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Abstract. We address a one-class classification (OCC) problem aiming
at detection of objects that come from a pre-defined target class. Since
the non-target class is ill-defined, an effective set of features discriminat-
ing between the targets and non-targets is hard to obtain. Alternatively,
when raw data are available, dissimilarity representations describing an
object by its dissimilarities to a set of target examples can be used.
A complex problem can be approached by fusing information from a
number of such dissimilarity representations. Therefore, we study both
the combined dissimilarity representations (on which a single OCC is
trained) as well as fixed and trained combiners applied to the outputs
of the base OCCs, trained on each representation separately. An experi-
ment focusing on the detection of diseased mucosa in oral cavity is con-
ducted for this purpose. Our results show that both approaches allow for
a significant improvement in performance over the best results achieved
by the OCCs trained on single representations, however, concerning the
computational cost, the use of combined representations might be more
advantageous.

1 Introduction

Novelty detection problems arise in applications, where anomalies or outliers
should be recognized. Given training examples, the goal is to describe the so-
called target class such that resembling objects are accepted as targets and
outliers (non-targets) are rejected. Such a detection has to be performed in
an unknown or ill-defined context of alternative phenomena. Examples refer to
health diagnostics, machine condition monitoring, industrial inspection or face
detection. The target class is assumed to be well sampled and well defined. The
alternative non-target (outlier) set is usually ill-defined: it is badly sampled (even
not present at all) with unknown and hard to predict priors. If available, such
non-targets might be structured in ways not represented in the training set. For
such types of problems one-class classifiers (OCCs) may be very suitable [15,
10], as they are domain or boundary descriptors.

Since the non-target class is ill-defined, in complex problems, an effective
set of features discrimination between targets and non-targets cannot be easily
found. Hence, it seems appropriate to build a representation on the raw data.
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The dissimilarity representation, describing objects by their dissimilarities to the
target examples, may be effective for such problems since it naturally protects
the target class against unseen novel examples. Therefore, we will study dissim-
ilarity representations to train one-class classifiers. Optimal representations and
dissimilarity measures cannot be found if one of the classes is missing or badly
sampled. On the other hand, when one analyzes a particular phenomenon, the
model knowledge can be captured by various dissimilarity representations de-
scribing different problem characteristics. In this way, a problem is tackled from
a wider perspective: each additional representation may incorporate useful in-
formation. Combining OCCs becomes, thereby, a natural technique needed for
solving ill-defined (unbalanced) detection problems. Note, however, that stan-
dard two-class classifiers should be preferred if the non-target class is well rep-
resented.

Although such problems are often met in practice, representative standard
datasets do not exist yet. They should be based on the raw data and various
dissimilarity measures should be available. Our procedures here are not intended
for general multi-class problems for which other, more suitable, techniques exist.
Our methodology is applicable to difficult problems where the target examples
are provided with or without additional outlier examples. For that reason, the
effectiveness of the proposed procedures is illustrated with just a single, yet
complex, application, i.e. the detection of diseased mucosa in oral cavity.

Two approaches are compared within this application. The first one focuses
on combining dissimilarity representations into a single one, while the second
approach considers a combiner operating on the outputs of the OCCs. This
study extends results of our earlier work [9] devoted to usual classification tasks.
Note, however, that OCCs do not directly estimate the posterior probabilities
since they rely on information on a target class. OCCs output a sort of a signed
distance to the boundary.

2 One-Class Classifiers for Dissimilarity Representations

Consider a representation set R = {p1, p2, . . . , pn}, which is a set of represen-
tative objects. d(x, pi) denotes a dissimilarity between the objects x and pi,
independently from their initial representations. In general, we do not require
metric properties of d, since non-metric dissimilarities may arise when shapes
or objects in images are compared; see e.g. [6]. The usefulness of d is judged by
its construction and a fit to the problem; d should be relatively small for ob-
jects resembling each other in reality and large for objects that differ. Obviously,
the non-negativity and reflexivity, i.e. d(x, y) ≥ 0 and d(x, x) = 0 are taken as
granted. Thereby, a dissimilarity representation (DR) of an object x is expressed
as a vector D(x, R)=[d(x, p1), d(x, p2), . . . , d(x, pn)]. For a collection of training
objects T = {t1, t2, . . . , tN}, it extends to a N×n dissimilarity matrix D(T, R).
In general, R might be a subset of T (R ⊆ T ) or they might be distinct sets.

There are three principal learning approaches, referring to three interpreta-
tions of DRs, for which a particular methodology can be adapted. In the pre-
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topological approach (I), the dissimilarity values are interpreted directly, hence
they can be characterized in pretopological spaces [7, 12], where the neighbor-
hoods play a significant role. The embedding approach (II) builds on a spatial
representation, i.e. an embedded pseudo-Euclidean configuration such that the
dissimilarities are preserved [5, 8]. In the dissimilarity space approach (III), one
considers D(x, R) : X →Rr as a data-depending mapping to the so-called dis-
similarity space. In such a space, every dimension corresponds to a dissimilarity
D(·, pi) to a particular object pi∈R. So, the dimensions convey a homogeneous
type of information. The property that dissimilarities should be small for similar
objects (belonging to the same class) and large for distinct objects, gives a pos-
sibility for a discrimination. Thereby, D(·, pi) can be interpreted as an attribute.

Below, some exemplar one-class classifiers are described, which in practice
rely on some proximity fprox(x, ωT ) of an object x to the target class ωT is
computed. To decide whether an object belongs to the target class or not, a
threshold γ on fprox should be determined. A standard way is to supply a fraction
rfn of (training) target objects to be rejected by the OCC (a false negative ratio)
[14, 13]. This means that γ is set up such that

∫ I(fprox(x, ωT )>γ) dµ(x)= rfn,
where I is the indicator function and µ is some measure. rfn is a small value
to prevent a high acceptance of outliers as targets. In other cases, γ can be
determined as the (1−rthr)-percentile of the sorted sequence of the proximity
outputs computed for the training (target) examples. rthr is then a user-specified
fraction. Unless stated otherwise, R ⊆ T consists of the target examples only.

I. Neighborhood-Based OCC. The nearest-neighbor data description
(NNDD) is realized by the classifier CNNDD indirectly built in a pretopologi-
cal space. The proximity function relies on the nearest neighbor dissimilarities.
For n target training objects ti, a vector of averaged nearest neighbor dissimi-
larities dnn(ti, R)= 1

k

∑k
j=1 d(ti, p

j
ti
), where pj

ti
is the j-th nearest neighbor of ti

in R, is obtained. Then, a threshold γ is determined based on the (1−rthr)-th
percentile of the sorted sequence of dnn. The classifier becomes then:

CNNDD(D(x, R)) = I(dnn(x, R) ≤ γ) = I(
1
k

k∑

j=1

d(x, pj
x)) ≤ γ), pj

x ∈ R. (1)

II. Generalized Mean-Class OCC (GMDD). Assume a symmetric repre-
sentation D(R, R), where R consists of the targets only. Any such matrix D can
be embedded in a pseudo-Euclidean space1 given dissimilarities are preserved
perfectly [5, 8, 7]. (E becomes Euclidean iff D is Euclidean.) If D(T, R), R ⊂ T ,
is given, then E is determined by D(R, R) and the remaining T \R objects are
then projected to E . In the embedded space E , a simple OCC can be designed
relying on the distance to the mean vector of the target class. This can be,
however, carried out without performing the exact embedding. It can be proved
1 A pseudo-Euclidean space E := R(p,q) is a non-degenerate indefinite inner product

space such that the inner product 〈·, ·〉E is positive definite on Rp and negative
definite on Rq . 〈x, y〉E =

∑q
i=1 xiyi − ∑p+q

i=p+1 xiyi and d2
E(x, y) = ||x−y||2E = 〈x−

y, x−y〉E =d2
Rp(x, y) − d2

Rq (x, y). Since E is a linear space, many properties based
on inner products can be appropriately extended from the Euclidean case.
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that the proximity function fprox(x, ωT ) = ||xE − xE ||2E in E (where xE is the
projection of D(x, R) to E) is equivalently computed by the use of square dis-
similarities as fprox(x, ωT )= 1

n

∑n
i=1 d2(x, pi)− 1

2n2

∑n
i=1

∑n
j=1 d2(pi, pj); see [8,

9, 7] for details. Then, a threshold γ is determined as the (1−rthr)-th percentile of
the sorted sequence of fprox(ti, ωT ). The generalized mean-class data description
(GMDD) becomes then:

CGMDD(D(x, R)) = I(
1
n

n∑

i=1

d2(x, pi) − 1
2n2

n∑

i=1

n∑

j=1

d2(pi, pj) ≤ γ). (2)

III. Linear Programming Dissimilarity-Data Description (LPDD). This
OCC was proposed by us in [9]. It is designed as a hyperplane H : wT D(x, R)=ρ
in a dissimilarity space that bounds the target data from above (we assume that
d is bounded) and which is attracted towards the origin. Non-negative dissimi-
larities impose both ρ≥ 0 and wi ≥ 0. This is achieved by minimizing ρ/||w||1,
which is the max-norm distance of the hyperplane H to the origin in the dissim-
ilarity space. Hence, H can be determined by minimizing ρ−||w||1. Assuming
that ||w||1 = 1 (to avoid any arbitrary scaling of w), H is found by the min-
imization of ρ only. A target class is then characterized by a linear proximity
function on dissimilarities with the weights w and the threshold ρ. The LPDD
is then defined as:

CLPDD(D(x, R)) = I(
∑

wj �=0

wjD(x, pj) ≤ ρ), (3)

where wj are found as the solution to a soft-margin linear programming for-
mulation (the hard-margin case is then straightforward) with ν ∈ (0, 1] being
the upper bound on the target rejection fraction in training (here ν := rfn is
used) [9]:

min ρ + 1
ν N

∑N
i=1 ξi

s.t. wT D(pi, R) ≤ ρ + ξi,
∑

j wj = 1, wj ≥ 0, ρ ≥ 0, ξi ≥ 0, i = 1, 2, .., N.

As a result, sparse solutions are obtained, i.e. only some wj are non-zero. Ob-
jects of R corresponding to such non-zero weights are called support objects
(SO). The LPDD can be extended to handle example outliers as well. A la-
bel variable yi ∈ {+1,−1} is used to encode the targets (1) and outliers (−1).
The formulation above remains the same, but the main constraint changes to
yi (wT D(pi, R)) ≤ yiρ + ξi.

2.1 How Good Is an OCC?

To study the behavior of an OCC, the ROC curve [2, 14] is often used. It is a
function of the true positive (target acceptance) versus the false positive (outlier
acceptance) ratio. Example outliers are necessary for its evaluation. In principle,
an OCC is trained with a fixed target rejection ratio rfn for which the threshold
is determined. This OCC is then optimized for one point on the ROC curve.
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Fig. 1. A ROC curve for the LPDD.

To compare the performance of various classifiers, the AUC measure is used [1].
It computes the Area Under the Curve, which is the total OCC’s performance
integrated over all the thresholds. The larger AUC, the better the OCC; e.g.
in Fig. 1, the solid curve (the LPDD trained using outliers) indicates a better
performance than the dashed curve (the LPDD trained on the targets only). The
stars indicate points for which the thresholds were optimized.

2.2 Combined Representations

Learning from distinct DRs can be realized by combining them into a new rep-
resentation and then training a single OCC. As a result, a more powerful repre-
sentation may be obtained, allowing for a better discrimination. Suppose that K
representations D(τ)(T, R), τ = 1, 2, . . . , K, all based on the same R, are given.
Assume that the dissimilarity measures are similarly bounded (if not they can
be scaled appropriately), since only then we can somehow relate their values
to each other (otherwise we would need to compare not the direct values but
the corresponding percentiles). The DRs can be combined, for instance, in the
following ways:

Dcomb Expression

Avr Davr(ti, pj) = 1
K

∑K
τ=1 D(τ)(ti, pj)

Prod Dprod(ti, pj) =
∑K

τ=1 log (1 + D(τ)(ti, pj))

Min Dmin(ti, pj) = minτ{D(τ)(ti, pj)}
Max Dmax(ti, pj) = maxτ{D(τ)(ti, pj)}

The DRs are combined into one representation by using a sort of fixed rules,
usually applied when outputs of two-class classifiers are combined. Note that
a DR can be interpreted as a collection of weak classifiers, where each of them
is understood as a dissimilarity D(τ)(·, pi) to a particular object pi. In contrary
to probabilities, a small dissimilarity value D(τ)(tj , pi) is an evidence of a good
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‘performance’, indicating here that the object tj is similar to the target pi. In
general, different dissimilarity measures focus on different aspects of the data.
Hence, each of them estimates a proximity of an object x to the target pi as
D(τ)(x, pi). So, Davr yields an average proximity estimator. When, the dissim-
ilarity measures are independent (e.g. one built on statistical and the other on
structural object properties), the product combiner can be of interest. Logically,
both Davr and Dprod should integrate the strengths of various representations.
Here, Dprod is expressed such that very small numbers are avoided (they could
arise when multiplying close-to-zero dissimilarities). The min operator chooses
the minimal dissimilarity value D(τ)(x, pi), τ =1, . . . , K, hence the maximal ev-
idence for an object x resembling the target ti. The max operator works the
other way around.

2.3 Combined Classifiers

One usually combines classifiers based on their posterior probabilities. The out-
puts of the OCCs may be converted to estimates of probabilities [14] and stan-
dard fixed combiners, such as mean, product and majority voting, can be consid-
ered. Here, we also like to proceed with the exact OCCs outputs. For this reason,
we focus the LPDDs. Each LPDD is determined by a hyperplane H(τ) in the
dissimilarity space D(τ)(T, R). The distances to the hyperplane are realized by
weighted linear combinations of the form d

(τ)
H (ti)=

∑
w

(τ)
j �=0

w
(τ)
j D(τ)(ti, pj)−ρ.

As a result, one may construct an n × K dissimilarity matrix DH = [d(1)
H (T ),

. . . , d
(K)
H (T )] expressing the non-normalized signed distances between the n train-

ing objects and K ‘base’ classifiers. Hence, again an OCC can be trained on DH .
This means that an OCC becomes a trained combiner now, re-trained by using
the same training set (ideally, an additional validation set should be used). The
LPDD can be used again, as well as some other feature-based OCCs. (Although
the values of DH become negative for the targets and positive for the outliers,
they are bounded, so the LPDD can be constructed.) Additionally, two other
standard data descriptions (OCCs) are used, where a proximity of an object
to the target class relies on the k-mean information or density estimation by
the Parzen kernels [13], respectively (the appropriate thresholds are set up as
described in section 2).

3 Experiments and Results

The data consist of autofluorescence spectra acquired from healthy (target) and
diseased (outlier) mucosa in the oral cavity [11, 16]. The measurements were
taken at 11 different anatomical locations using six excitation wavelengths 365,
385, 405, 420, 435 and 450 nm. We will denote them by v1 − v6. After prepro-
cessing [16], each spectrum consists of 199 bins. In total, 856 and 132 spectra
representing healthy and diseased tissue, respectively, are given for each wave-
length. The spectra are normalized to have a unit area; see also Fig. 2. Two cases
are here investigated: combining various DRs for a fixed wavelength of 365 nm
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Fig. 2. Examples of normalized autofluoresence spectra for healthy (left) and diseased
(right) patients for the excitation wavelength of 365 nm.

(experiment I) and combining representations derived for all the wavelengths
(experiment II).

The objects are 30 times randomly split into the training set T and the test
set S in the ratio of 60% : 40%, respectively. R, R ⊂ T , consists of the targets
only, while T contains additional outliers. |R| = 514, |T | = 594 and |S| = 394
(337/57 healthy/diseased patients). If an OCC cannot use outlier information
in the training stage, then it relies on D(τ)(R, R) only. In the testing stage,
D(τ)(S, R) are used. Since we want to combine the representations directly, they
should have a similar range. This is achieved by scaling all the initial D(τ) by
the maximal value of D(τ) determined on the training data. So, further on, D(τ)

are assumed to be scaled appropriately. The LPDD is trained with ν =0.05 and
the 3-NNDD and the GMDD use the threshold of 0.05. If the LPDD is trained
using outlier information, it is denoted as Cout

LPDD, otherwise, as CLPDD. Trained
combiners use the zero threshold. All the experiments are done using DD-Tools
[13] and PRTools [3].

Five dissimilarity representations D(1) − D(5) are considered for the normal-
ized spectra in experiment I (wavelength 365 nm). The first three DRs are based
on the l1 (city block) distances computed between the smoothed spectra them-
selves (D(1)) and their first and the second order Gaussian-smoothed (σ = 3
samples) derivatives (D(2) and D(3), respectively). The zero-crossings of the
derivatives indicate the peaks and valleys of the spectra, so they are informative.
The differences between the spectra focus on the overlap, the differences in first
derivatives emphasize the locations of peaks and valleys, while the differences in
second derivatives indicate the tempo of changes in spectra. D(4) is based on the
spherical geodesic distance d(4)(x, y) = r arccos(xT y)/12. D(5) is based on the
Bhattacharyya distance, a divergence measure between two probability distribu-
tions. This measure is applicable, since the normalized spectra, say, si, can be
considered as unidimensional histogram-like distributions. They are constant on
disjoint intervals I1, . . . , IN , such that si(x)=

∑N
z=1 hi

z I(x∈ Iz), where hi
z ≥ 0.

The Bhattacharyya distance [4] is then: d(5)(si, sj)=− log (
∑N

z=1 (hi
zh

j
z)1/2 |Iz|.
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Table 1. Experiment I: the AUC performances (in %), averaged over 30 runs, of OCCs
built either on the combined DRs or fixed and trained combiners applied to the OCCs
outputs. All DRs are considered for the excitation wavelength of 365 nm. SO denotes
support objects. The standard deviations of the means are in parenthesis.

Single DRs: OCCs trained on D(τ)

DR C3−NNDD (1) CGMDD (2) CLPDD (3) #SO Cout
LPDD (3) #SO

D(1) 80.9 (0.5) 77.0 (0.6) 72.3 (0.7) 2.5 79.6 (0.5) 5.5
D(2) 86.0 (0.4) 78.4 (0.5) 72.0 (0.7) 2.8 83.1 (0.5) 5.8
D(3) 86.7 (0.4) 78.1 (0.6) 78.1 (0.7) 2.9 84.2 (0.5) 5.3
D(4) 81.8 (0.5) 76.6 (0.6) 68.0 (0.9) 2.9 80.2 (0.5) 6.1
D(5) 85.5 (0.4) 77.3 (0.5) 75.1 (0.6) 2.1 80.1 (0.5) 2.5

Combined DRs: OCCs trained on Dcomb ( D(1)−D(5))

Dcomb C3−NNDD (1) CGMDD (2) CLPDD (3) #SO Cout
LPDD (3) #SO

Avr 95.5 (0.2) 94.6 (0.3) 93.0 (0.3) 4.1 93.4 (0.3) 5.1
Prod 95.7 (0.2) 94.9 (0.3) 93.6 (0.3) 4.6 93.6 (0.4) 7.6
Min 85.6 (0.4) 84.6 (0.4) 84.7 (0.5) 14.6 87.1 (0.9) 15.7
Max 93.5 (0.3) 90.6 (0.4) 84.7 (0.8) 7.1 89.0 (0.6) 10.5

Fixed combiners built on the OCCs outputs from D(1)−D(5)

Combiner C3−NNDD (1) CGMDD (2) CLPDD (3) Cout
LPDD (3)

Mean 98.0 (0.2) 94.4 (0.4) 90.7 (0.6) — 93.8 (0.3) —
Prod 98.0 (0.1) 81.3 (0.6) 87.8 (0.5) — 91.1 (0.3) —
Voting 98.3 (0.1) 95.9 (0.2) 95.5 (0.2) — 97.0 (0.2) —

Trained combiners built on the LPDDs outputs from D(1)−D(5)

Combiner C3−NNDD (1) CGMDD (2) CLPDD (3) #SO Cout
LPDD (3) #SO

LPDD — — 90.1 (0.5) 4.9 95.8 (0.2) 5.0
5-means — — 88.0 (0.4) — 91.1 (0.4) —
Parzen — — 90.5 (0.4) — 94.5 (0.3) —

In experiment II, DRs are derived for all excitation wavelengths. The first
three measures D(1) − D(3) are used. For each measure, six DRs are combined
over the excitation wavelength v1 − v6 and, in the end, all 18 DRs are combined,
as well.

Fixed combiners are also built on the outputs of single OCCs (the outputs
need to be converted to posterior probabilities, e.g. as in [14]). Additionally,
trained OCC combiners are constructed on the outputs of single LPDDs. The
trained combiners are the LPDD and the k-means and Parzen data descrip-
tions [13].

The following observations can be made from experiment I; see Table 1. Both
an OCC trained on the combined representations and a trained or fixed com-
biner on the OCCs outputs improve the AUC performance of each single OCC
trained on D(τ). Concerning the combined representations, the element-wise av-
erage and product combiners perform better than the min and max operators.
The 3-NNDD seems to give the best results; they are somewhat better than the
ones obtained from the GMDD and and the LPDD trained on Dcomb(T, R). How-
ever, in the testing stage, both the 3-NNDD and the GMDD rely on computing
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dissimilarities to all 514 objects of R, while the LPDD is based on maximum 16
support objects (see #SO in Table 1; the SO are determined during training).
Hence, if some outliers are available for training, the LPDD can be recommended
from the efficiency point of view. The fixed and trained combiners on the OCCs
outputs perform well. In fact, the best overall results are reached for the fixed
majority voting combiner. However, combiners require more computations; first
five OCCs are trained on each D(τ) separately and then, the final combiner is
applied. Yet, if the LPDD Cout

LPDD is used for training, then the testing stage is
cheap: the dissimilarities to 27 objects have to be computed (sum of the support
objects for single representations).

Due to lack of space, in Table 2 only some (the best) combining techniques
are presented. Again, both an OCC trained on the combined representations
(by the average and product) and a fixed or trained combiner on the OCCs
outputs significantly improve the AUC performance (by more 10%) of each sin-
gle OCC. By using all the six wavelengths and three dissimilarity measures (18
in total), all the combining procedures yield nearly perfect performances, i.e.
mostly 99.5% or more. The trained combiners on the LPDDs outputs are some-
what worse (possibly due to overtraining) than the majority voting combiner,
however, they are similar to the results of the mean combiner. Since the spectra
derived from various wavelengths describe different information, an OCC built
on their combined representation allows for reaching a somewhat better AUC
performance than an OCC built on the DR combined for a single wavelength.
From the computational point of view, either an LPDD trained on the combined
DR or a fixed voting combiner on the LPDDs outputs should be preferred.

4 Conclusions

Here we study procedures of detecting one-class phenomena based on a set of
training examples, performed in an unknown or ill-defined context of alternative
phenomena. Since a proximity of an object to a class is essential for such a
detection, dissimilarity representations (DRs) can be used as the ones which
focus on object-to-target dissimilarities. The discriminative properties of various
representations can be enhanced by a proper combining. Three different one-
class classifiers (OCCs) are used: the NNDD (based on the nearest neighbor
information), the GNMD (a generalized mean classifier in an underlying pseudo-
Euclidean space) and the LPDD (a hyperplane in the corresponding dissimilarity
space), which offers a sparse solution.

DRs directly encode evidences for objects which lie in close or far neigh-
borhoods of the target objects. Hence, they can naturally be combined (after a
proper scaling) into one representation, e.g. by an element-wise averaging. This
is beneficial, since only one OCC can be trained, ultimately. From our study on
the detection of diseased mucosa in oral cavity, it follows that DRs combined
by average or product have a larger discriminative power than any single one.
We also conclude that by combining information of DRs derived for spectra of
different excitation wavelengths is somewhat more beneficial than by using only
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Table 2. Experiment II: the AUC performances (in %), averaged over 30 runs. Single
DRs: single OCCs built on DRs for six excitation wavelengths (only the worst and the
best AUCs; |#SO| = 2−7 for the LPDD). Combined DRs: OCCs built on the Dcomb

combined over six wavelengths and fixed D(τ). Fixed combiners: fixed rules applied
to the outputs of the trained OCCs and trained combiners: combiners trained on
the outputs of the LPDDs, both combined over six wavelengths. ‘ALL’ refers to the
results on all 6 × 3 (six wavelengths and three measures) DRs. SO denotes support
objects.

Single DRs: OCCs trained on D(τ) for different vi

D(1) D(2) D(3) ALL

C3−NNDD 80.9 - 84.8 (0.5) 82.8 - 87.0 (0.5) 83.5 - 88.8 (0.5) 80.9 - 88.8 (0.5)

CGMDD 77.0 - 79.4 (0.7) 77.9 - 81.7 (0.6) 75.4 - 81.6 (0.6) 75.4 - 81.7 (0.7)

CLPDD 62.8 - 72.4 (0.8) 65.5 - 72.8 (0.8) 70.7 - 77.5 (0.8) 62.8 - 77.5 (0.8)

Cout
LPDD 78.3 - 81.7 (0.9) 73.5 - 83.1 (0.7) 77.7 - 83.2 (0.6) 73.5 - 83.2 (0.6)

Combined DRs: OCCs trained on Dcomb combined over v1 − v6

C3−NNDD, Dcomb D(1) D(2) D(3) ALL

Avr 97.7 (0.2) — 97.6 (0.2) — 96.8 (0.1) — 99.6 (0.0) —
Prod 97.7 (0.2) — 97.7 (0.2) — 96.9 (0.1) — 99.7 (0.0) —

CGMDD, Dcomb D(1) D(2) D(3) ALL

Avr 97.2 (0.2) — 97.2 (0.2) — 96.0 (0.1) — 99.6 (0.0) —
Prod 97.3 (0.2) — 97.4 (0.2) — 96.3 (0.1) — 99.6 (0.0) —

CLPDD, Dcomb D(1) #SO D(2) #SO D(3) #SO ALL #SO

Avr 96.6 (0.3) 5.2 97.1 (0.3) 4.2 95.6 (0.2) 3.6 99.5 (0.1) 4.3
Prod 96.9 (0.2) 5.7 97.2 (0.3) 4.0 95.8 (0.2) 3.7 99.6 (0.0) 4.9

Cout
LPDD, Dcomb D(1) #SO D(2) #SO D(3) #SO ALL #SO

Avr 96.7 (0.1) 5.1 97.1 (0.1) 4.0 95.6 (0.1) 3.6 99.5 (0.0) 4.5
Prod 96.8 (0.1) 7.3 97.2 (0.2) 5.8 95.8 (0.1) 5.0 99.6 (0.1) 6.6

Fixed combiners applied to the OCCs outputs

C3−NNDD outputs D(1) D(2) D(3) ALL

Mean 97.8 (0.1) — 98.0 (0.1) — 98.2 (0.2) — 99.6 (0.1) —
Prod 98.6 (0.1) — 98.5 (0.1) — 98.6 (0.1) — 99.6 (0.0) —
Voting 97.6 (0.1) — 98.7 (0.1) — 98.6 (0.1) — 99.8 (0.0) —

CGMDD outputs D(1) D(2) D(3) ALL

Mean 94.3 (0.4) — 94.2 (0.3) — 94.3 (0.3) — 98.3 (0.2) —
Prod 96.0 (0.2) — 96.4 (0.1) — 96.7 (0.1) — 99.7 (0.0) —
Voting 96.7 (0.2) — 97.4 (0.1) — 97.6 (0.1) — 99.6 (0.1) —

Fixed and trained combiners applied to the CLPDD outputs

Combiner D(1) #SO D(2) #SO D(3) #SO ALL #SO

Mean 92.7 (0.4) — 92.9 (0.4) — 91.8 (0.3) — 94.5 (0.2) —
Prod 95.7 (0.9) — 95.7 (1.0) — 95.7 (0.5) — 98.7 (0.6) —
Voting 95.7 (0.4) — 96.8 (0.2) — 97.9 (0.1) — 99.3 (0.1) —

LPDD 89.3 (0.4) 5.9 91.5 (0.4) 5.9 94.6 (0.2) 5.9 96.6 (0.3) 13.2
Parzen 92.1 (0.3) — 94.4 (0.3) — 94.9 (0.3) — 98.2 (0.1) —

Fixed and trained combiners applied to the Cout
LPDD outputs

Combiner D(1) #SO D(2) #SO D(3) #SO ALL #SO

Mean 93.7 (0.4) — 93.6 (0.5) — 95.6 (0.4) — 98.8 (0.3) —
Prod 95.4 (0.8) — 96.2 (0.9) — 97.2 (0.5) — 99.5 (0.6) —
Voting 96.3 (0.4) — 96.8 (0.2) — 98.0 (0.1) — 99.5 (0.1) —

LPDD 95.7 (0.2) 6.0 96.5 (0.2) 6.0 95.8 (0.2) 6.0 99.1 (0.1) 16.3
Parzen 95.5 (0.2) — 96.8 (0.2) — 96.2 (0.2) — 98.9 (0.1) —
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one fixed wavelength, yet different dissimilarity measures. In the former case,
all the OCCs on the combined representations performed about the same, while
in the latter case, the LPDD trained on the targets seemed to be worse. The
fixed OCC combiners have also been applied to the outputs of single OCCs. The
overall best results are reached for the majority voting rule. The trained OCC
combiners, applied to the outputs of single LPDDs, performed well, yet worse
than the voting rule. Concerning the computational issues, either the LPDD on
the combined representations should be used or the majority voting combiner
applied to the LPDDs outputs.

Further studies on new problems need to be conducted in the future.
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