dataset; trained with T2

Concerning the combiners
studied here, the minimum rule
(equivalent to the maximum rule
for a 2-class problem) achieves,
in most cases, the highest ac-
curacy. It is even better than
the weighted majority, used for
the boosting construction. For
a small sample size problem,
Fig. 5, most of the combining
rules for bagging and the RSM
are alike, both in diversity and
accuracy. A much larger variabil-
ity is observed for boosting; a
collection of diverse both classi-
fiers and combiners is here ob-
tained.

Finally, a striking observa-
tion is that nearly all classifiers,
as well as their combiners, are
placed in the CPS at one side
(i.e. not around) of the perfect
classifier (this was less apparent
for the MFEAT data; compare
to Fig. 2).

4 Image Retrieval

In the problem of image database
retrieval, images can be repre-
sented by single feature vectors
or by clouds of points. Usually,
given a query image Q, repre-
sented by a vector, images in
the database are ranked accord-
ing to their similarity to Q, mea-
sured e.g. by the normalized in-
ner product. A cloud of points
offers a more flexible represen-
tation, but it may suffer from
overlap between cloud represen-
tations, even for very distinct
images. Recently, we have pro-
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Fig. 6. 2D representations: images (left) and the CPS configuration for the
SVDD-classifiers (right); different marks correspond to different classes.

posed a novel approach for describing clouds of points based on support vector
data description (SVDD) [16], which try to describe the domain (boundary) of
such a cloud. For each image in the database, such a SVDD is trained. The
retrieval is based on the fraction of the points rejected by the SVDD’s and the
lowest ranks are returned. A single SVDD still suffers if the clouds of points
between different images are highly overlapping. We have shown, however, that
combining of the SVDD classifiers may improve the retrieval precision; see [10]
for details.

In our experiment, performed on a dataset of texture images, 23 different
images are given. Each original image is cut into 16 128× 128 non-overlapping
pieces. These correspond to a single class. Such pieces are mostly homogeneous
and represent one type of a texture. The images are, one by one, considered as
queries, and the 16 best ranked images are taken into account. The retrieval
precision is computed using all 368 images; see [10] for details.

Each image is represented by a combined profile of all SVDD-classifiers. In
our approach to the retrieval problem, a dissimilarity between a profile of the
SVDD’s for the query Q and the other images is considered. This might be based
on the Euclidean distance. In order to see all the relations between images, a
distance matrix and the resulting spatial representation of the images can be
found, see Fig. 6, left plot. On the other hand, we can build the CPS, now based
on the differences between SVDD-classifiers, see Fig. 6, right plot. Remind that
in this case classifiers correspond directly to images, since each SVDD is a more
conceptual description of an image. Comparing those two graphs, we see that
the image space maintains a better separation, which was confirmed by our good
retrieval precision [10].
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5 Perspective on Possibilities of the CPS

The CPS has been used as a visualisation tool for analysing the differences
between base classifiers and as an argument for the selection of some combining
rules. Let us now discuss whether a CPS can be used for building classifier
combiners. The figures presented in the previous sections contain just classifiers.
If points, corresponding to classifiers, are close in a plot, the classifiers are similar.
This may be an argument to select just one of a cluster of related classifiers or
to average their outputs in order to reduce the noise. Very different classifiers
should be preserved since they may be candidates for the product combiner.
In this way, the relative positions of the classifiers in the CPS may serve for a
construction of the overall system architecture.

In order to train a new classifier, us-
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ing the CPS space, it is highly desir-
able to project training objects in such
a space. In case of a linear embedding
(section 2.1), the mapping of new classi-
fiers into an existing CPS is well defined.
In order to project an object into this
space, an equivalent dissimilarity mea-
sure between objects and classifiers should
be defined. Here, we face the problem
that an object belongs to a single class
and a classifier is a multi-class entity. In
section 2, the behaviour w.r.t. the dis-
tinct classes was averaged, as in the dis-
agreement measure (1), just differences in label assignments are counted, neglect-
ing further class differences. The measure is, therefore, modified into a matrix of
numbers. The disagreement between the classifiers Ci and Cj w.r.t. the classes p
and q can be written as

Dp,q(Ci, Cj) = Prob (Ci = p, Cj = q) + Prob (Ci = q, Cj = p), (2)

where the probabilities are taken w.r.t. the set of objects x to be classified. For
a c-class problem and n classifiers, the total size of the dissimilarity matrix is
then nc × nc. Now, for an object y, a similar quantity is defined as

Dy,q(y, Cj) = Prob (Cj(q, x) > Cj(q, y) ), (3)

resulting in a 1× nc row vector, since Cj(q, x) is the support of classifier Cj ,
j=1, . . . , n for an object x w.r.t. the class q, q=1, . . . , c. The probability is
zero if no other object x exists with more support for the given class q than the
presented object y. This is in agreement with the concept of a dissimilarity since
this implies that this object is very q-like according to Cj .

An example is presented in Fig. 7. We computed six NMC for all six feature
sets of the MFEAT dataset [12] between the classes ‘6’ and ‘9’. From the 12×12
dissimilarity matrix between the classifiers, a 2-dimensional CPS is found by
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classical scaling. 100 objects per class are projected into this space. Classifiers
and objects are shown in Fig. 7. The 2 × 3 classifiers at the top and at the
bottom correspond to bad feature sets that cannot distinguish between classes
‘6’ and ‘9’ as they are based on rotation invariant properties. The 3 classifiers,
corresponding to good feature sets, are projected right on the top of each other
on the left and on the right sides.

6 Discussion and Conclusion

We presented a new way of representing classifiers. The classifier projection
space (CPS), based on (approximate) embedding of the diversities between the
classifiers, offers a possibility to study their differences. This may increase the
understanding of the recognition problem at hand and, thereby, offers an analyst
a tool based on which he can decide on the architecture of the entire combining
system.

We also showed how objects can be mapped into the CPS. It has to be further
investigated under what circumstances the construction of a combined output
classifier in such a space is beneficial. This will be a trained combiner and its
performance has to be compared with the direct use of the base classifier outputs
as their features. The advantage of the presented approach is that by the choice
of the dissimilarity measure the character of these ‘features’ as classifier outputs
may be preserved.
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