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Abstract. In combining classifiers, it is believed that diverse ensembles perform
better than non-diverse ones. In order to test this hypothesis, we study the
accuracy and diversity of ensembles obtained in bagging and boosting applied to
the nearest mean classifier. In our simulation study we consider two diversity
measures: the Q statistic and the disagreement measure. The experiments, carried
out on four data sets have shown that both diversity and the accuracy of the
ensembles depend on the training sample size. With exception of very small
training sample sizes, both bagging and boosting are more useful when ensembles
consist of diverse classifiers. However, in boosting the relationship between
diversity and the efficiency of ensembles is much stronger than in bagging.

1    Introduction

Some pattern recognition problems cannot be solved by a single classification
rule. This happens when the data distribution is very complex or/and data are high
dimensional, having small training sample sizes compared to the data dimensionality
[1]. In this case, the combined decision of the ensemble of classifiers can be used in
order to improve the performance of a single classification rule [2]. However, it is still
quite unclear what classifiers the ensemble should consist of in order to be the most
effective. An intuitively desirable characteristic of a classifier team is diversity
(orthogonality, complementarity, independence etc.) [2, 3]. Theoretically, combining
independent classifiers by majority voting will outperform the single classifier.
Combining dependent classifiers may be either better or worse than the single
classification rule [4]. Therefore, diverse ensembles seem to have a better potential for
improving the accuracy than non-diverse ensembles.

In this paper we intend to test this hypothesis on bagging [5] and boosting [6]
applied to the Nearest Mean Classifier (NMC) [7]. We choose these combining
techniques for our study because they show a good performance on various data sets
[8, 9, 10] and provide useful algorithms for constructing ensembles of classifiers. The
NMC is chosen for its simplicity, and because both bagging and boosting have been
found to be successful for this linear classifier [11]. The performance and the stability
of the combined decision in bagging and boosting, applied to linear classifiers,
strongly depend on the training sample size [11]. Therefore, in this paper we will study
the relationship between accuracy and diversity of ensembles in bagging and boosting
with respect to the training sample size.
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The paper is organized in the following way. Section 2 shortly describes
bagging and boosting. The two diversity measures used are introduced in section 3.
The data sets and the experimental setup are described in section 4. The results of our
simulation study are discussed in section 5. Conclusions are summarized in section 6.

2    Combining Techniques

Bagging and boosting are ensemble design techniques that allow us to improve
the performance of weak classifiers. Originally, they were designed for decision trees
[5, 6]. However, they were found to perform well for other classification rules: neural
networks [12], linear classifiers [11] and k-nearest neighbour classifiers [5]. It was
shown that for linear classifiers, the performance of bagging and boosting is affected
by the training sample size, the choice of the base classifier and the choice of the
combining rule [11]. Bagging is useful for linear classifiers constructed on critical
training sample sizes, i.e., when the number of training objects is about the data
dimensionality. On the other hand, boosting is effective for low-complexity classifiers
constructed on large training sample sizes [11, 13]. Both bagging and boosting modify
the training data set, build classifiers on these modified training sets and then combine
them into a final decision. Usually the simple majority voting is used to get a final
decision. However, the weighted majority voting used in boosting [6] is preferable
because it is more resistant to overtraining than other combining rules when increasing
the number B of combined classifiers [14]. Therefore, we use the weighted majority
vote in both studied combining techniques.

Bagging is proposed by Breiman [5] and based on bootstrapping [15] and
aggregating concepts thereby benefiting from both approaches. Bootstrapping is based
on random sampling with replacement. We take B bootstrap replicates

of the training set and build a classifier
on each of them. Aggregating actually means combining the classifiers. Often a
combined classifier gives better results than individual classifiers. In bagging,
bootstrapping and aggregating techniques are implemented in the following way.

1. Repeat for .
a) Take a bootstrap replicate  of the training data set .
b) Construct a classifier  on  with a decision boundary 1.

c) Compute combining weights , where

and .

2. Combine classifiers , , by the weighted majority vote with

weights  to a final decision rule .

Boosting, proposed by Freund and Schapire [6], is another technique to
combine weak classifiers having a poor performance in order to get a classification rule
with a better performance. In boosting, classifiers and training sets are obtained in a
strictly deterministic way. Both, training data sets and classifiers are obtained

1 We note that both bagging and boosting were originally defined for two classes. The class labels
for the objects are therefore encoded as -1 and +1, with being the decision boundary.
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sequentially in contrast to bagging, where training sets and classifiers are obtained
randomly and independently (in parallel) from the previous step of the algorithm. At
each step of boosting, training data are reweighted in such a way that incorrectly
classified objects get larger weights in a new, modified training set. By that, one
actually maximizes the margins of the training objects (the distance of the training
object to the decision boundary). By this, boosting is similar Vapnik’s Support Vector
Classifier (SVC) [16]. However, in boosting, margins are maximized locally for each
training object, while in the support vector classifier, global optimization is performed.

In this study, boosting is organized in the following way. It is based on the “arc-
fs” algorithm described by Breiman [17], where we reweight the training set instead of
resample it. The “arc-fs” algorithm is the improved version of the standard AdaBoost
algorithm [13]. Additionally, we set initial weight values , , to 1
instead of 1/n, in order to be independent of data normalization. Therefore, boosting is
implemented by us as follows.

1. Repeat for .

a) Construct a base classifier (with a decision boundary ) on the

weighted version of training data set

, using weights ,  (all  for ).

b) Compute combining weights , where

and .

c) If , set , , and renormalize so that

. Otherwise, restart the algorithm with weights , .

2. Combine base classifiers , , by the weighted majority vote with

weights  to a final decision rule .

3    Diversity Measures

Different diversity measures are introduced in the literature [18]. In our study,
we consider the Q statistic and the disagreement measure.

The Q statistic is the pairwise symmetrical measure of diversity proposed by
Yule [19]. For two classifiers Ci and Cj, Q statistic is defined as

,
where
a is the probability that both classifiers Ci and Cj make the correct classification,
b is the probability that the classifier Ci is correct and the classifier Cj is wrong,
c is the probability that the classifier Ci is wrong and the classifier Cj is correct,
d is the probability that both classifiers Ci and Cj are wrong,
and .

For a set of B classifiers, the averaged statistic Q of all pairs (Ci,Cj) is calcu-
lated. Q varies between -1 and 1. For statistically independent classifiers, it is 0. So, the
higher the absolute value of Q the less diverse the team of classifiers (denoted ).
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The disagreement measure (used in [20, 21]) is defined as
.

It is also a pairwise symmetrical measure of diversity. For a set of B classifiers, the
averaged statistics D of all pairs is calculated. The higher the value of D the more
diverse the team of classifiers (denoted ).

4    Data

In our experimental investigations we considered one artificial and three real
data sets representing two-class problems.

The artificial data set, called the 80-dimensional Gaussian correlated data, was
chosen for the many redundant features. The set consists of two classes with equal
covariance matrices. Each class is constituted by 500 vectors. The mean of the first
class is zero for all features. The mean of the second class is equal to 3 for the first two
features and equal to 0 for all other features. The common covariance matrix is
diagonal with a variance of 40 for the second feature and unit variance for all other
features. This data set is rotated in the subspace spanned by the first two features using
a rotation matrix . The intrinsic class overlap, found by Monte Carlo experiments
(an estimate of the Bayes error) is 0.07.

The three real data sets are taken from the UCI Repository [22]. They are the 8-
dimensional pima-diabetes data set, the 34-dimensional ionosphere data set and the
60-dimensional sonar data set.

Training sets are chosen randomly and the remaining data are used for testing. All
experiments are repeated 50 times on independent training sets. So all the figures below
show the averaged results over 50 repetitions. The standard deviations of the mean gener-
alization errors for the single and combined decisions are around 0.01 for each data set.

For both bagging and boosting, we choose B=250 classifiers. As explained earlier,
the classifiers were combined by the weighted majority voting to reach a final decision.

5 Diversity and Accuracy of Ensembles in Bagging and Boosting

Let us now consider the accuracy and diversity of ensembles in bagging and
boosting when the combining techniques are applied to the nearest mean classifier. It
has been shown [11] that the performance of bagging and boosting is affected by the
training sample size. This is nicely demonstrated by Fig. 1, 2a,b and 3a,b. Bagging is
mainly useful for critical training sample sizes when the number of training objects is
comparable with the data dimensionality. Boosting performs best for large training
sample sizes. Fig. 2c-f and 3c-f show that diversity of classifiers in the ensembles
obtained by bagging and boosting also depends on the training sample size.

In bagging, the classifiers are constructed on bootstrap replicates of the training
set. Bootstrapping is most effective when the training sample size is smaller or
comparable with the data dimensionality. In this case, one obtains bootstrap replicates
with the most dissimilar statistical characteristics. Classifiers constructed on such
bootstrap replicates will be also diverse. When the training sample size increases,
bootstrapping the training set becomes less effective. Bootstrap replicates of large and
very large training sets have similar statistical characteristics, because such training
sets represent the real data distribution well and perturbations in their composition
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barely affect these characteristics. Classifiers constructed on such bootstrap replicates
are also similar. Thus, in bagging, classifiers in the ensemble become less diverse when
the number of training objects increases.

In boosting, the training set is modified in such a way that training objects
incorrectly classified at the previous step get larger weights in a new, modified training
set. The larger the training set, the higher the number of borderline objects.
Consequently, larger training sets are more sensitive than smaller ones to changes in
the discriminant function (see example in Fig. 4). In large training sets, more training
objects can be classified differently even after a small change in the discriminant
function. Consequently, at each step of boosting, more changes in weights for training
objects occur. By this, we obtain more diverse training sets and, therefore, more
diverse classifiers for large training sample sizes. So, in boosting, diversity of
classifiers in the ensemble increases with an increase in the training sample size.

Before studying the relationship between accuracy and diversity in bagging and
boosting, let us note that the accuracy of the ensemble always depends on the training
sample size. Usually the accuracy of statistical classifiers increases with an increase in
the number of training objects. Therefore, combining classifiers of a higher accuracy
(obtained on larger training sets) may also result in a better combined decision (with a
higher accuracy) than when worse performing classifiers (obtained on smaller training
sets) are combined. By this, increasing the training sample size, ensembles may perform
better whatever the diversity of the ensemble is. As an illustration of this phenomenon
let us consider the sonar data set, where bagging is inefficient, i.e., does not improve on
the single classifier (see Fig. 3b). We observe, however, that the accuracy of bagging

Fig. 1. The accuracy of the single NMC, bagging and boosting applied to the NMC versus the
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Fig. 2. The efficiency (the improvement in accuracy over the single NMC) and diversity of
ensembles (with the NMC as the base classifier) in bagging and boosting versus the training
sample size for the 80-dimensional Gaussian correlated data and the 8-dimensional pima-
diabetes data (  - the larger the better,  - the smaller the better).

←

←

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

The Training Sample Size per Class

Im
p
ro

v
e
m

e
n
t 
in

 A
c
c
u
ra

c
y

80−dim. Gaussian correlated data

Bagging 
Boosting

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The Training Sample Size per Class

D
is

a
g

re
e

m
e

n
t 

M
e

a
s
u

re

80−dim. Gaussian correlated data

Bagging 
Boosting

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Training Sample Size per Class

Q
 S

ta
ti
s
ti
c
s

80−dim. Gaussian correlated data

Bagging 
Boosting

a)

c)

80-dimensional Gaussian correlated data

e)

b)

d)

The Improvement in Accuracy over the single NMC ( )

←

Diversity measured by Q statistics ( )←

Diversity measured by Disagreement measure ( )

←

8-dimensional pima-diabetes data

10
1

10
2

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

The Training Sample Size per Class

Im
p
ro

v
e
m

e
n
t 
in

 A
c
c
u
ra

c
y

8−dim. pima−diabetes data

Bagging 
Boosting

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Training Sample Size per Class

Q
 S

ta
ti
s
ti
c
s

8−dim. pima−diabetes data

Bagging 
Boosting

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The Training Sample Size per Class

D
is

a
g

re
e

m
e

n
t 

M
e

a
s
u

re

8−dim. pima−diabetes data

Bagging 
Boosting

f)

67Bagging and Boosting for the Nearest Mean Classifier



Fig. 3. The efficiency (the improvement in accuracy over the single NMC) and diversity of
ensembles (with the NMC as the base classifier) in bagging and boosting versus the training
sample size for the 34-dimensional ionosphere data and the 60-dimensional sonar data ( -
the larger the better,  - the smaller the better).
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(see Fig. 1d) increases with an increase in the number of training objects, because the
accuracy of the base classifier increases when the number of training objects becomes
larger. Boosting also improves when increasing the training sample size. Diversity of
the ensembles obtained in bagging and boosting gives us a different insight into the
problem (see Fig. 3d,f). We are interested in how the diversity of the ensembles affects
the usefulness of the combining techniques. Thus, in our study, instead of studying the
accuracy of the combining techniques with respect to diversity of the ensembles, we
consider the relationship between the improvement over the performance of the single
classifier. The plots in Fig. 2 and 3 help us assess this relationship by eye.

Both diversity and the usefulness of the combining techniques depend on the
training sample size. When the training sample size is very small (much smaller than
the data dimensionality), the training set is usually non-representative. Modifications
by sampling or reweighting of a small and inadequate data set hardly ever give a better
representation of the real data distribution. As a result, inaccurate classifiers are
obtained all the way through bagging or boosting [1]. Combining these classifiers, be
they diverse or non-diverse, is meaningless (see Fig. 1, 2a,b and 3a,b). Therefore, we
will exclude very small training sample sizes from our study. Below we discuss only
training sample sizes that are not very small: approximately larger than 10 training
objects per class for the 80-dimensional Gaussian correlated, the 34 dimensional
ionosphere and the 60-dimensional sonar data sets and larger than 4 training objects
per class for the 8-dimensional pima-diabetes data set.

Let us now consider diversity of ensembles in bagging and boosting and the
efficiency of these combining techniques. Fig. 2 and 3 show that, with exception of very
small training sample sizes, bagging and boosting are more useful (they give a larger
improvement over the performance of the single classifier) when they construct diverse
ensembles. When increasing the training sample size, both the efficiency of bagging and
diversity of ensembles constructed by bagging decrease. Bagging constructs more
diverse ensembles and, therefore, is more useful for the Gaussian correlated and the

Fig. 4. The example of sensitivity of a small data set (plot a) and a large data set (plot b) to
changes in the discriminant function. The classification of the small data set is robust: when the
discriminant function changes from 1 to 3, the classification of the data set remains the same. The
large training set is more sensitive: when discriminant function changes from 1 to 3, bordeline
objects are classified differently. In boosting, when the training set is small (plot a), at each step
(1, 2 and 3) the same 2 objects get large weights in a new, modified data set. When the training set
is large (plot b), different training objects get large weights at steps 1, 2 and 3. By this, in
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pima-diabetes data sets (see Fig. 2) than for the ionosphere data set (see Fig. 3a,c,e).
However, the usefulness of bagging does not depend only on diversity of the ensemble.
The quality of the constructed base classifier in solving a problem is also important.
The sonar data set has a complex data distribution with a non-linear boundary between
data classes. Bagging constructs quite diverse classifiers on this data set, but it is not
useful (see Fig. 3b,d,f). Boosting constructs more diverse classifiers and becomes more
useful when the training sample size increases. Boosting has an advantage to bagging,
because by overweighting the borderline objects it constructs classifiers focused on the
neighbourhood of a border between data classes. When increasing the training sample
size, the border between data classes becomes better defined, which is why boosting
constructs more diverse classifiers. Thus, boosting of linear classifiers can be useful
even when solving complex problems like in the sonar data set (see Fig, 3b).

As it was mentioned before, the efficiency of the combining techniques depends
not only on the diversity of the constructed ensemble but also on the “quality” of the
obtained classifiers. Boosting takes special care about the “quality” of classifiers: they
are constructed to account for the important regions of the data space, these around the
border between classes. Bagging does not take such special care and, therefore, is less
efficient for the type of problems considered here. Thus, in boosting, the relationship
between the efficiency and diversity of classifiers is much stronger than in bagging.

6    Conclusions

In this paper we have studied the relationship between diversity of ensembles in
bagging and boosting and the efficiency of these combining techniques applied to the
NMC. The accuracy of the ensembles has been obtained by the weighted majority
voting. The efficiency of the combining techniques has been measured by the
difference between the accuracy of the combined classifier and the accuracy of the
single classifier. In our study we have considered two diversity measures: the Q-
statistic and the disagreement measure. The simulation study performed on four data
sets has shown the following.

Diversity of ensembles in bagging and boosting is affected by the training sample
size. In bagging, diversity of ensembles decreases with an increase in the number of
training objects. In boosting, the classifiers in the ensemble become more diverse,
when the number of training objects increases.

With exception of very small training sample sizes, both bagging and boosting
perform better when classifiers in the ensemble are diverse. However, for boosting, the
correlation between the efficiency and diversity of ensembles is much stronger than for
bagging, because in boosting special care is taken about constructing the classifiers in
regions around the borders between data classes.

As the efficiency of the combining techniques is correlated with diversity
(especially for boosting), diversity might be useful as a possible criterion for predicting
a potential efficiency of the ensemble, for selecting a proper combining rule to
aggregate classifiers in the ensemble, or as a stopping criterion against overtraining in
bagging and/or boosting.
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