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Abstract. A typical recognition system consists of a sequential combi-
nation of two experts, called a detector and classifier respectively. The
two stages are usually designed independently, but we show that this may
be suboptimal due to interaction between the stages. In this paper we
consider the two stages holistically, as components of a multiple classifier
system. This allows for an optimal design that accounts for such inter-
action. An ROC-based analysis is developed that facilitates the study
of the inter-stage interaction, and an analytic example is then used to
compare independently designing each stage to a holistically optimised
system, based on cost. The benefit of the proposed analysis is demon-
strated practically via a number of experiments. The extension to any
number of classes is discussed, highlighting the computational challenges,
as well as its application in an imprecise environment.

1 Introduction

In this paper we view the sequential combination of two classifiers as a Multiple
Classifier System (MCS). We illustrate that the independent design of individual
classifiers in such sequential systems results in sub-optimal performance, since
it ignores the interaction between stages. In this paper we demonstrate that op-
timality can be obtained by viewing such an MCS in a holistic manner. This
research is targeted specifically at two-stage recognition systems, in which the
first stage classifier attempts to detect target object distributed among a typ-
ically poorly sampled, or widely distributed outlier class. The second classifier
then operates on objects selected by the first, and discriminates between sub-
target classes. An example is image-based road-sign recognition [9], in which the
first stage involves detecting road-signs that are distributed among an arbitrary
background, and the second stage consists of a classifier to distinguish between
different sign classes. Another application is fault diagnosis, such as [7], in which
the first stage classifier is designed to detect a fault from normal operation, and
the second stage to characterise the type of fault.

Considering the detector, since the outlier class is poorly defined, a two-class
discrimination scheme is inappropriate, and other methods that are trained/
designed only on the target class are typically used, such as correlation. Re-
cently One Class Classification (OCC) was introduced [12], consisting of a for-
mal framework to train models in situations in which data from only a single
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class is available. This allows a statistical pattern recognition methodology to
be taken in designing the detector1. Thus we consider these recognition systems
as a mixture of one-class and multi-class classifiers.

Evaluating the recognition system involves analysing the classification accu-
racy, and the rate of outlier false acceptances. Importantly, a poor detector that
does not detect a large fraction of target objects results in poor classification
performance. In the opposite case, a very sensitive detector may pass an unac-
ceptably large fraction of outlier objects to the classifier, which may for example
result in high manual processing costs or computational overload.

The paper is structured as follows: Section 2 presents an analytic example to
demonstrate how the two classifiers interact. A cost-based approach using ROC
analysis demonstrates how system optimisation can be performed in evaluating
the entire system. In Section 3 the multiple-class extension is discussed briefly,
highlighting some problems that exist in extending the analysis to a large num-
ber of target classes. In Section 4, some experiments on real data are performed,
consisting of a simple problem with 2 target classes, and a 4-class problem in-
volving hand-written digit recognition. In Section 5 we briefly consider the case
in which priors or costs cannot be defined precisely, discussing how different sys-
tem configurations can be chosen in these situations. Conclusions are given in
Section 6.

2 The Dependence Between Classifiers

2.1 Two-Stage Recognition Systems

Consider a recognition task in which there are a number (n) target classes
ωt1, ωt2, . . . , ωtn, and an outlier class ωo. A recognition system, as illustrated
in Figure 1, has to classify these objects. A detector DDET classifies incoming
objects as either target (ωt), or outlier via a detection threshold θd:

DDET (x) :

{
target if fDET (x) > θd

outlier otherwise
(1)

The detector selects objects from x such that the input to DCLF is x̃.

x̃ = {x|fDET (x) > θd} (2)

The classifier DCLF then classifies incoming objects (according to x̃) to any of the
n target classes via the classification thresholds2 θt1

c , θt2
c , . . . , θtn

c . The classifier

1 Note that the MCS view on such a multi-stage system also holds for two-stage
recognition systems that are constructed for computational reasons. In this case the
first stage is typically designed for fast rejection of very abundant outlier objects,
with a more complex second stage to discriminate between target classes.

2 In an n-class situation, the classification thresholds can be considered to be the
weighting applied to the output posterior density estimates together with priors.
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Fig. 1. Illustrating a typical recognition system on a synthetic example. The scatter

plots show a 2-dimensional synthetic example with two target classes, illustrating the

detector in the left plot, and the classifier in the right

outputs are weighted by classification thresholds and priors p(ωt1), p(ωt2), . . . ,
p(ωtn). The classifier outputs fCLF (x̃) can then be written as:

[θt1
c p(ωt1)fCLF (ωt1|x̃), θt2

c p(ωt2)fCLF (ωt2|x̃), . . . , θtn
c p(ωtn)fCLF (ωtn|x̃)] (3)

Here
∑n

i=1 θti
c = 1. The final decision rule is then:

DCLF (x̃) = argmaxn
i=1 θti

c p(ωti)fCLF (ωti|x̃) (4)

The primary distinction between this two-stage system and a multi-class single-
stage recognition system is that the input to the classification stage in the two-
stage case is a subset of the system input, whereas in the single-stage case all
data is processed. We are considering the dependence (in terms of overall system
performance) of the 2 stages, and how the system should be optimised.

2.2 One-Dimensional Example

In this section a simple 1-dimensional analytical example is studied in order to
illustrate how the detection and classification stages are related. Two Gaussian-
distributed target classes ωt1 and ωt2 are to be detected from a uniformly-
distributed outlier class ωo, and subsequently discriminated. The target classes
have means of −1.50 and 1.50 respectively, and variances of 1.50. The ωo class
has a density of 0.05 across the domain x. The class conditional densities for
ωt1, ωt2 and ωo are denoted p(x|ωt1), p(x|ωt2), and p(x|ωo) respectively, with
priors p(ωt1), p(ωt2), and p(ωo), which are assumed equal here. For the total
probability distribution of x therefore holds:

p(x) = p(ωt1)p(x|ωt1) + p(ωt2)p(x|ωt2) + p(ωo)p(x|ωo) (5)



Optimising Two-Stage Recognition Systems 209

For this 1-dimensional data, the classifier is defined consisting of only a single
threshold, denoted θc. The position of θc determines the classification perfor-
mance, and can be used to set an operating point to achieve a specified false-
negative rate FNr (with respect to ωt1) or false-positive rate (FPr). These two
errors are known as the Error of Type I and II respectively (εI and εII). As θc

varies, so do the respective εI and εII , resulting in the ROC (receiver-operator
curve [8]) between ωt1 and ωt2. In a typical discrimination problem (ignoring the
detector) across domain x, we can define εI and εII in terms of θc as:

εI = 1 − ∫ ∞
−∞ p(x|ωt1)I1(x|θc)dx, εII = 1 − ∫ ∞

−∞ p(x|ωt2)I2(x|θc)dx (6)

The indicator functions I1(x|θ) and I2(x|θ) specify the relevant domain:

I1(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) < θc, 0 otherwise
I2(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) ≥ θc, 0 otherwise (7)

A two-stage recognition system consists of two sets of thresholds, namely a clas-
sification threshold θc (of which there are a number of thresholds according to
the number of classes), and a detection threshold θd. Evaluating the recognition
system involves estimating both classification performance (εI and εII), and the
fraction of outlier objects incorrectly classified as target, denoted FP o

r . Thus
one axis of the evaluation is concerned with how well the system performs at
detecting and discriminating target classes, and the other is concerned with the
amount of false alarms that the system must deal with. Therefore the system
must be evaluated with respect to εI , εII , and FP o

r . In this simple example, we
can write these as:

εI = 1 − ∫ ∞
−∞ p(x|ωt1)I1(x|θc)IR(x|θd, ωt1)dx

εII = 1 − ∫ ∞
−∞ p(x|ωt2)I2(x|θc)IR(x|θd, ωt2)dx

FP o
r =

∫ ∞
−∞ p(x|ωo)I1(x|θc)IR(x|θd, ωt1) + p(x|ωo)I2(x|θc)IR(x|θd, ωt2)dx

(8)

IR(x|θd, ω) = 1 if p(x|ω) > θd, 0 otherwise (9)

Equation 8 yields the full operating characteristics of the system, shown in Fig-
ures 2 and 3 for the example. Referring first to Figure 2, this shows how the
system operating characteristics vary for a number of fixed detection thresholds.
The top row illustrates the position of the detection threshold, and the bottom
row shows εI , εII , and FP o

r for all classification thresholds (similar to standard
ROC analysis, except an additional dimension is introduced to account for the
detection threshold). In these plots, it is desirable for εI , εII , and FP o

r to be
minimal, indicating good classification and detection.

In Figure 2, as θd is increased, the plots show how FP o
r progressively de-

creases. In the left-column, a very sensitive detector is used, with θd placed in
the tails of the target distribution. It is clear that the classification performance
is almost maximal for this threshold, but FP o

r is very high i.e. the system will ac-
cept a very high percentage of outlier objects. The centre column plots show the
case for which a higher detection threshold has been used (θd = 0.05), resulting
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Fig. 2. Operating characteristics for a fixed θd, and varying θc. The left column is

where θd = 0.01, followed by θd = 0.05 in the middle column, and θd = 0.13 in

the right column. The top row plots illustrate the distribution, with two Gaussian

target classes, and a uniformly distributed outlier class. The position of the detection

threshold is shown via the dotted line. The full operating characteristics for all possible

θc are shown in the bottom row
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Fig. 3. Results of analytic experiment. The left plot shows the full operating charac-

teristics, with εI plotted against εII , and FP o
r . The right plot shows the loss difference

between an independent and holistic design approach for all combinations of ct2, and

co over a {0, 1} range, where ct1 is fixed to 0.55

in a substantially lower FP o
r , for a small sacrifice in classification performance.

The third column shows a situation in which θd is again increased, resulting in
a further decrease in classification performance. In this case the detector only
accepts very probable target objects, reducing the volume of the target class
decision space, at the expense of all target objects appearing outside the de-
cision boundary. The left plot of Figure 3 shows the operating characteristics
for all combinations of θc and θd. Next we show how using the full operating
characteristic can be advantageous in system design.
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2.3 Cost-Based Analysis

From the system perspective, the cost of misclassifying a ωt object (as outlier)
is ct, and the cost of misclassifying a ωo object (as target) is co. The individual
target class misclassification costs can be written as ct1, ct2, . . . ctn

, which must
sum to ct together with the priors (note that we do not consider the entire loss
matrix as defined in [2], but only consider the loss incurred due to misclassi-
fication, irrespective of the class to which it is assigned). The expected overall
system loss L can be written as:

L = ctp(ωt)FNr +cop(ωo)FP o
r , =

n∑
i=1

cti
p(ωti

)FN ti
r +cop(ωo)FP o

r ,

n∑
i=1

cti
= ct

(10)
The priors are denoted p(ωt) and p(ωo), and the false negative rate of ωt is
denoted FNr. The target class misclassification costs are denoted cti

for target
class ωti

. Cost-based classifier design involves minimising of L for the given costs,
resulting in the optimal threshold values. The ROC is a tool that can be used
to facilitate this minimisation, since it consists of performances for all possible
threshold values (all FNr and FPr results). In a 2-class problem, the costs (and
priors) specify the gradient of the cost line (also known as an iso-performance line
as defined in [10]), and the intersection of the normal of this line with the ROC
(plotting FNr against FPr) results in the optimal operating point3. We now
demonstrate a cost-analysis for the example in order to emphasise the impor-
tance of designing the entire system holistically. Two different design approaches
are compared, the first of which we refer to as the independent approach, and
the second as the holistic approach. In the first case, we optimise the recognition
and classification stages independently, and compare the expected system loss to
the second case, in which the entire system is optimised holistically. We assume
that the cost specification for the recognition system is such that misclassifying
a ωt object has a cost of 5, and the cost of classifying a ωo object as target
is 10. Among the two target classes ωt1 and ωt2, these have misclassification
costs of 2 and 3 respectively (summing to 5), i.e. ωt2 is favoured. From Equation
10, we can write the system loss (assuming equal priors) for the chosen θc and
θd as L(θc, θd) = 2εI(θc, θd) + 3εII(θc, θd) + 10FP o

r (θc, θd). In the independent
approach, the detector is optimised using ωt and ωo data only (with operating
characteristics generated for these classes only). The classifier is then optimised
on ωt1 and ωt2. The corresponding thresholds are indicated by the point marked
N in the left plot of Figure 3. In the holistic approach, ωt1, ωt2, and ωo are
analysed simultaneously in the optimisation, resulting in the point marked H.
The two points N and H are significantly apart on the operating characteristic.
In the independent approach, the overall expected loss is thus 4.18, and in the

3 We deal with multi-dimensional ROC plots in this paper. Cost-based optimisation
involves intersecting a plane (the gradient based on the cost associated with misclas-
sifying each class) with the multi-dimensional ROC surface, resulting in optimised
thresholds.
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holistic approach, the loss is 4.02. Thus independent approach is sub-optimal
here. Depending on the problem and the costs, the independent approach may
vary in the degree of sub-optimality. To assess how the holistic approach will im-
prove performance in general, refer to the right plot of Figure 3. This plot shows
the difference between the independent and holistic loss performances (where a
positive score indicates superiority of the holistic approach) for all combinations
of costs over a range. The cost ct1 is fixed to 0.55, and ct2 and co are varied for all
combinations over the {0, 1} range. It can be seen that for this artificial example,
only imbalanced costs result in significant improvements. In the experiments, it
will be shown models that do not fit the data well in real problems can benefit
even more from this approach, including balanced cases.

3 Multiple Class Extension

The analytic example involved a recognition system with 2 target classes, result-
ing in a 3-dimensional ROC surface. As the number of target classes increase,
the dimensionality of the ROC increases. The analysis extends to any number of
classes [11]. However, as the number of dimensions increase, the computational
burden becomes infeasible [5]. In this paper, experiments involved up to 3 target
classes. In this case, the processing costs were already very high. and only a very
sparsely sampled ROC could be generated. Extending this analysis to N classes
would be infeasible. This is the topic of future work, exploring approaches that
can be used to either approximate the full ROC, or to use search techniques in
optimising the thresholds. Attention is drawn to [6], in which an initial set of
thresholds is used, and a hill-climbing greedy-search is used.

4 Experiments

In this section a number of experiments are conducted on real data in order
to demonstrate the holistic system design approach practically, and how model
(or system configuration) selection can be performed. Two datasets are used,
described as follows:

– Banana: A simple 2 dimensional problem with 2 target classes distributed
non-linearly (the banana distribution [4]), in which there are 600 examples
each of ωt1 and ωt2, and 2400 outlier examples. The distribution is shown in
Figure 1.

– Mfeat : This is a dataset consisting of examples of ten handwritten digits,
originating from Dutch utility maps4. In this dataset, Fourier components
have been extracted from the original images, resulting in a 76-dimensional
representation of each digit. 200 examples of each digit are available. In
these experiments, digits 3, 4 and 8 are to be distinguished (i.e. 3 target
classes ωt1, ωt2, and ωt3), distributed among all other digit classes, which
are considered to be outlier.

4 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
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We follow the same analysis approach as in Section 2. Classification and de-
tection thresholds are generated across the full range. In the Banana case, 200
evenly sampled classification thresholds are used, and similarly 100 detection
thresholds are used. For computational reasons, the Mfeat experiments only
uses 10 detection thresholds, and 12 samples per classification threshold. Each
experiment involves a 10-fold randomised hold-out procedure, with 80% of the
data used in training, and the remainder for testing. The evaluation consists of
evaluating the loss incurred for a number of chosen misclassification costs, using
the ROC to find an optimal set of thresholds. In this evaluation it is assumed
that the costs (and priors) are known beforehand, and as in Section 2, we only
consider misclassification costs, applying Equation 10.

In the Banana experiments, 3 different system configurations are imple-
mented, comparing the independent and holistic approaches for each case. The
same detector is used for all 3 configurations, consisting of a Gaussian one class
classifier (OCC) [12]. Three different classifier models are used, consisting of a
Bayes linear, quadratic, and mixture of Gaussians classifier (with two mixtures
per class), denoted LDC, QDC, and MOG respectively. In Table 1 the Banana
experimental results are shown for 4 different system costs. These are shown in
the four right-most columns, with the costs denoted [ct1, ct2, co]. For all 3 system
configurations, the holistic design approach results in a lower overall expected
loss than the independent approach. In some cases the difference in performance
is not significant (see the MOG results for the case in which ct1 = 3.0, ct2 = 1.0,
and co = 4.0). These experiments show that the benefit of an overall design
approach can in many cases result in significant improvements in performance.

A similar set of experiments are conducted for the Mfeat problem, with costs
denoted [ct1, ct2, ct3, co]. Results are shown for four different cost specifications
in the right-most columns of Table 1. Three different system configurations are
considered, and in each case the independent and holistic design approaches
are compared. The first configuration consists of a principal component analy-
sis (PCA) mapping with 3 components and a Gaussian OCC as the detector,
followed by a Fisher mapping and LDC as the classifier. The second configu-
ration uses a 3-component PCA mapping Gaussian OCC for the detector, and
a 3-component PCA LDC for the classifier. Finally the third system consists
of a 5-component PCA with Gaussian OCC detector, and a 2-component PCA
MOG classifier with 2 mixtures for the classifier. As before, the holistic ap-
proach consistently results in either a similar or lower overall loss compared to
the independent approach. Once again, the improvement is dependent on the
cost specification. For costs [1, 8, 1, 10] (favouring ωt2) and [1, 1, 1, 12] (favouring
ωo), there is no significant improvement in using the holistic approach for all
3 systems. However, when the costs are in favour of ωt1, the holistic approach
leads to a significantly lower system loss. This suggests that the ωt1 threshold has
more effect over the detection performance. In this case θd should be adjusted
accordingly for optimal performance. The same observation is made for balanced
costs [1, 1, 1, 3]. An interesting observation made in these experiments is models
that do not fit the data well (e.g. the LDC in the Banana experiments, compared
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Table 1. Results of cost-based analysis for the Banana and Mfeat datasets, comparing

an independent (I) and holistic (H) design approach for a number of different system

configurations (low scores are favourable). Standard deviations are shown

Detector Classifier Cost 1 Cost 2 Cost 3 Cost 4

Banana [5, 5, 10] [3, 1, 4] [1, 3, 4] [1, 1, 4]

Gauss LDC I 0.081 ± 0.009 0.370 ± 0.049 0.233 ± 0.056 0.244 ± 0.046
Gauss LDC H 0.067 ± 0.008 0.326 ± 0.039 0.171 ± 0.015 0.189 ± 0.027

Gauss QDC I 0.089 ± 0.017 0.418 ± 0.051 0.260 ± 0.060 0.265 ± 0.053
Gauss QDC H 0.072 ± 0.010 0.354 ± 0.036 0.179 ± 0.025 0.182 ± 0.030

Gauss MOG I 0.059 ± 0.008 0.252 ± 0.033 0.206 ± 0.032 0.205 ± 0.030
Gauss MOG H 0.049 ± 0.007 0.230 ± 0.035 0.170 ± 0.019 0.169 ± 0.021

Mfeat [1, 1, 1, 3] [8, 1, 1, 10] [1, 8, 1, 10] [1, 1, 1, 12]

PCA3 Gauss Fisher LDC I 0.648 ± 0.050 0.212 ± 0.018 0.225 ± 0.017 1.385 ± 0.316
PCA3 Gauss Fisher LDC H 0.547 ± 0.110 0.146 ± 0.014 0.223 ± 0.017 1.317 ± 0.435

PCA3 Gauss PCA3 LDC I 0.654 ± 0.053 0.214 ± 0.018 0.225 ± 0.017 1.389 ± 0.316
PCA3 Gauss PCA3 LDC H 0.551 ± 0.110 0.146 ± 0.015 0.224 ± 0.017 1.305 ± 0.432

PCA5 Gauss PCA2 MOG2 I 0.442 ± 0.029 0.146 ± 0.011 0.154 ± 0.011 0.929 ± 0.202
PCA5 Gauss PCA2 MOG2 H 0.380 ± 0.079 0.112 ± 0.024 0.148 ± 0.018 0.847 ± 0.124

to MOG), tend to benefit more from the holistic optimisation, suggesting that
the interaction is more prominent for all costs.

5 Imprecise Environments

The approach taken thus far showed that, given both misclassification costs and
priors, the optimal set of thresholds can be found. In many practical situations
the costs or priors cannot be obtained or specified precisely [10]. In these situa-
tions we may still wish to choose the best system configuration, and have some
idea of a good set of system thresholds that may, for example, be suitable for a
range of operating conditions or costs (see [1] and [3]). We do not go into more
detail here due to space constraints, but emphasise the fact that real problems
are often within an imprecise setting, requiring an alternative evaluation to the
cost-based approach. One strategy for this situation is to compute the AUC
(Area Under the ROC curve) for a range operating points. An integrated error
results that is useful for model selection. The next step is to choose thresholds,
which may for example be specified by considering operating regions that are
relatively insensitive to changes in cost or priors.

6 Conclusion

A two-stage recognition system was considered as an MCS, consisting of a de-
tection and classification stage, with the objective of optimising the overall sys-
tem. An analysis of a simple analytic problem was performed, in which the full
operating characteristics were computed for all combinations of detection and
classification thresholds. The holistic design approach was compared to the case
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in which the two stages are designed independently, showing that the holistic ap-
proach may result in a lower expected loss. The N-class extension was discussed,
highlighting the computational difficulties in scaling the analysis to any number
of classes. Some experiments with real data were then undertaken for a number
of system configurations to demonstrate practical application of the analysis,
consistently demonstrating the advantage of the holistic design approach. It was
observed that the performance improvements vary according to the cost spec-
ification, and the respective degree of interference a class may impose on the
detection stage. Models that fit the data well only seem to benefit for imbal-
anced costs/priors, whereas ill-fitting models can result in improvements for any
costs. Finally, a short discussion on application of the methodology to impre-
cise environments was given. Future work includes exploring efficient multi-class
ROC analysis, and application to an imprecise environment.
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