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Abstract. Combining classifiers is to join the strengths of different classifiers
to improve the classification performance. Using rules to combine the outputs of
different classifiers is the basic structure of classifier combination. Fusing models
from different kernel machine classifiers is another strategy for combining models
called kernel combination. Although classifier combination and kernel combina-
tion are very different strategies for combining classifier, they aim to reach the
same goal by very similar fundamental concepts.

We propose here a compositional method for kernel combination. The new
composed kernel matrix is an extension and union of the original kernel matrices.
Generally, kernel combination approaches relied heavily on the training data and
had to learn some weights to indicate the importance of each kernel. Our com-
positional method avoids learning any weight and the importance of the kernel
functions are directly derived in the process of learning kernel machines. The
performance of the proposed kernel combination procedure is illustrated by some
experiments in comparison with classifier combining based on the same kernels.

1 Introduction

Traditional pattern recognition systems use a particular classification procedure to esti-
mate the class of a given pattern. It has been observed that combining the decisions of
different classifiers can be an efficient technique for improving the classification perfor-
mance. If the combination function can take advantage of the strengths of the individual
classifiers and avoid their weaknesses, the overall classification accuracy is expected to
improve. Also, a larger stability for the classification system is highly anticipated. Many
techniques have been proposed in last decade for combining classifiers [1].

A classifier combination system is usually composed of two phases, constructing in-
dividual classifiers and combining different classifiers. In the first phase, various models
can be adopted to construct different classifiers, or the classifiers can be constructed on
different features or from different sample datasets. In the second phase, the classifiers
are combined by fixed or trained rules. This can be done on the basis of classifier out-
puts like posterior probabilities or using the crisp decisions (voting). Nevertheless, there
are possibilities to combine the classifiers in an earlier stage in the classification system.
In fact, the combination of models has attracted more and more attention recently, es-
pecially for kernel machines [2]. In kernel machine classifiers, different models can be
built with different kernel functions. Combining models in kernel machine classifiers is
thereby based on combining their kernels.
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The support vector machine (SVM) [2,3], motivated by the results of statistical learn-
ing theory, is one of the most popular kernel machines. Most of the kernel combination
research is based on it. In SVM, the decision boundary for pattern recognition problems
is represented by a small subset of training examples, called support vectors. Unlike the
traditional methods that minimize the empirical training errors, support vector machines
implement the structural risk minimization principle. By adopting this principle, SVM
can find the optimal discriminant hyperplane minimizing the risk of an erroneous clas-
sification of unseen test samples. When input data cannot be linearly separated in the
original space, they should be mapped into a high dimensional feature space, where a
linear decision surface separating the training data can be designed. The computation
does not need to be performed in the feature space since SVM depends on the direct
application of the kernel function over the input data. Therefore, the kernel function is a
key component of SVM for solving nonlinear problems, and the performance of SVM
classifiers largely depends on the choice of the kernels.

However, the selection of kernel functions, the model and the parameters, is one of
the most difficult problem of designing a kernel machine. Recently, an interesting de-
velopment seeks to construct a good kernel from a series of kernels. The most simple
way to combine kernels is by averaging them. But not each kernel should receive the
same weight in the decision process, and therefore the main force of the kernel com-
bination study is to determine the optimal weight for each kernel. The criterion for
searching these weights is mainly based on Fisher’s discriminant that maximizes the ra-
tio of the between-class variance and the within-class variance. Optimization methods
and heuristic approaches are also used for obtaining the weights. In [5], the weights of
kernels are derived by optimizing the measure of data separation in the feature space
by the semidefinite programming. Kernel target alignment is used to match the ker-
nels with the data labels. Using boosting, a weighted combination of base kernels is
generated in [4]. Some methods [6,7,8,9] try to find the best weights by maximizing a
class separability criterion. All the approaches above rely heavily on the training data
and some weights have to be learned before the combination of kernels to indicate the
importance of each kernel.

In order to avoid learning any weight, we propose a compositional method for kernel
combination. In this method, the new kernel matrix is composed of the original, differ-
ent kernel matrices, by constructing a larger matrix in which the original ones are still
present. Thereby, the properties of the original kernel functions can be preserved and
the importance of these kernel functions are directly derived in the process of training
support vector machines. Herewith, weights for individual objects with respect to the
base kernels are found integrated in a single classifier optimization procedure. This pro-
cedure will thereby not overfit the training dataset as the weighted kernels methods may
do due to the fact that they use the data twice: for optimising the weights as well as for
training the classifier.

In this paper we experimentally study the differences of our kernel compositional
method with other kernel combination methods, and the differences and influences of
combining models and combining decisions for a classifier combination system. Some
considerations for selecting more suitable strategies under different situations will be
discussed.
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The rest of the paper is organized as follows. In Section 2, some background of sup-
port vector machine is recapitulated. The construction of the discriminant hyperplane
in the feature space and the effect of kernel functions is shown. In Section 3, our kernel
composition method is presented. Simulation results for comparing kernel combina-
tion and classifier combination methods are given in Section 4. Finally, conclusions are
summarized in Section 5.

2 Overview of Support Vector Machine

For convenience, we introduce the support vector classifier with d input variables xi1,
xi2, . . ., xid for 2-class problem with class labels +1 and −1 in this section. xi and yi

represent ith input datum (a vector) and its corresponding class label [2,3]. Extension
to multi-class problems can be achieved by training multiple support vector machines.

2.1 Support Vector Machine

To control both training error and model complexity, the optimization problem of SVM
is formalized as follows:

minimize
1
2

< w,w > +C
n∑

i=1

ξi,

subject to < w · xi > +b ≥ +1 − ξi, for yi = +1
< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (1)

By using Lagrange multiplier techniques, Eq.(1) could lead to the following dual opti-
mization problem:

maximize
∑n

i=1 αi −
∑n

i=1
∑n

j=1 αiαjyiyj < xi,xj >,

subject to
∑n

i=1 αiyi = 0, αi ∈ [0, C]. (2)

Using Lagrange multipliers, the optimal desired weight vector of the discriminant hy-
perplane is w =

∑n
i=1 αiyixi. Therefore the best discriminant hyperplane can be de-

rived as

f(x) =<

n∑

i=1

αiyixi,x > +b = (
n∑

i=1

αiyi < xi,x >) + b, (3)

where b is the bias of the discriminant hyperplane.

2.2 Kernel Functions

In Eq.(3), the only way in which the data appears is in the form of dot products <
xi,x >. The discriminant hyperplane is thereby linear and can only solve a linearly
separable classification problem. If the problem is nonlinear, instead of trying to fit
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a nonlinear model, the problem can be mapped to a new space by a nonlinear trans-
formation using a suitably chosen kernel function. The linear model used in the new
space corresponds to a nonlinear model in the original space. To make the above model
nonlinear, consider a mapping φ(x) from the input space into some feature space as

φ : R
d → H. (4)

The training algorithm only depends on the data through dot products in H, i.e. on
functions of the form < φ(xi), φ(xj) >. Suppose a kernel function K defined by

K(xi,xj) =< φ(xi), φ(xj) >, (5)

is used in the training algorithm. Explicit knowledge of φ is thereby avoided. The dot
product in the feature space can be expressed as a kernel function. Similar to Eq.(3)
in linear problems, for a nonlinear problem, we will have the following discriminant
function

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (6)

In this paper, we will use the Gaussian radial basis function as the kernel function, and
therefore

K(xi,xj) = e(− ‖xi−xj‖2

σ2 ). (7)

3 Composition of Kernel Matrices

Most kernel combination methods try to average out the kernel matrices in one way
or another [5,4,6,7,8,9]. There is a risk, however, of losing information in the original
kernel matrices. For example, if the dataset has varying local distributions, different ker-
nels will be good for different areas. Averaging the kernel functions of such a dataset
would lose some capability to describe these local distributions. In order to combine
kernel matrices without losing any original information, we develop a kernel composi-
tion method which is an extension and aggregation of all the original kernel matrices.

Suppose the original kernel functions are K1, K2, ..., and Ks and the feature func-
tions of the original kernel functions are φ1(x), φ2(x)..., and φs(x). We would like
to preserve and use all the feature functions to construct a new kernel function, so we
should be able to compute inner products like < φp(x), φp′ (x′) >, where φp(x) and
φp′(x′) are feature functions from different kernel spaces. We will show that this can

be done if we can formulate φp(x) as Kp
1
2 (x, z) which is a function of z and belongs

to the L2 space. 1 Using the definition of inner products in the L2 space, we define the
compositional kernel function as

Kp,p′(x,x′) ≡< φp(x), φp′ (x′) >≡
∫

Kp
1
2 (x, z)Kp′

1
2 (x′, z)dz. (8)

1 Kp
1
2 (x, z) can be computed based on eigenvalue decomposition: it has the same eigenfunc-

tions as Kp(x, z) and its eigenvalues are the square roots of those of Kp(x, z).
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Using the self-similarity property of Gaussian distributions, one can show that the
square root of a radial basis kernel function is

Kp
1
2 (x, z) = (

4
πσp

2 )
d
4 e

(−2‖x−z‖2

σp2 )
, (9)

and the mixture of two kernel matrices can be derived as

Kp,p′(x,x′) = (
2σpσp′

σp
2 + σp′2

)
d
2 e

(−2 ‖x−x′‖2

σp2+σ
p′2

)
. (10)

Clearly, Kp,p ≡ Kp. Consequently, the compositional kernel matrix K is of the form

K =

⎛

⎜⎜⎜⎝

K1,1 K1,2 · · · K1,s

K2,1 K2,2 · · · K2,s

...
...

. . .
...

Ks,1 Ks,1 · · · Ks,s

⎞

⎟⎟⎟⎠

s×n,s×n

, (11)

where the original kernel matrices are on the diagonal. The other elements are mixtures
of two different kernel matrices which are defined like (Kp,p′)i,j = Kp,p′(xi,xj). It
is obvious that entries of K are the inner products in L2, and because of this K is
positive semi-definite. The kernel matrix K is called the compositional kernel matrix.
Also, the feature function φ(x) of the compositional kernel matrix can be defined as
φ(x) = [φ1(x), φ2(x), ..., φs(x)]. Note that the size of the compositional kernel matrix
is (s × n) × (s × n) while the sizes of the original kernel matrices are n × n. After
the construction of the compositional kernel matrix, the support vector machine can
proceed the learning of support vectors and their corresponding coefficients. Objects
have to be replicated as the compositional kernel matrix is s times larger than the base
kernels.

With the compositional kernel matrix, we can reformulate the optimization problem
as follows:

minimize
1
2

< w,w > +C
s×n∑

i=1

ξi,

subject to < w · xi > +b ≥ +1 − ξi, for yi = +1
< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (12)

By using Lagrange multiplier techniques, Eq.(12) could lead to the following dual op-
timization problem:

maximize
∑s×n

i=1 αi − (
∑n

i=1 αiyiφ1(xi) + · · · +
∑s×n

i=(s−1)×n+1 αiyiφs(xi))

(
∑n

j=1 αjyjφ1(xj) + · · · +
∑s×n

j=(s−1)×n+1 αjyjφs(xj)),

subject to
∑s×n

i=1 αiyi = 0, αi ∈ [0, C]. (13)
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After calculating Lagrange multipliers, an optimal weight vector for the discriminant
hyperplane can be found by w =

∑s×n
i=1 αiyixi. Therefore the best discriminant hyper-

plane can be derived as

f(x) = (
n∑

i=1

αiyiφ1(xi) + · · · +
s×n∑

i=(s−1)×n+1

αiyiφs(xi))φ(x) + s × b

=
n∑

i=1

αiyi(K1,1(xi,x) + K1,2(xi,x) + · · · + K1,s(xi,x)) + · · ·

+
s×n∑

i=n×(s−1)+1

αiyi(Ks,1(xi,x) + Ks,2(xi,x) + · · · + Ks,s(xi,x))

+ s × b (14)

where s × b is the bias of the discriminant hyperplane and x can be either a training or
testing data pattern.

4 Experimental Results

In this section, we compare the experimental results obtained by our composition kernel
combination method with those of another kernel combination and a classifier combi-
nation method. The kernel combination method is the weighted kernel for which the
weights of the kernels are optimized by semidefinite programming [5]. The product
rule is used to derive the classifier combiner. One synthetic dataset and three benchmark
datasets [12] are used in the experiments. To test whether kernel combination methods
are more capable of describing data with different local distributions than classifier
combination methods, two of the four datasets used in the experiments are with differ-
ent local distributions, and the other two datasets are regular real datasets. The single
kernel and the combined kernel SVM classifiers in the experiments are implemented by
LIBSVM [10] and the classifier combiners are built with the PRTOOLS [11]. In every
experiment, several single kernel SVM classifiers are constructed, and kernel combina-
tion and classifier combination methods were used to combine these single classifiers.
The sigma’s of these single RBF kernels are assigned heuristically in the following way.
The smallest sigma is the average distance of each data pattern to its nearest neighbor.
The largest sigma is the average distance of each data pattern to its furthest neighbor.
The other sigma’s are determined by linear interpolation.

4.1 Experiment 1: Data with Varying Local Distributions

Banana and sonar datasets are used in experiment 1. The SVM parameter C is set to
1 in all experiments. The banana dataset is a synthetic 2-dimensional dataset with 400
data patterns in 2 classes, and it is rescaled in each dimension with

xij = xij × e(− xij
16 ), for i = 1, 2, ..., 400, and j = 1, 2, (15)

to have a variation of scales in the dataset. The sonar dataset contains information of
208 objects, 60 attributes, and two classes, rock and mine. The attributes represent the
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energy within a particular frequency band integrated over a certain period of time. The
results are averaged over 20 experiments. For the rescaled banana dataset, 2 single ker-
nel classifiers are built and different methods are used to combine these 2 classifiers
in each experiment. As for the sonar dataset, 4 single kernel classifiers are built and
combined in the experiments.

The results for all single kernel classifiers, kernel combination methods and classi-
fier combination methods with rescaled banana dataset are in Figure 1. Moreover, the
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Fig. 1. Experiment results of rescaled banana dataset with our compositional method, weighted
kernel, product combiner and their comparisons with the single kernel classifiers. Standard devi-
ations of the mean error results vary from 0.1112 (left) to 0.0088 (right).

experimental results of the sonar dataset are given in Figure 2. From Figure 1 and Fig-
ure 2, we can see that the compositional method performs better than the weighted ker-
nel, especially when a smaller size of training dataset is given. This is because it avoids
the overtraining problem of the weighted kernel. Also, kernel combination methods out-
perform classifier combination methods when the dataset is composed of different local
distributions. A possible reason is that a combined model is more capable of adapting
to varying data distributions than can be realized by combining decision outputs.

4.2 Experiment 2: Benchmark Data

We use the glass and diabetes datasets in experiment 2. The glass dataset contains
214 instances, 9 features and 6 classes, and diabetes dataset is with 768 instances, 8
features and 2 classes. The SVM parameter C is set to 100 in all experiments. For
both datasets, 4 single kernel classifiers are built and different methods are used to
combine these 4 classifiers in each experiment, and the results are the averages of 20
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Fig. 2. Results of the sonar dataset for the proposed compositional method, weighted kernel, prod-
uct combiner and their comparisons with the single kernel base classifiers. Standard deviations
of the mean error results vary from 0.086 (left) to 0.038 (right).

Table 1. Diabetes dataset: number of support vectors generated with weighted kernel and our
compositional method

number of training data patterns
method 10 50 100 150 200 250 300

number of average support vectors (20 experiments)
weighted kernel 9.7 40.3 65.7 88.2 111.4 133.4 153

compositional method 18.3 97.2 179.5 272.5 369.8 466.5 553.4

repeated experiments. The results of all single kernel classifiers, kernel combination
methods and classifier combination methods with the glass dataset are shown in Fig-
ure 3. The results for the diabetes dataset are given in Figure 4, and the number of
support vectors obtained with the kernel combination methods are given in Table 1. In
Figure 3 and Figure 4, kernel combination methods and classier combination methods
have similar performances if the number of training objects is large. When the size
of the training set is small, kernel combination methods suffer more from overfitting,
and therefore classier combination methods would be a better choice. Nevertheless, the
compositional method performs better than all other methods. The number of support
vectors, however, is about three times of those of the other kernel combination meth-
ods. This is related to the replication of the training set needed to apply the larger kernel
matrix.
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Fig. 3. Results for the glass dataset with the compositional method, weighted kernel, product
combiner and their comparisons with the single kernel classifiers. Standard deviations of the
mean error results vary from 0.13 (left) to 0.034 (right).
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Fig. 4. Results of the diabetes dataset with the compositional method, weighted kernel, product
combiner and their comparisons with the single kernel classifiers. Standard deviations of the mean
error results vary from 0.092 (left) to 0.016 (right).
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5 Conclusions

In this study we compared the performances of kernel combination and classifier
combination methods for different types of data distribution. We also proposed a com-
positional kernel combination method to avoid the overfitting problem of the other
kernel combination methods. When a dataset has a varying local data distributions,
kernel combination methods are preferred. But classifier combination methods are more
stable when the size of the training dataset is small. Nevertheless, the proposed com-
positional method is stable in all cases. If there is, however, a superior single kernel
classifier, it will be very difficult to obtain a better classifier by classifier or kernel
combining.
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