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Abstract. Unlike fixed combining rules, the trainable combiner is appli-
cable to ensembles of diverse base classifier architectures with incompa-
rable outputs. The trainable combiner, however, requires the additional
step of deriving a second-stage training dataset from the base classifier
outputs. Although several strategies have been devised, it is thus far un-
clear which is superior for a given situation. In this paper we investigate
three principal training techniques, namely the re-use of the training
dataset for both stages, an independent validation set, and the stacked
generalization. On experiments with several datasets we have observed
that the stacked generalization outperforms the other techniques in most
situations, with the exception of very small sample sizes, in which the
re-using strategy behaves better. We illustrate that the stacked general-
ization introduces additional noise to the second-stage training dataset,
and should therefore be bundled with simple combiners that are insensi-
tive to the noise. We propose an extension of the stacked generalization
approach which significantly improves the combiner robustness.

1 Introduction

When designing pattern recognitions systems, it is often the case that multiple
types of data representation and classifiers may be exploited. Instead of selecting
the best single algorithm for a given problem, multiple classification systems
combine a number of base algorithms to provide (in some cases) more accurate
and robust solutions [6]. A second stage combiner is used to assimilate and
process the outputs of the base classifier. Two types of combination strategies are
typically considered - fixed and trainable combiners. While the fixed combiners
operate directly on the outputs of the base classifiers, the trainable ones use the
outputs of base classifier as a new feature representation.

Fixed combining rules assume that the responses of the base classifiers are
comparable. This assumption does not necessarily hold if different classifier ar-
chitectures are combined, such as Fisher Linear Discriminant (FLD), Support
vector machines or neural networks. The trainable combiners are capable of over-
coming this problem by learning the pattern in the outcomes of base classifiers.
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Although benefits of trainable combiners have been demonstrated in number
of studies [4, 2, 11, 5, 1, 9], it is still unclear which training strategy results in
the best performance to suit a particular situation. Thus far, several strategies
have been utilized. The first uses the same training set for both training of
the base classifiers and (after processing by the trained base classifiers) also for
the training of the combiner. Using the same set of examples for both stages,
however, inevitably leads to a biased combiner. In order to remedy this situation,
Raudys proposed to estimate the bias of the base classifier and correct for it
[8]. This solution is, however, applicable only in the special case of linear base
classifiers. A practical general recommendation, given by Duin in [2], is to train
the base classifiers in a weak fashion. The combiner may then still have the
flexibility to correct for their weakness as the bias is almost avoided.

Another training strategy avoids the biased dataset for training of the com-
biner by the use of a validation set. The available training data is split into two
independent subsets. The first is utilized for training of the base classifiers. The
second set, processed by the trained base classifiers, serves to train the combiner.
The shortcoming of this approach is that the data available for training of each of
the stages is typically severely limited, and thus leading to poorer overall perfor-
mance. A compromise solution may be the construction of partially overlapping
training and validation sets [1]. This observation might suggest that trainable
combining rules are applicable only for large datasets [11, 9].

In this paper, we focus on an alternative approach which has a potential to
improve the applicability of trainable combiners to smaller sample size prob-
lems, called stacked generalization, first introduced by Wolpert [13]. This is a
general technique for construction of multi-level learning systems. In the con-
text of classifier combination, it yields unbiased, full-size training sets for the
trainable combiner in the following way:

– For each base classifier, an internal rotation-based cross-validation is per-
formed such that all the fold test sets constitute the full original dataset.

– A classifier, trained in one of the internal folds, is applied to the respective
fold test set and its outputs (such as class posteriori probability estimates
or confidences) are stored.

– By collating the outputs of all the classifiers produced by the internal cross-
validation, a full-size dataset consisting of the classifier outputs is con-
structed to be used for the second-stage training. Since each of these training
examples was processed by the base classifier trained on an independent data
set, the base classifier outputs in the resulting dataset are unbiased.

Stacked generalization therefore alleviates both of the aforementioned prob-
lems by providing the unbiased training set for the combiner, without sacrificing
any of the available training examples.

Stacked generalization was discussed in a classifier combining context by Ting
and Witten [12]. In their study, it outperformed both the model selection based
on cross-validation, and the majority voting combiner. From a regression view-
point, LeBlanc and Tibshirani [7] investigated the stacked generalizing combiner



138 P. Pacĺık et al.

in a small artificial example using a linear classifier and the nearest neighbor
rule. The existing studies on trainable combining using the stacked generaliza-
tion focus on the selection of base classifiers and their outputs or viable combiner
models. To our knowledge, the analysis of the relation between the performance
of stacked combiners and training sizes has not been performed.

In this paper we investigate the behaviour of trainable combiners based on
stacked generalization in comparison to two other primary approaches, namely
re-using of the full training set (denoted the re-use method) by both stages, and
the strategy based on the validation set (the validation method). We compare the
behaviour of the three strategies across varying training set sizes in an attempt
to understand their strengths and weaknesses.

In Section 2, the derivation of the combiner training set for the different ap-
proaches is formally introduced. We also discuss derivation of the base classifiers
used in the stacked system and propose an alternative method increasing their
robustness. In Section 3, we describe a set of experiments on several datasets
and discuss our main findings. The final conclusions are given in Section 4.

2 Derivation of Training Set for the Trainable Combiner

We assume a training dataset X, with N examples xi ∈ RD, i = 1, ..., N each
assigned into one of C classes and a set of B untrained base classifiers Ab,
b = 1, ..., B. The base classifiers are trained according to the fusion strategy
used. Note, that if independent feature representations are available, the base
classifier Ab will be trained on the corresponding dataset Xb. In the following, we
denote such a trained classifier by Âb(Xb). By reapplying the trained classifier
Âb(Xb) to the input set Xb, a dataset Yb with C classifier outputs is created.
The procedure, repeated for each of the base classifiers, yields a set Y , with N
examples and BC features. The combiner Acomb is trained on this second-stage
dataset Y . This procedure coincides with the re-use method for both the base
classifiers and the combiner.

A new incoming observation z ∈ RD is assigned into one of the C classes using
the trained combiner Âcomb(Y ) in the following way: First, the observation is
subjected to each of B trained base classifiers Âb(Xb) using appropriate feature
representations. The resulting outputs of the base classifiers are concatenated to
form a feature vector in BC-dimensional space, and then finally the trainable
combiner Âcomb(Y ) is applied.

The second approach (the validation method), investigated in this paper uses
an independent validation set, in order to reduce the bias of the trainable com-
biner. The input dataset X is split into the training part Tr, and the mutually
exclusive validation set V . The output dataset Y is composed of outputs of
the trained classifiers Âb(Trb), obtained on the respective validation sets Vb,
b = 1, ..., B. Note that both, base classifiers and and combiner, are trained on
subsets of the original input datasets.

The application of the stacked generalization technique is illustrated in Fig-
ure 1, focusing on a single base classifier Ab. The dataset Xb is split into F
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Fig. 1. Construction of a training set for the trainable combiner using stacked gener-

alization, shown for the base classifier Ab

mutually exclusive parts Xf
b , f = 1, ..., F of almost equal sizes. In an internal

F -fold cross-validation procedure, trained classifiers Âf
b (Trb) are constructed us-

ing the per-fold training subsets Trf
b = ∪F

j=1,j �=fXj
b . Each of the F trained fold

classifiers are applied to the independent validation subset V f
b ≡ Xf

b , yielding
an output set Y f

b . The full output set, specific to b-th base classifier is then con-
structed by concatenation Yb = ∪F

f=1Y
f
b . The process is concluded by re-training

the base classifier on the full set Xb, i.e. by producing Âb(Xb) [12, 1].
Because the internal cross-validation derived F versions Âf

b (Trf
b ), f = 1, ..., F

for each base classifier Ab, we propose to use their fixed combination Â∗
b(Trb)

as the final base classifier, instead of a single re-trained one. Our motivation is
to leverage the slight variations in the existing per-fold classifiers for the sake of
increasing the robustness of the whole classification system. Because we assume
a similar distribution of noise in the cross-validated training subsets, we propose
to use the mean combiner [2].

3 Experiments

3.1 Experimental Setup

In this section the results of a number of experiments are shown, comparing the
different approaches to deriving the training dataset for trainable combiners.
The experiments were performed on the following datasets:
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Handwritten Digits. The handwritten digits dataset (UCI repository1) con-
tains 2000 objects from ten digit classes (200 objects per class). The dataset is
composed of four different feature representations using the Fourier descriptors
(76 features), Karhunen-Loeve coefficients (64 features), Zernike moments (47
features) and raw pixel values (240 features).

Spectra. A set of 988 measurements of fluorescent spectra in oral cavity labeled
into two classes (856 healthy and 132 diseased tissue examples) [10]. Each mea-
surement consists of six independent spectra measured in different locations in
the oral cavity. Each spectrum is represented by of 199 wavelengths.

Waveform. An artificial dataset with three classes of waves each derived as a
combination of two of three “base” waves (UCI repository). The dataset has in
total 5000 examples and 21 features.

Sonar. A two-class real-world dataset with 208 data samples (111 examples
of metal, and 97 examples of rock) and 60 continuous features (UCI
repository).

The handwritten digits and spectra datasets contain different feature rep-
resentations for each measurement. Therefore, we use a single type of a base
classifier which is applied in different feature spaces. The waveform and sonar
datasets are examples of problems with a single feature representation. Hence,
we combine different base models in a single feature space.

In order to understand the behaviour of combiners utilizing different strate-
gies for the construction of the second-stage training set, we estimate the learning
curves in the following way. A training set of a desired size and an independent
test set are drawn from the input dataset. On the training set, the base classifiers
are trained and the second-stage dataset is constructed by the procedures de-
scribed in Section 2. This dataset is then used for training of the combiner. The
trained combiner is executed on the test set, and the mean classification error
over the test examples is estimated. Note that all steps required for building the
combiner, including the internal cross-validation of the stacked generalization,
are performed on the training set only. For a given training set size, this pro-
cedure is repeated 10 times and the results are averaged. For the handwritten
digits, spectra and waveform datasets the training set sizes vary from 5 to 100

Table 1. Experimental configurations

dataset base classifiers test set size (per class)

handwritten digits FLD 50

spectra FLD 30

waveform FLD,Parzen,1-NN 500

sonar FLD,Parzen,1-NN,NMC 40

1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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examples per class, for the sonar dataset from 5 to 50 examples per class. The
base algorithms and test set sizes used are summarized in Table 1.

The outputs of the Parzen base classifier consists of posterior probability es-
timates. The outputs of the non-density based classifiers (distances to a decision
boundary or a distance to the closest prototype) were normalized to a < 0; 1 >
range by a sigmoid function [3]. We have considered three different types of
trainable combiners, ranging from simple to complex models, namely the deci-
sion templates (DT) [5] (effectively the nearest mean classifier), the Fisher linear
discriminant (FLD), and the 1st nearest neighbor rule (1-NN). Note that while
the FLD internally scales its inputs, the DT and 1-NN combiners require the
proper scaling as explained above.

The experiments compare the three combiner training strategies, namely the
re-use method, validation method (50/50% split), and stacked generalization us-
ing 10-fold internal cross-validation. For stacked generalization, we distinguish
two approaches for construction of the trained base classifiers, as described in
Section 2. We refer to the case when base classifiers are re-trained on the complete
training dataset as “method I” [12, 1]. The second method, denoted “method II”,
uses a mean combiner over the set of 10 classifiers, trained during stacked gen-
eralization process.

3.2 Results and Discussion
The handwritten digit results are presented in Figure 2, subfigures (a),(c), and
(e). This subfigures (b), (d), and (f) correspond to the spectral dataset. The rows
of the Figure 2 refer to FLD, DT, and 1-NN training combiners, respectively.

In the subfigure 2 (a), we can observe that the combiner re-using the training
set (thin solid line) exhibits a drastic error increase between 10 and 50 examples
per class. This is caused by superimposing the error peaks of the base FLD clas-
sifiers occurring when the sample size matches the feature space dimensionality.
The combiner using the validation set (thin dashed line, circular markers) de-
livers significantly better results. The stacked generalizer using method I (thick
dash-dotted line) significantly improves over these two traditional techniques for
more than 10 examples per class. For the smallest training sample size, it is
surprisingly outperformed by the re-use method. The proposed stacked general-
izer using method II is the best of all remaining combiners even for the smallest
training sample size. The dotted line represents a learning curve of a single FLD
classifier directly applied to the full dataset. It illustrates that combining of dif-
ferent feature representation is beneficial. Employing the Parzen base classifier
instead of FLD lead to analogous results (experiments not shown here).

For large sample sizes, the methods become comparable. This is understand-
able because a large training set diminishes the effects of bias when the training
dataset is re-used and, at the same time, is sufficiently large for splitting into
training and validation subsets.

The results obtained on the spectral dataset depict the significant perfor-
mance deterioration occurring for larger sample sizes. It is the result of a peaking
effect where for 200 training examples a linear classifier is built in a 199 dimen-



142 P. Pacĺık et al.
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(a) digits, combiner: FLD
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(b) spectra, combiner: FLD
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(c) digits, combiner: DT
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(d) spectra, combiner: DT
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(e) digits, combiner: 1-NN
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Fig. 2. Handwritten digit datasets (left column) and spectral dataset (right column).

In all cases the FLD was used a base classifier



On Deriving the Second-Stage Training Set for Trainable Combiners 143

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

training set size per class

ge
ne

ra
liz

at
io

n 
er

ro
r

re−using the training set
using the validation set
stacked gen. (method I)
stacked gen. (method II)

(a) waveform, combiner: FLD
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(b) sonar, combiner: FLD
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(c) waveform, combiner: DT
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(d) sonar, combiner: DT
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(e) waveform, combiner: 1-NN
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(f) sonar, combiner: 1-NN

Fig. 3. Experiments with waveform and sonar datasets. The base classifiers are indi-

cated in Table 1
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sional feature space. Both the combiner re-using the training set and stacked
generalizer with method I suffer from the peaking. The stacked generalizer using
the method II benefits from a more robust base classifiers. Even better results are
reached by the validation method. Its base classifiers are trained in a space with
higher dimensionality then the number of training examples, using the pseudo-
inverse. The dotted line denoting the single FLD classifier applied to the full
dataset. It again illustrates that combining is beneficial for smaller sample sizes.

Similar trends may be also observed in Figure 3 depicting the experiments
with Waveform and Sonar datasets and in additional experiments with other
base classifiers such as nearest mean or Parzen we omit for the sake of brevity.

While FLD and DT combiners exhibit similar learning curve trends, the
1-NN combiner yields very different results. The most profound difference is
apparent in subfigures 2 (f), 3 (e) and 3 (f), where the re-use method significantly
outperforms all other strategies. Because the base classifiers are identical to those
in experiments where FLD and DT combiners were used, we conclude that the
inferior results are related to the 1st nearest neighbor combiner. This behaviour is
understandable for the combiner using the validation set because already small
amount of training examples is still cut in half. However, this cannot explain
the failure of the stacked generalizers employing the second-stage datasets of
identical size to the well-performing re-using approach.

We hypothesize that it is the presence of noise in the second-stage training
set generated by the stacked generalization and the subsequent failure of the
noise-sensitive 1-NN rule. We have performed an additional experiment with a
combiner based on the 5-th nearest neighbor rule. The results are presented in
Figure 4. The less noise-sensitive 5-NN combiner (triangular markers) results in
a significant improvement eventually reaching the performance comparable with
the 1-NN combiner trained on a re-used dataset. We conclude that the stacked
generalization introduces additional level of noise in the second-stage dataset. It
should be, therefore, used together with simple and robust combiners that are
capable of averaging out this noise.
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Fig. 4. The effect of less noise sensitive 5-NN combiners on the stacked generalizers
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4 Conclusions

In this paper, we have compared three principal methodologies for the con-
struction of the second-stage training sets for trainable combiners. Apart of the
commonly employed re-using of the available training set by both stages and the
validation set, we also investigate the stacked generalization technique which
yields full-size unbiased second-stage training sets. However, the stacked gener-
alization, inevitably introduces additional noise into the second-stage datasets.

Our experiments demonstrate that trainable combiners, derived using the
stacked generalization exhibit significant performance improvements over the
other two currently used methods for moderate training set sizes. For very small
sample sizes, the best strategy is the re-use of a complete training set for both
stages. Any split strategy sacrifices the scarce training data and should be, there-
fore, avoided. For a large number of training samples, the studied approaches to
derivation of the second-stage training set do not differ and the re-using strategy
may be again recommended as the simplest solution.

For the moderate training set sizes, the stacked generalization appears to
significantly outperform the other two approaches. Commonly used combiners
based on stacked generalization train the final base classifiers on the full training
set. We have proposed to construct the base classifier from the available fold
classifiers by a fixed mean combiner. This solution appears to bring additional
robustness and should be preferred in applications where evaluation of all the
fold classifiers for each new example does not pose a excessive speed burden.

We have noticed the performance drop of the stacked generalizers using the
1-NN combiner. We have shown that the stacked generalization introduces addi-
tional noise into the second-stage training dataset and therefore requires simple
and robust combiners such as FLD or DT for a good performance. We conclude
our study noting that the stack generalization provides a combiner training strat-
egy superior to the validation set approach and for larger than very small sample
sizes systematically outperforms the re-using approach.
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