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Abstract. In the paper a new method for handling with missing fea-
tures values in classification is presented. The presented idea is to form
an ensemble of one-class classifiers trained on each feature, preselected
group of features or to compute from features a dissimilarity represen-
tation. Thus when any feature values are missing for a data point to
be labeled, the ensemble can still make a reasonable decision based on
the remaining classifiers. With the comparison to standard algorithms
that handle with the missing features problem it is possible to build
an ensemble that can classify test objects with all possible occurrence
of missing features without retrain a classifier for each combination of
missing features. Additionally, to train such an ensemble a training set
does not need to be uncorrupted. The performance of the proposed en-
semble is compared with standard methods use with missing features
values problem on several UCI datasets.

1 Introduction

The increasing resolution of the sensors increases also the probability that one
or a group of features can be missing or strongly contaminated by noise. Data
may contain missing features due to a number of reasons e.g. data collection
procedure may be imperfect, a sensor gathering information may be distorted
by unmeasurable effects yielding the loss of data. Several ways of dealing with
missing feature values have been proposed. The most simple and straightfor-
ward is to ignore all missing features and use the remaining observations to
design a classifier [1]. Other group of methods estimates values of the missing
features from available data by: replacing missing feature values by e.g. their
means estimated on a training set [2], [3]. Morin [4] proposed to replace miss-
ing feature values by values of these features from their nearest neighbors, in
the available, lower dimensional space, from the training set. [5, 4, 1] described
different solutions using the linear regression to estimate substitutes for missing
features values. However, Little [5] showed that many such methods are incon-
sistent, i.e. discriminant functions designed form the completed training set do
not converge to the optimal limit discriminant functions as sample size tends to
infinity. At this moment, methods recommended as generally best are based on
EM algorithm [6, 1].
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However, because of the complexity of existing methods, neither of them can
provides a solution for all cases with missing features, that can occur during
classification. When an corrupted test point occurs a classifier is retrained or
missing features is replaced by estimated ones which can lead to worse results
than when the classification decision is based just on existing features [5, 1].
Additionally, in most of the proposed solutions to the missing feature problem
it is assumed that training data is uncorrupted, thus potentially valuable data
are neglected during training.

In this paper several techniques based on combining one-class classifiers [7]
are introduced to handle missing feature. The classifiers are trained on one-
dimensional problems, n-dimensional problem or features are combined in dis-
similarity representations. The presented method can coupe with all possible
situation of missing data, from single one to N − 1, without retraining a classi-
fier. It also makes use of corrupted data available for training.

The layout of this paper is as follows: in section 2, the problem of missing
feature values and combining one-class classifiers (occs) is addressed. In section
2.1 some possibility of combining one-class classifiers to handle missing features
problem are discussed. Section 3 shows results on UCI datasets and discusses
the relative merits and disadvantages of combining occs. Section 4 presents the
discussion and conclusions.

2 Formal Framework

Suppose two sets of data are given: a training set

L = {(xm,ym) : xm ∈ Rpm ; m = 1 . . .M},

and a test set

T = {xt : xt ∈ Rqt ; t = 1 . . . T }, where (pm,qt) ∈ RN .

Where x-s represent objects and y-s represent labels1. N is a number of
all the features considered in a classification task. Each object x in L or T can
reside in the different space. Even if xm1 and xm2 are represented in spaces of
the same dimensionality ‖pm1‖ = ‖pm2‖, the present features might be different
pm1 �= pm2 . Such a problem is called a classification with missing data in training
and test sets.

Suppose a classifier is designed by using uncorrupted data. Assume that input
(test) data are then corrupted in particularly known ways. How to classify such
corrupted inputs to obtain the minimal error? For example, consider a classifier
for data with two features, such that one of the features is missing for a particular
object x to be classified. Fig. 1 illustrates a three-class problem, where for the
test object x the feature f1 is missing. The measured value of f2 for x is xf2 .
Clearly, if we assume that the missing value can be substituted by the mean(f1),

1 It is assumed that both the training set L and the test set T are corrupted.
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x will be classified as y2. However, if the priors are equal, y3 would be a better
decision, because p(xf1 |y3), estimated on the training set is the largest of the
three likelihoods. In terms of a set of existing features F, the posteriors are [8]:
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Fig. 1. Class conditional distributions for
a three-class problem. If a test point misses
the feature value from f1 the optimal
classification decision will be y3 because
p(xf1 |y3) (estimated on the training set)
is the largest.

P (yi|F) =
∫

gi(F) p(F) df−∫
p(F) df−

(1)

where f− indicates the missing fea-
tures, gi(F) = P (yi|F, f−) is the con-
ditional probability from a classifier.
In short, equation (1) presents inte-
grated, marginalization of the poste-
rior probability over the missing fea-
tures.

Several attempts were made to es-
timate missing feature values for a test
object [1] e.g. by:
- solving a classification problem in
an available lower-dimensional feature

space F (obviously in this case no estimation of the missing data is required);
- replacing missing feature values in T by the means of known values from L;
- replacing missing values in T by values from the nearest neighbor from L;
- using the expectation-maximization algorithm to maximize e.g. the class pos-
teriors. This method is the most complicated one and the assumption about
underlaying data distribution has to be made.

In further experiments the first and the third methods mentioned above are
used as a comparison to the proposed methods.

2.1 Combining One-Class Classifiers

In the problem of one-class classification the goal is to accurately describe one
class of objects, called the target class, as opposed to a wide range of other objects
which are not of interest, called outliers. Many standard pattern recognition
methods are not well equipped to handle this type of problem; they require
complete descriptions for both classes. Especially when one class is very diverse
and ill-sampled, usually (two-class) classifiers yield a very bad generalization for
this class. Various methods have been developed to make such a data description
[7]. In most cases, the probability density of the target set is modeled. This
requires a large number of samples to overcome the curse of dimensionality [9].

Since during a training stage it is assumed that only target objects maybe
present, a threshold is set on tails of the estimated probability or distance d
such that a specified amount of the target data is rejected, e.g. 0.1. Then in the
test stage, the estimated distances d can be transformed to resemble posterior
probabilities as follow p(y|x) = 1

1+e−d for the target class and 1− p(y|x) for the
outlier class.
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Fig. 2. A multi-class problem solved by: (left) combining two-class classifiers (one-vs-
all approach), (right) combining one-class classifiers by the maximum resemblance to
a model.

Fig. 2 illustrates differences between the solution to multi-class problem by
combining two-class classifiers (one-vs-all approach) [9] and combining one class
classifiers [7]. In the first approach, the entire data space is divided into parts
being assigned to a particular class. A new object x has to be classified to one of
the classes present in the training set. It means in a case of outliers the classifica-
tion is ironies. In addition in one-vs-all or pairwise combining approach one has
to compensate imbalance problem by e.g. settings probabilities to appropriate
levels.

The right in Fig. 2 plot shows the occs combined by max rule. This means
that in order to handle a multi-class problem, occs can be combined by the
max rule or by a train combiner. In this approach, one assigns a new data
point only to the particular class if it is in one of the described domains. If a
new object x lies outside a region described by the target class, it is assigned
to the outlier class. In the combination of two-class classifiers it appears that
often the more robust mean combination rule is to be preferred. Here extreme
posterior probability estimates are averaged out. In one-class classification only
the target class is modeled P (x|ωTc) and a low uniform distribution is assumed
for outlier class. This makes this classification problem asymmetric and extreme
target class estimates are not canceled by extreme outlier estimates. However,
the mean combination covers a broad domain in feature space [10], while the
product rule has restricted range. Especially in high dimensional spaces this
extra area will cover a large volume and potentially a large number of outliers.

2.2 Proposed Method

In this paper we propose several methods based on combing one-class classifiers
to handle the missing features problem. Our goal is to build such an ensemble
that dose not required retraining of a classifier for every combination of missing
data and at the same time minimizes number of classifiers that has to be con-
sidered. In this section we will describe several ways of combining occs and some
possibilities for the based classifiers.
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First, two-class classifiers, combined like in one-vs-all method are considered;
Fig. 2 (left) trained on all possible combination of missing feature values. In such
case the number of base two-class classifiers that has to be trained is KC,N =
(2N − 1) · C·(C−1)

2 , where N is the number of features and C is the number
of classes. Since all the features cannot be missing 1 is subtracted from all 2N

possibilities. For a problem with ten features and two classes, K2,10 = 1023
and for 20 features, K2,20 = 1048575. For such simple problems the number of
classifier is already quite large.

On the other hand, if one-class classifiers are trained on all possible combi-
nation of missing features than the number of possibilities reduces to KC,N =
(2N − 1) · C and the classification regions do not longer are considered as open
spaces, Fig. 2 (right). However, for a large number of features this is a quite
complicated study, since the number of classifiers is still cumbersome to handle
and the system is difficult to validate.

In this paper, one of the proposed methods is to use one-class classifiers as
base classifiers to combine, trained on one-dimensional problems and combine
by fix combining rules: mean, product, max etc.. This reduces the number of
classifiers that has to be in the pool as a combining possibilities to N ·C for the
fixed combining rules K2,20 = 40.

Below the way how to use fix (mean, product, and max) combining rules
applied to the missing feature values problem in multi-class problems are de-
scribed.

Mean combining rule: y(x|ωT ) = argmaxc

[
∑N ′

i=1 P (xi|ωTc)
]

Product combining rule: y(x|ωT ) = arg maxc

[
∏N ′

i=1 P (xi|ωTc)
]

Max combining rule: y(x|ωT ) = arg maxc

[

maxi P (xi|ωTc)
]

where P (xi|ωTc) is a probability that object x belongs to the target class C and
N ′ is the number of available features. The probabilities P (xi|ωTc) estimated on
single features are combined by fix rules. The test object x is classified to the class
C with the maximum resemblance to it. However, because a single feature xi

is considered at time during classification the feature interactions are neglected.
This can lower the performance of the proposed ensemble. This problem will be
addressed in the section 3.2 of this paper.

Combining Dissimilarity Based Representations. The second method
that is proposed in this paper, to handle missing features, is to combine non-
missing features in the dissimilarity measure [11]. In this case, instead of training
a classifier in the N ′ dimensional feature space it is trained in a dissimilarity
space. In our experiments the sigmoid transformation from distances to dissim-
ilarities is used:

ddjk =
1

N ′

N ′
∑

i=1

[
2

1 + exp(− djki

σi
)
− 1

]

where σi =
di

N
(2)
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where ddjk is the computed dissimilarity between object j and k and djki is the
Euclidean distance between those two objects. To increase the robustness in the
case of missing features dissimilarities were averaged out over one-dimensional
representations. σi is approximated by the average distance between training
objects considered the single feature i at time.

3 Experiments

In the experiments as the base classifier a simple Parzen classifier was used with
the threshold set to reject 0.05 of target objects in the training set [7]. The
smoothing parameter was optimized by leave-one-out approach [12]. Linear Pro-
gramming Dissimilarity-data Description (LPDD) [13] (dist) was used as the
base classifier for combining dissimilarity representations with 0.05 of the target
objects rejection rate. To combine classifiers resemblances to the target class
y(x|ωT ) were transformed to posterior probabilities by the sigmoid transforma-
tion 1

1+exp(−y(x|ωT )) . The fixed (mean, product and max) [14] combining rules
are applied to posterior probabilities computed from the resemblance on single
features.

The proposed methods were compared to two standard methods designed
to handle missing data: training classifier in a lower, available feature space
(lower) and replacing missing features in a test object from T by the features of
their nearest neighbor from a training set L (fnn). The experiments were carried
out on some of UCI datasets [15]: WBCD - Wisconsin Breast Cancer Dataset
(number of classes c = 2, number of features k = 9), MFEAT (c=10, k=649),
CBANDS (c=24, k=30), DERMATOLOGY (c=6, k=34), SATELLITE (c=6,
k=36). The total number of features in MFEAT dataset was reduced from the
original number of 649 to 100 (MFEAT 100) and 10 (MFEAT 10) by a forward
feature selection based on maximization of the Fisher criterion: the trace of
ratio of the within- and between-scatter matrices J = tr{S−1

W SB} [16], to avoid
the curse of dimensionality. The datasets were spited randomly into the equally
sized training and test sets. For each percent of missing features ([0:10:90]%)
ten training sets and for each training set ten test sets were randomly generated
10 × 10.

3.1 Combining occs Trained on Single Features

In this section the ensemble built from classifiers trained on individual features
are evaluated. It is assumed that each feature contributes similar, independent
amount of information to the classification problem. Any interactions between
features are neglected.

In Fig. 3 mean errors for different solution to the missing features problem for
different multi-class problem are presented. The classifiers are trained on one-
dimensional problems and combined by fix combining rules. In dism method
corespondent dissimilarities are computed and LPDD is trained on all one-class
classification problems. The results are compared with two standard methods



98 Piotr Juszczak and Robert P.W. Duin

WBCD MFEAT 10

0 30 60 90
0

0.2

0.4

0.6

% of missing features

m
ea

n 
er

ro
r

0 30 60 90
0.2

0.6

1

% of missing features

m
ea

n 
er

ro
r

CBANDS DERMATOLOGY

0 30 60 90
0.2

0.6

1

% of missing features

m
ea

n 
er

ro
r

0 30 60 90
0.2

0.4

0.6

0.8

% of missing features

m
ea

n 
er

ro
r

Fig. 3. Mean error for different percent of missing features for the combiners trained on
single features for various combining rules: (mean, product, max), dism - dissimilarity
representation LPDD. lower - the Parzen classifier trained on all available features. fnn

- the Parzen classifier trained on available features plus features from nearest neighbor
from a training set. The results are averaged over 10 × 10 times; see text for details.

for missing features problem: lower - a classifier is trained on all available fea-
tures neglecting missing features and fnn missing feature values are replaced by
features from the nearest neighbor of the test object in the training set. It can
be observed that mean and product rule are performing the best for the entire
range of missing features. It depends on the dataset which of this fix combin-
ing rules is better. The dissimilarity representation does not perform well, apart
from WBCD, for which for a small percent of missing features the performance
is comparable with fix combiners. The reason is that the computed dissimilar-
ities on the training set, on all the features, are not resemble to dissimilarities
computed on the test set with missing features. However, the dism method out-
performs the standard fnn method. The reasons for such poor performance of
the fnn method is that if more features are missing replacing them by features
from the training set will cause less differences between test objects. The single
classifier trained on all available features performs the best on the CBANDS
dataset however is outperformed in other problems by fix combining rules. It
can be concluded that more complicated problems split in simple ones and then
combine can outperform a single, big classifier [17, 18].
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Fig. 4. Mean error for different percent of missing features for the combiners trained on
(n+1) features for various combining rules: (mean, product, max), dism - dissimilarity
representation LPDD. lower - the Parzen classifier trained on all available features. fnn

- the Parzen classifier trained on available features plus features from nearest neighbor
from a training set. The results are averaged over 10 × 10 times; see text for details.

3.2 Combining occs Trained on (n + 1) Features

In the previous section it was assumed that every feature contributes a similar,
independent amount of information to the classification problem. In this section
we will study a possibility when a fixed number of features is always present
or when there is a certain subset of features without which the classification is
almost random e.g. for medical data like: name, age, height,..., examinations. It is
probably possible to classify a patient to the healthy/unhealthy group without a
name or age provided, but not without specific examination measurements. One
of the possible solutions is to use a weighted combining rule [19].

In this paper, a different approach is proposed. Let us assume that the same
n features are always present for the test objects. Therefore, instead of N pos-
sible missing features we have N − n possibilities. In this case, we propose to
train (N − n − 1) base one-class classifiers in a (n + 1)-dimensional space. As a
result, the base classifiers are highly depend. According to common knowledge
on combining classifiers [14, 20], combining is beneficial when base classifiers dif-
fer. However, in our case, there is a trade-off between the number n of common
features and how well the posterior probabilities are estimated. In Fig. 4, the
mean error for n = 3 for WBCD and MFEAT 10 is shown. The standard devi-
ation varies between 1-2% from the mean value. The classifiers are trained on
(n+1) features and then combined. Compared to the results showed in Fig. 3
the performance of fix combiners increases. The posterior probabilities are better
estimated and some features dependencies are also included in the estimation. If
an additional knowledge is available about a classification problem e.g. n features
are always present by appropriate combining better classification performance
can be achieved.
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3.3 Small Sample Size Problem

In this section the performance of the proposed method are evaluated for small
sample size problems [9]. In small sample size problems the number of objects
per class is similar or smaller than the number of features.

MFEAT 100 SATELLITE

0 30 60 90
0

0.5

1

% of missing features

m
ea

n 
er

ro
r

0 30 60 90
0

0.3

0.6

0.9

% of missing features

m
ea

n 
er

ro
r

Fig. 5. Small sample size problems. Mean error for different percent of missing features
for the combiners trained on single features for various combining rules: (mean, product,
max), dism - dissimilarity representation LPDD. lower - the Parzen classifier trained
on all available features. fnn - the Parzen classifier trained on available features plus
features from nearest neighbor from a training set. The results are averaged over 10×10
times; see text for details.

Fig. 5 shows the mean error for two small sample size problems. Because the
probabilities are estimated on single feature the proposed method is robust to
small sample size problems. The classifier statistics are better estimated and the
constructed ensemble is robust against noise.

4 Conclusions

In this paper, several methods for handling missing feature values have been
proposed. The presented methods are based on combining one-class classifiers
trained on one-dimensional or (n+1) dimensional problems. Additionally, the
dissimilarity based method is proposed to handle the missing features problem.
Compared to the standard methods, our methods are much more flexible, since
they require much less classifiers to consider and do not require to retrain the sys-
tem for each new situation when missing feature values occur. Additionally, our
method is robust to small sample size problems due to splitting the classification
problem to N several smaller ones.
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