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Abstract. Selecting a set of good and diverse base classifiers is essential
for building multiple classifier systems. However, almost all commonly
used procedures for selecting such base classifiers cannot be directly ap-
plied to select structural base classifiers. The main reason is that struc-
tural data cannot be represented in a vector space.

For graph-based multiple classifier systems, only using subgraphs for
building structural base classifiers has been considered so far. However,
in theory, a full graph preserves more information than its subgraphs.
Therefore, in this work, we propose a different procedure which can trans-
form a labelled graph into a new set of unlabelled graphs and preserve
all the linkages at the same time. By embedding the label information
into edges, we can further ignore the labels. By assigning weights to
the edges according to the labels of their linked nodes, the strengths of
the connections are altered, but the topology of the graph as a whole is
preserved.

Since it is very difficult to embed graphs into a vector space, graphs
are usually classified based on pairwise graph distances. We adopt the
dissimilarity representation and build the structural base classifiers based
on labels in the dissimilarity space. By combining these structural base
classifiers, we can solve the labelled graph classification problem with a
multiple classifier system. The performance of using the subgraphs and
full graphs to build multiple classifier systems is compared in a number
of experiments.

1 Introduction

A multiple classifier system [6] is based on the idea to combine several classifiers
such that the combined system achieves better performance than the individual
ones. The base classifiers to be combined are required to be sufficiently diverse
[5,6]. Data resampling and feature subset selection [5] are two common ways for
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promoting the diversity of base classifiers. Data resampling methods, e.g. bagging
and boosting [15], select different training samples for different base classifiers.
In feature subset selection, base classifiers are trained using different subsets of
features and their solutions are usually very different. Therefore, feature subset
selection methods could yield better diversity than data resampling methods.
There is another reason besides diversity for feature subset selection, that is, the
curse of dimensionality problem. For a dataset with very high dimensionality, it
is possible that one single classifier could not find a good solution in this high
dimensional vector space. By feature subset selection, the problem can be solved
in lower dimensional spaces and there is a higher chance to find better solutions.

However, for structural pattern recognition problems, patterns are not repre-
sented with only numerical features and there is also no direct way to embed
graphs into a vector space, especially for the structural relationships within one
object. Because the space of structural data, e.g., strings, trees or graphs, has
not been properly vectorized yet, there are just a few attempts for building
multiple classifier systems based on structural representations [1,12,2,8]. Obvi-
ously, feature subset selection methods are not applicable to train base classifiers
for structural patterns as most other methods developed for statistical pattern
recognition problems. But then the question arises what is a good alternative
for increasing the diversity and maybe also avoiding the problem of high dimen-
sionality for structural multiple classifier systems?

One of the few examples for creating structural base classifiers is discussed in
[14]. The idea is to generate different graph-based classifiers by randomly remov-
ing nodes and their incident edges from the training graphs until a maximum
number of nodes is reached for all graphs. Because of the randomness, differ-
ent graph-based classifiers can be created and each becomes a base classifier in
the multiple classifier system. However, with this setting, we still need to com-
pute similarity/dissimilarity for labelled graphs using time-consuming techniques
such as the maximum common subgraph [2] or the graph edit distance [9] con-
sidering a labelled graph classification problem. Unlike graphs with unlabelled
nodes, graphs with labelled nodes usually need to be processed and described
with more complicated algorithms and structures. Also, classifying graphs with
labelled nodes is a more difficult task than classifying graphs with unlabelled
nodes. Therefore, a method was proposed in [8] to decompose labelled graphs
into sets of unlabelled subgraphs based on label information, and compare the
dissimilarity between all pairs of subgraphs in order to create base classifiers in
the dissimilarity space [10] for different labels.

Both existing methods described above for building structural multiple classi-
fier systems only consider subgraphs for training base classifiers. One is selecting
subgraphs randomly and the other is selecting subgraphs based on label infor-
mation. Does this mean that subgraph selection is the best way for increasing
the diversity of the base classifiers? Does subgraph selection somehow resemble
feature subset selection?

In [8], we observed a very interesting phenomenon that all the combiners
reaching the lowest error rate have at least one of the global structure base
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classifiers as the base classifiers. So it is clear that the global structures can
improve the classification performance. The global structure means that the
linkages of the given graph are fully preserved. Therefore instead of subgraphs,
the full graphs are used for creating structural base classifiers. This suggests that
full graphs are beneficial to the multiple classifier system. Therefore, instead of
selecting subgraphs for training base classifiers, we propose a method to alter
the full graphs and train base classifiers based on different versions of altered
full graphs. The goal for this work is to investigate the best way for building
diverse structural base classifiers, i.e., whether we should select the subgraphs,
alter the full graphs or adopt both.

To derive different full graphs from the same graph and transfer a labelled
graph into an unlabelled one, the label information is utilized by us to alter
the graph into different forms. The alteration is done by assigning weights to
the edges and the label information is also embedded in these weights. We can
further ignore the labels on the nodes once the label information is embedded
on the edges.

The rest of the paper is organized as follows. A multiple classifier system uti-
lizes the label information of graphs for altering full graphs in order to build
structural base classifiers is proposed in Section 2. In Section 3, we recap the
JoEig approach for comparing unlabelled graphs. Simulation results are pre-
sented in Section 4. Finally, a conclusion is given in Section 5.

2 Building a Multiple Classifier System Using Altered
Full Graphs

Before we introduce the altered full graphs for building structural base classifiers
for a multiple classifier system, some definitions and an introduction on graphs
are given as in the following.

A graph is a set of nodes connected by edges in its most general form. Consider
the undirected graph G = (V, E, W ) with the node set V = {v1, v2, . . . , vn}, the
edge set E = {e1, e2, . . . , em} ⊂ V × V , and the weight function W : E → (0, 1].
If the graph edges are weighted, the adjacency matrix A for the graph G is the
n × n matrix with elements

Aij =
{

W (vi, vj), if (vi, vj) ∈ E;
0, otherwise. (1)

Clearly since the graph is undirected, the matrix A is symmetric. The Laplacian
of the graph is defined by L = D − A, where D is the diagonal node degree
matrix whose elements Dii =

∑n
k=1 Aik. The Laplacian matrix of G is positive

semidefinite and singular, and it is more often adopted for spectral analysis than
the adjacency matrix because of its properties. We use the example graph shown
in Figure 1(a) through this section to explain our method. This example graph is
with 8 nodes and each node is labelled with one symbol. There are no attributes
on the edges and the elements of the adjacency matrix A given in Eq.(2) of this
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(a) (b)

Fig. 1. Examples of (a) a labelled graph; (b) possible linkage combinations in graphs
according to label A

graph are either 1 or 0 to indicate whether there is an edge between two nodes
or not.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

2.1 Full Graph Alterations

Our goal is to solve the labelled graph classification problem by altering a labelled
graph into a set of unlabelled graphs that preserve all the linkage structures. The
alteration is given by assigning weights(�= 0) to the edges. In order to assign the
weights in such a way that the new set of altered full graphs are diverse, the
weights are given according to the node label information. For instance, if there
are three different labels, i.e., A, B and C, in a graph, we can define three kinds
of connection strengths according to label A as shown in Figure 1(b). Suppose
label A is considered as the master label, the edge connects two nodes with both
master label A will have the weight w1. The edge connects one node with master
label A and the other node which is not A will have the weight w2, and finally
the edge that connects two nodes that are both not master label will have the
weight w3. Without loss of generality, we assume that 1 ≥ w1 ≥ w2 ≥ w3 > 0.
By selecting different labels as the master label, the strengths of the connections
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(a) (b)

(c) (d)

Fig. 2. Examples of altered full graphs with weights assigned based on label (a) C,
(b) O and (c) H , respectively, from the graph in Figure 1(a), and (d) the unlabelled
version of altered full graph based on label H

in a graph will change but the linkage structure will remain the same because
the weights can not be equal to zero by assumption.

For the example in Figure 1(a), there are three different labels, i.e., C, H
and O. For each label, we will assign weights to the edges according to this
particular label. Let w1 = 1, w2 = 0.6 and w3 = 0.2, Figure 2(a), Figure 2(b)
and Figure 2(c) are with weights assigned according to label C, O, and H ,
respectively. Now that the label information is embedded to the edges with
different weights, it means that we can ignore the label within the graph as in
Figure 2(d) and fully describe this graph with a connection matrix (which is
composed of the weights of the edges). For the example graph in Figure 2(a), its
connection matrix AC will be

AC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2 0.6 0 0 0 0 0
0.2 0 0.6 0 0 0 0 0
0.6 0.6 0 0.6 0 0 0 0
0 0 0.6 0 0 0.6 0 0
0 0 0 0 0 0.6 0 0.2
0 0 0 0.6 0.6 0 0.6 0.6
0 0 0 0 0 0.6 0 0.2
0 0 0 0 0.2 0.6 0.2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Notice that if w1, w2 an w3 are all set to 1, the connection matrix AC equals
the adjacency matrix.
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2.2 Dissimilarity and Base Classifiers

Given m graphs with n distinctive labels among the graphs, we want to create
n base classifiers with respect to the labels. So, for a certain label, we derive
an altered full graph and its connection matrix from each graph by assigning
different weights as described above. With these m altered full graphs, the dis-
similarities are calculated pairwise with the JoEig approach as described in the
next Section. As a result, we can obtain an m×m dissimilarity matrix for each
label. With this dissimilarity matrix, we can build a base classifier for this label
in the dissimilarity space [10]. In the end, we can construct n label base classi-
fiers by doing the same to each label. Dissimilarity space uses (selected) object
dissimilarities as axes and objects as points. That is, axis 1 is the dissimilarity to
object 1, axis 2 the dissimilarity to object 2 and so on. Object points are located
in this space by their dissimilarities to each (selected) objects. These selected
objects are also called the representation set. With this setting, we can project
the objects into a vector space and build a classifier in it.

3 JoEig: Graph Comparison in Joint Eigenspace

JoEig [7] projects each pair of two graphs into a joint eigenspace. This joint
eigenspace is expanded by both sets of eigenvectors.

Let G and H be weighted undirected graphs and LG and LH be their Lapla-
cian matrices, respectively. The eigendecomposition of LG and LH are performed
as LG = VGDGV T

G and LH = VHDHV T
H where VG and VH are orthonormal

matrices and DG and DH are diagonal matrices of the eigenvalues (in ascend-
ing order) of G and H , respectively. With the joint projection vector VGV T

H ,
both graphs G and H will be projected to their joint eigenspace as LGVGV T

H

and VGV T
H LH . The difference between two graphs using JoEig is defined as

‖VGDGV T
H − VGDHV T

H ‖2. The JoEig approach approximates a graph by relo-
cating its eigenvalues in the joint eigenspace constructed by the eigenvectors of
both graphs.

There are also three possibilities for setting the number of eigenvectors to
compare graphs with different sizes in JoEig. In this work, we choose to make
full use of the eigenvectors from the smaller graph and keep the same number
of eigenvectors and eigenvalues in the larger graph as in the smaller graph by
removing less important eigenvalues and eigenvectors from the larger graph.

4 Experiments

In this section, we compare the performance of the multiple classifier systems
built on the subgraphs and the altered full graphs, respectively. Linear discrimi-
nant classifier (ldc), quadratic discriminant classifier (qdc) and k-nearest neigh-
bor classifier (knnc) are adopted to build base classifiers in the dissimilarity space
[10], respectively. For knnc, the 3 nearest neighbors are considered. All the base
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classifiers and the classifier combiner are built with the PRTOOLS [4]. Two real-
world datasets, i.e., Mutagenicity and AIDS [13], are used in the experiments
where 60% of objects are randomly selected and used as the training and testing
datasets, 20% are used as the validation set for indicating the performance of
individual base classifiers, and the other 20% are used as the other validation
set for searching the best values for weights, i.e., w1,w2, and w3. We randomly
select 15% of training objects and use them as the representative objects to con-
struct the dissimilarity space for both datasets. Also, the eigenvalue diagonal
and eigenvector matrices are resized to the size of the smaller graph with the
JoEig approach. Moreover, all the results in the following are the average over
50 repetitions of experiments resulting in a very small standard deviation.

4.1 Experiment 1: Mutagenicity Dataset

Mutagenicity is one of the numerous adverse properties of a compound that ham-
pers its potential to become a marketable drug. The molecules are converted into
graphs in a straightforward manner by representing atoms as nodes and the cova-
lent bonds as edges. Nodes are labeled with the corresponding chemical symbol,
and there are 10 different symbols in total. The average number of nodes of a
graph is 30.3 ± 20.1, and the average number of edges is 30.7 ± 16.8. The Mu-
tagenicity dataset is divided into two classes, i.e., mutagen and nonmutagen.
There are in total 4,337 elements (2,401 mutagen elements and 1,936 nonmu-
tagen elements). In the experiments, 50% of objects are randomly selected and
used as the training dataset. In Figure 3 (a), we add the base classifiers (10
base classifiers from subgraphs or altered full graphs) one by one. At each step,
the base classifier performing best against the validation set will be selected as
the next base classifier to be added. The max combination rule is used for ldc
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Fig. 3. Compare subgraphs and full graphs for building base classifiers with (a) combi-
nation results of different number of base classifiers and (b) learning curves of combining
best 8 base classifiers for Mutagenicity dataset
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and qdc while the voting combination rule is used for knnc. For chemical com-
pounds, atoms ’C’ and ’H’ are very common elements among and within objects.
Especially for atom ’C’, the full graphs or subgraphs constructed based on label
’C’ can preserve most structures of the original graphs and therefore the base
classifier constructed on label ’C’ usually has the best individual performance.
At first, knnc has base classifiers that are significantly better than ldc and qdc,
which means the data distribution is rather nonlinear and knnc is more suit-
able for such a problem. But knnc is easily over-trained and also has unreliable
confidence and therefore its performance decreases dramatically when more and
more base classifiers are combined. If the max combination rule is used for knnc
instead of voting, the performance of knnc will decrease even faster. Neverthe-
less, combining the best 3 individual knnc base classifiers can reach the optimal
performance which is much better than all the combination results of ldc and
qdc. Therefore, it might be beneficial to use knnc as base classifiers but selecting
the best set of base classifiers is a crucial problem.

From Figure 3(a), we can see that base classifiers built on full graphs give
better combination results than base classifiers built on subgraphs when more
base classifiers are combined. However, with a few base classifiers, subgraphs
perform better than full graphs with ldc and knnc. This means full graphs give
more information about the structure of the original graph when more different
labels are considered. On the other hand, the base classifiers built on subgraphs
are more diverse in the beginning. We can also observe from Figure 3(a) that
for ldc and qdc, the performance increases when there are more and more base
classifiers combined. Because adding base classifiers is like adding features, when
there is a sufficient number of objects, combining different base classifiers yields
higher possibilities of having better performance than individual classifiers.

To fairly investigate the limitations and capabilities of subgraphs and full
graphs, the learning curves of combining the best 8 base classifiers for both
methods are drawn in Figure 3(b). Clearly, we can see that the subgraphs work
better with small sample sizes and the full graphs on the other hand are bet-
ter with medium and large sample sizes for ldc. Since graphs are usually with
complex structures, it is possible to overfit when the number of objects is not
sufficiently large. With subgraph selection, the structures are decomposed into
simpler format and this problem might be avoided. In Figure 3(a), we can see that
when the number of base classifiers is 8, using full graphs for qdc is worse than
using subgraphs and therefore, we can also expect the same from Figure 3(b).

4.2 Experiment 2: AIDS Dataset

The AIDS dataset consists of graphs representing molecular compounds. The
graphs are constructed from the AIDS Antiviral Screen Database of Active Com-
pounds (molecules). This dataset consists of two classes, active and inactive, to
indicate molecules with activity against HIV or not. The molecules are con-
verted into graphs in a straightforward manner by representing atoms as nodes
and the covalent bonds as edges. Nodes are labeled with the corresponding chem-
ical symbol, and there are 26 labels in total. The average number of nodes of
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Fig. 4. Compare subgraphs and full graphs for building base classifiers with (a) combi-
nation results of different number of base classifiers and (b) learning curves of combining
best 5 base classifiers for AIDS dataset

a graph is 15.6 ± 13.1, and the average number of edges is 16.1 ± 15.0. There
are 2,000 elements in total (1,600 inactive elements and 400 active elements). In
the experiments, 50% of objects are randomly selected and used as the training
dataset.

In Figure 4(a), the base classifiers (26 base classifiers from subgraphs or al-
tered full graphs) are added one by one using the same technique as described
above. The AIDS dataset is a much easier dataset to classify compared to the
Mutagenicity dataset, and the best individual ldc classifiers built on subgraphs
and full graphs, respectively, already reach very small error rates which makes
it difficult for the combiner to improve the individual performance. There is not
much difference for both methods in combining different numbers of ldc clas-
sifiers. The qdc and knnc classifiers preform significantly much worse than the
ldc classifier with this dataset. The learning curves of combining the best 5 base
classifiers for both methods are drawn in Figure 4(b). We can see that the full
graphs perform better than the subgraphs with a larger number of objects for
knnc but the difference is rather small for ldc.

5 Discussions and Conclusions

We solve the labelled graph classification problem with the multiple classifier
system by decomposing labelled graphs into unlabelled full graphs based on their
labels and building base classifiers from the full graphs. The full graphs preserve
the topology from the original graph and therefore carry more information than
subgraphs. Therefore using full graphs is beneficial when there is a sufficient
number of objects. On the other hand, because of the complex structure of
graphs, it is possible to encounter the problem of high dimensionality. Adopting
subgraphs is a better solution in this case.
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For highly nonlinear problems, knnc is probably a good solution and it is
actually commonly adopted in graph classification problems. Therefore, how to
select a proper set of knnc classifiers to combine for graph classification problems
could be a direction for future study.
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