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Abstract. Kernel combination is meant to improve the performance of single
kernels and avoid the difficulty of kernel selection. The most common way of
combining kernels is to compute their weighted sum. Usually, the kernels are as-
sumed to exist in independent empirical feature spaces and therefore were com-
bined without considering their relationships.
To take these relationships into consideration in kernel combination, we propose
the generalized augmentation kernel which is extended by all the single kernels
considering their correlations. The generalized augmentation kernel, unlike the
weighted sum kernel, does not need to find out the weight of each kernel, and
also would not suffer from information loss due to the average of kernels.
In the experiments, we observe that the generalized augmentation kernel usually
can achieve better performances than other combination methods that do not con-
sider relationship between kernels.

1 Introduction

The selection of kernel functions, the model, and the parameters, is one of the most
difficult problem of designing a kernel machine. Recently, an interesting development
seeks to construct a good kernel from a series of kernels. Most approaches in the litera-
ture aim to derive a weighted sum kernel, and the main concernis to find out the weight
of each kernel [2, 4, 6, 8–10, 13, 18, 19]. In [10], semi-definite programming (SDP) was
used to optimize over the coefficients in a linear combination of different kernels with
respect to a cost function. The optimization worked in a transductive setting, and there-
fore all the information of training and testing patterns was required in the process.
To prevent over-fitting, the search space of possible combined kernel matrices is con-
strained by bounding the kernel matrices with a fixed trace. If kernel target alignment
is used as the cost function, this method could be seen as a generalization of the ker-
nel matrix learning method in [7]. Instead of learning the combined kernel matrix in
a transductive setting, hyperkernel methods [18] directlylearned the combined kernel
function in the inductive setting by minimizing a regularized risk functional. In these
optimization methods, not only the cost function and constraints were considered, much
effort was also spent to speed up the optimization procedure. Sometimes, a SDP prob-
lem might be able to cast to a second-order cone program (SOCP) [19] or quadratically
constrained quadratic program (QCQP) [10] problem to achieve lower complexity. In
[2], gradient decent was used to propose an even faster method. These methods mainly
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focus on finding the best weight of each kernel, and then perform the weighted sum
of these kernels in order to derive a combined kernel. In these settings, local informa-
tion is easily averaged out, and therefore these methods might suffer from information
loss and the abilities of single kernels also become weaker.For example, if the dataset
has varying local distributions, different kernels will begood for different areas. Aver-
aging the kernels of such a dataset would lose some capability to describe these local
distributions.

To unfold the local characteristics of data, [11, 12, 21] allproposed to augments
kernels of sizem × m into a kernel of size(s × m) × (s × m). These methods all put
the original kernel matrices on the diagonal. The main difference is on the off-diagonal.
The methods proposed in [12, 21], which we name as the augmented kernel in short,
only put zeros on the off-diagonal due to lacking of knowledge about the cross terms.
In this case, it implies that different kernels live in the different subspaces and there is no
interaction between these subspaces. Also, the empirical feature functions of different
kernels are unrelated. This is a rather constrained assumption, and does not provide
much flexibility. These cross terms are however, defined in [11] as the inner product of
square roots of kernel functions to meet the mercer condition. Unfortunately, one can
only derive the square root of a kernel function if the function is self-similar. Therefore,
the only adoptable kernel for computing the composite kernel proposed in [11] is the
Radial Basis function (RBF). Moreover, the cross terms of composite kernels are very
similar to the product of two RBF kernels and therefore usually results in very small
values. In most cases, it is very much the same as putting zeros on the off-diagonal.

In this work, we propose a method to augment single kernels into a generalized
augmentation kernel by considering the cross terms on the off-diagonal and these cross
terms can be derived from any type of kernel. It duplicates empirical feature functions
on the off-diagonal with scaling parameters which indicatehow related the empirical
feature functions from two different kernels should be. This scaling parameter also
allows us to smoothly vary between the original augmented kernel and the direct sum
kernel, and therefore we can have a generalized descriptionof multiple kernels and
enlarge the searching space of the optimal solution. The experimental results suggest
that the generalized augmentation kernel usually can find a better solution than the sum
kernel, the composite kernel and the augmented kernel.

The rest of the paper is organized as follows. In Section 2, the overview of support
vector machine is recaped. The direct sum of kernels and the augmented kernel and
their empirical feature spaces are described in Section 3, respectively. Our proposal
for constructing the generalized augmentation kernel fromsingle kernels is given in
Section 4. Simulation results are presented in Section 5. Finally, a conclusion is given
in Section 6.

2 Overview of Support Vector Machine

For convenience, we introduce the support vector classifierwith d input variablesxi1,
xi2, . . ., xid for 2-class problem with class labels+1 and−1 in this section.xi andyi

representith input datum (a vector) and its corresponding class label [20, 3]. Extension
to multi-class problems can be achieved by training multiple support vector machines.



To control both training error and model complexity, the optimization problem of
SVM is formalized as follows:

minimize
1

2
< w,w > +C

n
∑

i=1

ξi,

subject to< w · xi > +b ≥ +1 − ξi, for yi = +1

< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (1)

By using Lagrange multiplier techniques, Eq.(1) could leadto the following dual opti-
mization problem:

maximize
∑n

i=1
αi −

∑n

i=1

∑n

j=1
αiαjyiyj < xi,xj >,

subject to
∑n

i=1
αiyi = 0, αi ∈ [0, C]. (2)

Using Lagrange multipliers, the optimal desired weight vector of the discriminant hy-
perplane isw =

∑n

i=1
αiyixi. Therefore the best discriminant hyperplane can be de-

rived as

f(x) =<

n
∑

i=1

αiyixi,x > +b = (

n
∑

i=1

αiyi < xi,x >) + b, (3)

whereb is the bias of the discriminant hyperplane.

2.1 Empirical Feature Function of Kernels

In Eq.(3), the only way in which the data appears is in the formof dot products, that
is < xi,x >. The discriminant hyperplane is thereby linear and can onlysolve a lin-
early separable classification problem. If the problem is nonlinear, instead of trying to
fit a nonlinear model, the problem can be mapped to a new space by a nonlinear trans-
formation using a suitably chosen kernel function. The linear model used in the new
space corresponds to a nonlinear model in the original space. To make the above model
nonlinear, consider a mappingφ(x) from the input space into some feature space as

φ : R
d → H. (4)

The training algorithm only depends on the data through dot products inH, i.e. on
functions of the form< φ(xi), φ(xj) >. Suppose a kernel functionK defined by

K(xi,xj) =< φ(xi), φ(xj) >, (5)

is used in the training algorithm. Explicit knowledge ofφ is thereby avoided. The dot
product in the feature space can be expressed as a kernel function. Similar to Eq.(3)
in linear problems, for a nonlinear problem, we will have thefollowing discriminant
function

f(x) =

n
∑

i=1

αiyiK(xi,x) + b. (6)



3 Sum Kernel And Augmented Kernel

Most kernel combination methods try to average out the kernel matrices in one way or
another [10, 1, 9, 8, 14, 18]. Supposes original kernels are given asK1, K2, ..., andKs

with sizem×m and the empirical feature functions of these kernels areφ1(x), φ2(x)...,
andφs(x). Combining kernels by summing up all the kernels is equivalent to taking the
Cartesian product of their respect empirical feature spaces. And weighing the kernels
is the same as scaling the empirical feature spaces. To make use of all the local charac-

(a) (b)
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Fig. 1. Geometrical interpretation of (a) the empirical feature space ofK1 (b) the empirical fea-
ture space ofK2 (c) the empirical feature space ofK1 + K2 (d) the empirical feature space of
K1

⊕

K2.

teristics of each single kernel, the augmented kernel is proposed in [12, 21], which is of
the form

K1

⊕

K2

⊕

· · ·
⊕

Ks =











K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Ks











s×m,s×m.

(7)

A direct sum kernel is withm coefficients while the augmented kernels is withs × m

coefficients. Therefore, every object in every kernel can contribute during the training
for augmented kernel.



By augmenting the empirical feature functions of kernels into one matrixX⊕ as

X⊕ =











φ1(x) 0 · · · 0
0 φ2(x) · · · 0
...

...
. . .

...
0 0 · · · φs(x)











s×m,s×m,

(8)

one can show that the augmented kernel obeys the mercer theorem by taking the inner
product ofX⊕ , that isXT

⊕ X⊕ = K1

⊕

K2

⊕

· · ·
⊕

Ks.
Figure 1 is the illustration of the empirical feature spacesof direct sum kernel and

the augmented kernel. From Figure 1(c) and Figure 1(d), we can see that instead of 4
objects as in the empirical feature spaces of the individualkernels and the direct sum
kernel, there are duplicated objects (in total 8) in the empirical feature space of the
augmented kernel. However, the augmented kernel assumes that all the empirical fea-
ture functionsφ1(x), φ2(x)..., andφs(x) are independent and uncorrelated. Therefore
objects only live in their subspaces, and that is why we see two clear vertical and hori-
zontal sets of objects in Figure 1(d). All the objects are therefore only allowed to be on
the coordinates and the rest of the space is completely empty.

4 Generalized Augmentation Kernel in Multiple-Kernel Spaces

The augmented kernel assumes that the empirical feature spaces of kernels are all inde-
pendent and uncorrelated. However, this assumption is not necessarily true, especially
if kernels of the same type but different shapes are selectedto combine. To combine
kernels which are not necessarily uncorrelated, we first define the space which is ex-
panded by these empirical feature functions to be the multiple-kernel space. In this
space, the main components are not only these empirical feature functions but also the
relationships among them. In the multiple-kernel space, the empirical feature functions
are duplicated on the off-diagonal with scaling parameterswhich indicate how related
the empirical feature functions from two different kernelsshould be. Thus, the multiple-
kernel spaceX⊗ is in the following form:

X⊗ =











r11φ1(x) r12φ1(x) · · · r1sφ1(x)
r21φ2(x) r22φ2(x) · · · r2sφ2(x)

...
...

. . .
...

rs1φs(x) rs2φs(x) · · · rssφs(x)











(9)

with sizes × m, s × m andrij is a parameter indicating how relatedφi(x) andφj(x)
is. For simplicity, we assume thatr11, r22, ..., and rss are all equal to 1, andrij is
equal torji, for all i, j. By taking the inner product ofX⊗ , we can therefore define the
generalized augmentation kernelK1

⊗

K2

⊗

· · ·
⊗

Ks as










r11r11K1 + · · · + rs1rs1Ks r12r11K1 + · · · + rs2rs1Ks · · · r1sr11K1 + · · · + rssrs1Ks

r11r12K1 + · · · + rs1rs2Ks r12r12K1 + · · · + rs2rs2Ks · · · r1sr12K1 + · · · + rssrs2Ks

...
...

. . .
...

r11r1sK1 + · · · + rs1rssKs r12r1sK1 + · · · + rs2rssKs · · · r1sr1sK1 + · · · + rssrssKs













Fig. 2. Geometrical interpretation of the empirical feature spaceof K1

⊗

K2 with r11 = 1,
r22 = 1, r12 = 0.5, andr21 = 0.5 given the empirical feature spaces ofK1 andK2 as in
Figure 1(a) and Figure 1(b).

with sizes × m, s × m. Therefore the size of the generalized augmentation kernelma-
trix is (s×m)×(s×m) while the sizes of the original kernel matrices arem×m. After
the construction of the generalized augmentation kernel matrix, the support vector ma-
chine can proceed the learning of support vectors and their corresponding coefficients.
Both training and testing objects have to be replicated as the generalized augmentation
kernel matrix iss times larger than the base kernels.

The geometrical interpretation of the generalized augmentation kernel is given in
Figure 2. By setting the degree of correlation between the empirical feature functions
of two kernels as0.5, the duplicated objects, unlike in the augmented kernel, can now
position in different parts of the space as well. This obviously enlarges the searching
space of optimal solutions for support vector machines. Moreover, the parameterrij

allows us to smoothly vary between the original augmented kernel (r = 1) and the
direct sum kernel(r = 0).

5 Experimental Results

In this section, we compare the experimental results obtained by our generalized aug-
mentation kernel with those of other kernel combination methods and a classifier com-
bination method. The kernel combination methods include the augmented kernel [12,
21], the direct sum kernel and the composite kernel [11]. TheFisher learning rule is
used to derive the classifier combiner. One synthetic dataset and 7 benchmark datasets
[15–17] are used in the experiments. To test whether the generalized augmentation ker-
nel is more capable of describing data with different local distributions than the other
kernel or classifier combination methods, two of the 8 datasets used in the experiments
are with different local distributions, and the other 6 datasets are regular real datasets.
The single kernel and the combined kernel SVM classifiers in the experiments are im-
plemented with LIBSVM [5] and the classifier combiners are built with PRTOOLS



[17]. In every experiment, two RBF kernels are constructed,and kernel combination
and classifier combination methods were used to combine these kernels or classifiers.

5.1 Experiment 1: Data With Varying Local Distributions

Spiral and sonar datasets are used in experiment 1. The SVM parameterC is set to 1 in
all experiments to obtain a reasonable number of support vectors. The spiral dataset is a
synthetic 2-dimensional dataset with 400 data patterns in 2classes as shown in Figure 3.
The sonar dataset contains information of 208 objects, 60 attributes, and two classes,
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Fig. 3. Distribution of the spiral dataset.
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Fig. 4. Experiment results of (a) spiral dataset, and (b) sonar dataset with single kernels, general-
ized augmentation kernel, augmented kernel, composite kernel and the Fisher combiner.

rock and mine. The attributes represent the energy within a particular frequency band



integrated over a certain period of time. In all the experiments, the dataset is randomly
split into training and testing datasets with80% and20% ratio. For both datasets, two
RBF kernels are built and different methods are used to combine these two kernels in
each experiment. The results are averaged over 500 experiments. The sigma’s of these
single RBF kernels are assigned heuristically in the following way. The smallest sigma
is the average distance of each data pattern to its nearest neighbor. The largest sigma is
the average distance of each data pattern to its furthest neighbor.

The results for both single kernel classifiers, kernel combination methods and clas-
sifier combination methods with spiral dataset and sonar dataset are in Figure 4(a) and
Figure 4(b), respectively. For these two datasets, the sum kernel, the augmented ker-
nel and the composite kernel all have very similar performances. The Fisher classifier
combiner is much better than kernel combination methods except for the generalized
augmentation kernel under the situation that a high correlation factor is assigned during
the construction of the generalized augmentation kernel. This suggests that the classi-
fier combiner is more preferable than kernel combination methods when data is with
varying local distributions, especially if the empirical feature spaces of the combined
kernel is assumed to be uncorrelated.

Table 1. datasets.

dataset biomedIMOX auto-mpgheart iris wine
# features 5 8 6 13 4 13
# classes 2 4 2 2 3 3
# objects 194 192 398 297 150 178

5.2 Experiment 2: Benchmark Data

Table 2. Results of single kernels, augmented kernel, direct sum kernel, composite kernel and the
Fisher combiner.

datasets
method biomed IMOX auto-mpg heart iris wine

average error rate of 500 experiments
single kernel 1 0.1245 0.0788 0.1704 0.3828 0.0692 0.2610
single kernel 2 0.1336 0.0794 0.1497 0.3041 0.0365 0.3147

direct sum kernel0.1206 0.0587 0.1418 0.3346 0.0423 0.2803
augmented kernel0.1362 0.0607 0.1396 0.3258 0.0402 0.2684
composite kernel0.1362 0.0608 0.1396 0.3259 0.0402 0.2684
fisher combiner 0.1318 0.0893 0.1737 0.4242 0.0750 0.2622



Six real world datasets [15–17] as shown in Table 1 with the number of features,
objects and classes, are used to have a more general investigation in experiment 2.
The SVM parameterC is set to 1 in all experiments to obtain a reasonable number
of support vectors. In all the experiments, the dataset is randomly split into training
and testing datasets with80% and20% ratio. For all datasets, two RBF kernels are
built with the heuristic mentioned above and different methods are used to combine
these two kernels in each experiment, and the results are theaverages of 500 repeated
experiments. The results of all single kernel classifiers, kernel combination methods and
classifier combination methods with all datasets are shown in Table 2. The results of the
generalized augmentation kernel with different values of the cross term parameterr are
given in Table 3.

From Table 2 and Table 3, we can see that given the right value to the parameter
r, the generalized augmentation kernel can perform better than the best kernel combi-
nation (in bold) in all the datasets. Nevertheless, theser values seem to be dependant
on the dataset and therefore there is a need to choose a good value beforehand. Also in
these datasets, the classifier combiner is in general worse than the kernel combination
methods.

Table 3. Results of the generalized augmentation kernel with different values of the cross term
parameterr.

datasets
cross term parameter rbiomed IMOX auto-mpg heart iris wine

average error rate of 500 experiments
0 0.1362 0.0607 0.1396 0.3258 0.0402 0.2684

0.2 0.1263 0.0576 0.1375 0.3370 0.0396 0.2491
0.4 0.1231 0.0524 0.1365 0.3388 0.0388 0.2435
0.6 0.1196 0.0458 0.1435 0.3339 0.0381 0.2377
0.8 0.1222 0.0449 0.1456 0.3416 0.0423 0.2390
1 0.1189 0.0443 0.1513 0.3580 0.0367 0.2316

6 Conclusions

In this study we proposed a method to construct the generalized augmentation kernel
with multiple kernels. With the replication of empirical feature functions and adding a
scaling factor to influence the correlation between kernels, we give more flexibility in
positioning the duplicated objects in the combined empirical feature space.

However, this scaling factor, also called the cross term parameter, seems to be de-
pendant on the dataset, and therefore it is more beneficial ifthis parameter can be well
chosen before the process of learning. So far, we only choosethe optimal parameter
based on testing results and this is not really a practical solution. Moreover, our exper-
iments only use two kernels so far in order to have a better insight on the cross term
parameter. It is necessary, however, to include experiments with more kernels later on.
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