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Abstract. Kernel combination is meant to improve the performance oflsi
kernels and avoid the difficulty of kernel selection. The tnr@mmon way of
combining kernels is to compute their weighted sum. Usutily kernels are as-
sumed to exist in independent empirical feature spacestemdfore were com-
bined without considering their relationships.

To take these relationships into consideration in kernedlmoation, we propose
the generalized augmentation kernel which is extended Iihekingle kernels
considering their correlations. The generalized augntientdernel, unlike the
weighted sum kernel, does not need to find out the weight di &amel, and
also would not suffer from information loss due to the averafikernels.

In the experiments, we observe that the generalized augti@mkernel usually
can achieve better performances than other combinationadgthat do not con-
sider relationship between kernels.

1 Introduction

The selection of kernel functions, the model, and the patarseis one of the most
difficult problem of designing a kernel machine. Recentlyjraeresting development
seeks to construct a good kernel from a series of kernelst psoaches in the litera-
ture aim to derive a weighted sum kernel, and the main coris¢orfind out the weight
of each kernel [2, 4, 6,8-10, 13,18, 19]. In [10], semi-défiprogramming (SDP) was
used to optimize over the coefficients in a linear combimatibdifferent kernels with
respect to a cost function. The optimization worked in agdarctive setting, and there-
fore all the information of training and testing patternsswaquired in the process.
To prevent over-fitting, the search space of possible coetbikernel matrices is con-
strained by bounding the kernel matrices with a fixed trafckennel target alignment
is used as the cost function, this method could be seen aseaadjeation of the ker-
nel matrix learning method in [7]. Instead of learning thentxined kernel matrix in
a transductive setting, hyperkernel methods [18] dirdeifyned the combined kernel
function in the inductive setting by minimizing a regulamizrisk functional. In these
optimization methods, not only the cost function and caists were considered, much
effort was also spent to speed up the optimization proce@mmetimes, a SDP prob-
lem might be able to cast to a second-order cone program (PRGRor quadratically
constrained quadratic program (QCQP) [10] problem to aehiewer complexity. In
[2], gradient decent was used to propose an even faster théthese methods mainly
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focus on finding the best weight of each kernel, and then partbe weighted sum
of these kernels in order to derive a combined kernel. Inetlsetings, local informa-
tion is easily averaged out, and therefore these methodst midfer from information
loss and the abilities of single kernels also become we&kerexample, if the dataset
has varying local distributions, different kernels will geod for different areas. Aver-
aging the kernels of such a dataset would lose some capabilitescribe these local
distributions.

To unfold the local characteristics of data, [11,12,21]pabposed to augmenst
kernels of sizen x m into a kernel of sizés x m) x (s x m). These methods all put
the original kernel matrices on the diagonal. The main diffiee is on the off-diagonal.
The methods proposed in [12,21], which we name as the augehé&stnel in short,
only put zeros on the off-diagonal due to lacking of knowle@dpout the cross terms.
In this case, it implies that different kernels live in th&éelient subspaces and there is no
interaction between these subspaces. Also, the empidasirfe functions of different
kernels are unrelated. This is a rather constrained assampind does not provide
much flexibility. These cross terms are however, defined 1 §% the inner product of
square roots of kernel functions to meet the mercer comditimfortunately, one can
only derive the square root of a kernel function if the fuontis self-similar. Therefore,
the only adoptable kernel for computing the composite Kegneposed in [11] is the
Radial Basis function (RBF). Moreover, the cross terms aofigosite kernels are very
similar to the product of two RBF kernels and therefore uguasults in very small
values. In most cases, it is very much the same as putting perthe off-diagonal.

In this work, we propose a method to augment single kernétsangeneralized
augmentation kernel by considering the cross terms on fhdiadonal and these cross
terms can be derived from any type of kernel. It duplicatepienal feature functions
on the off-diagonal with scaling parameters which indidates related the empirical
feature functions from two different kernels should be.sTecaling parameter also
allows us to smoothly vary between the original augmentedeteand the direct sum
kernel, and therefore we can have a generalized descripfiamultiple kernels and
enlarge the searching space of the optimal solution. Thererpntal results suggest
that the generalized augmentation kernel usually can firettarsolution than the sum
kernel, the composite kernel and the augmented kernel.

The rest of the paper is organized as follows. In Section&ptlerview of support
vector machine is recaped. The direct sum of kernels andugmented kernel and
their empirical feature spaces are described in Sectioeshectively. Our proposal
for constructing the generalized augmentation kernel feimgle kernels is given in
Section 4. Simulation results are presented in Sectionralllyj a conclusion is given
in Section 6.

2 Overview of Support Vector Machine

For convenience, we introduce the support vector classifitbr 4 input variablest;,
X2, . . ., Tiq fOr 2-class problem with class labejsl and—1 in this sectionx; andy;
represent’” input datum (a vector) and its corresponding class labgldRE&Extension
to multi-class problems can be achieved by training mudtflpport vector machines.



To control both training error and model complexity, theimytation problem of
SVM is formalized as follows:

minimize% < W, W > +C;€i,
subjectto< w - x; > +b > +1 - &, fory; = +1
<w-x; > F+b< —14¢, fory; = —1

& >0,Vi. 1)

By using Lagrange multiplier techniques, Eq.(1) could leathe following dual opti-
mization problem:

maximize Z?:l a; — Z?:l Z?:l QY < X, X4 >,
subject to Yo oy = 0,05 € [0,C]. (2)

Using Lagrange multipliers, the optimal desired weightteeof the discriminant hy-
perplane isw = > | a;y;x;. Therefore the best discriminant hyperplane can be de-
rived as

F) =< >y, x > +b= (Y cuys < xi,x >) + b, 3)
i=1 i=1

whereb is the bias of the discriminant hyperplane.

2.1 Empirical Feature Function of Kernels

In Eq.(3), the only way in which the data appears is in the fofrdot products, that
is < x;,x >. The discriminant hyperplane is thereby linear and can salye a lin-

early separable classification problem. If the problem islinear, instead of trying to
fit a nonlinear model, the problem can be mapped to a new spaa@bnlinear trans-
formation using a suitably chosen kernel function. Thedmmodel used in the new
space corresponds to a nonlinear model in the original sgaaaake the above model
nonlinear, consider a mappirgx) from the input space into some feature space as

¢:RY - H. (4)

The training algorithm only depends on the data through dotlgcts in7, i.e. on
functions of the formx ¢(x;), #(x;) >. Suppose a kernel functids defined by

K(Xivxj) =< ¢(Xi)7¢(xj) >, (5)

is used in the training algorithm. Explicit knowledge®fs thereby avoided. The dot
product in the feature space can be expressed as a kern@bfur8imilar to Eq.(3)
in linear problems, for a nonlinear problem, we will have fbkowing discriminant
function

flx) = ZaiyiK(xi,x) +b. (6)
i=1



3 Sum Kernel And Augmented Kernel

Most kernel combination methods try to average out the kenagrices in one way or
another [10,1, 9, 8, 14, 18]. Suppaseriginal kernels are given as, Ko, ..., and K
with sizem x m and the empirical feature functions of these kernelga(g), ¢ (x)...,
andg,(x). Combining kernels by summing up all the kernels is equivtietaking the
Cartesian product of their respect empirical feature spated weighing the kernels
is the same as scaling the empirical feature spaces. To nsaekef all the local charac-
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Fig. 1. Geometrical interpretation of (a) the empirical featuracgpofK; (b) the empirical fea-
ture space ofK, (c) the empirical feature space &f; + K (d) the empirical feature space of
K, Ko.

teristics of each single kernel, the augmented kernel isgwed in [12, 21], which is of
the form

Ky 0 0

()K...O
L@R@-@r-| . . )

00K,

A direct sum kernel is withn coefficients while the augmented kernels is witk m
coefficients. Therefore, every object in every kernel cantrigioute during the training
for augmented kernel.



By augmenting the empirical feature functions of kernels one matrixXq, as

pr(x) 0 - 0
xo-| b TS ©
0 0 - y(x)

sXm,sXm,

one can show that the augmented kernel obeys the merceethdxyrtaking the inner
product ofX g, that isXéX@ =KIPK:P-- PK..

Figure 1 is the illustration of the empirical feature spagkdirect sum kernel and
the augmented kernel. From Figure 1(c) and Figure 1(d), wesea that instead of 4
objects as in the empirical feature spaces of the individlaaiels and the direct sum
kernel, there are duplicated objects (in total 8) in the eivali feature space of the
augmented kernel. However, the augmented kernel assuiaeslitthe empirical fea-
ture functionsp; (x), ¢2(x)..., and¢s(x) are independent and uncorrelated. Therefore
objects only live in their subspaces, and that is why we seectear vertical and hori-
zontal sets of objects in Figure 1(d). All the objects aredfae only allowed to be on
the coordinates and the rest of the space is completely empty

4 Generalized Augmentation Kernel in Multiple-Kernel Spaces

The augmented kernel assumes that the empirical featucespékernels are all inde-
pendent and uncorrelated. However, this assumption iset®gsarily true, especially
if kernels of the same type but different shapes are seléotedmbine. To combine
kernels which are not necessarily uncorrelated, we firshddfie space which is ex-
panded by these empirical feature functions to be the nedkiprnel space. In this
space, the main components are not only these empiricalréefinctions but also the
relationships among them. In the multiple-kernel spacegethpirical feature functions
are duplicated on the off-diagonal with scaling parameughich indicate how related
the empirical feature functions from two different kerngt®uld be. Thus, the multiple-
kernel spaceX is in the following form:

T11¢1(X) T12¢1 (X) s 7’15¢1(X)
T21¢02(X) raada(X) - -+ rasPa(x)
Xg = : . . (©)

7’51¢.5(X) T52¢.s (X) Tssd).s(x)

with sizes x m, s x m andr;; is a parameter indicating how relateég(x) and¢; (x)
is. For simplicity, we assume that;, 722, ..., andr,, are all equal to 1, and,; is
equal tor;, for all 4, j. By taking the inner product oX g , we can therefore define the
generalized augmentation kerié] Q K2 @ - - @Q K as

riTi g+ A rarsi K mor11n K+ -+ reara K - s K A e K
11712y + - rarso K m1or12 K1 - oo K - T1sT12 K -+ TesT o K

TllrlsKl + -+ TslrssKs TlQTlsKl +- TSQTSSKS e TlsrlsKl +-+ TssrssKs
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Fig. 2. Geometrical interpretation of the empirical feature spatd<; K K> with 11 = 1,
roo = 1, ri2 = 0.5, andra; = 0.5 given the empirical feature spaces &f and K> as in
Figure 1(a) and Figure 1(b).

with sizes x m, s x m. Therefore the size of the generalized augmentation kemael
trix is (s x m) x (s x m) while the sizes of the original kernel matrices arex m. After
the construction of the generalized augmentation kernélixpéhe support vector ma-
chine can proceed the learning of support vectors and thaiegponding coefficients.
Both training and testing objects have to be replicated agémeralized augmentation
kernel matrix iss times larger than the base kernels.

The geometrical interpretation of the generalized augati&mt kernel is given in
Figure 2. By setting the degree of correlation between thpigeal feature functions
of two kernels a$).5, the duplicated objects, unlike in the augmented kernel noav
position in different parts of the space as well. This obslgenlarges the searching
space of optimal solutions for support vector machines.edweer, the parameter;
allows us to smoothly vary between the original augmentedeiér = 1) and the
direct sum kernefr = 0).

5 Experimental Results

In this section, we compare the experimental results obthiy our generalized aug-
mentation kernel with those of other kernel combinationhods and a classifier com-
bination method. The kernel combination methods inclugeathgmented kernel [12,
21], the direct sum kernel and the composite kernel [11]. Fis&er learning rule is
used to derive the classifier combiner. One synthetic diatagk7 benchmark datasets
[15-17] are used in the experiments. To test whether thergkred augmentation ker-
nel is more capable of describing data with different lodatributions than the other
kernel or classifier combination methods, two of the 8 dasassed in the experiments
are with different local distributions, and the other 6 data are regular real datasets.
The single kernel and the combined kernel SVM classifieraéneixperiments are im-
plemented with LIBSVM [5] and the classifier combiners ardthuith PRTOOLS



[17]. In every experiment, two RBF kernels are constructed| kernel combination
and classifier combination methods were used to combine #ersels or classifiers.

5.1 Experiment 1: Data With Varying L ocal Distributions

Spiral and sonar datasets are used in experiment 1. The SvévhpéerC is setto 1in

all experiments to obtain a reasonable number of suppotbked he spiral dataset is a
synthetic 2-dimensional dataset with 400 data patternglasses as shown in Figure 3.
The sonar dataset contains information of 208 objects, Bib@es, and two classes,
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Fig. 3. Distribution of the spiral dataset.
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Fig. 4. Experiment results of (a) spiral dataset, and (b) sonasdateith single kernels, general-
ized augmentation kernel, augmented kernel, compositeekand the Fisher combiner.

rock and mine. The attributes represent the energy withiaraqoular frequency band



integrated over a certain period of time. In all the experitagthe dataset is randomly
split into training and testing datasets with% and20% ratio. For both datasets, two
RBF kernels are built and different methods are used to coenhiese two kernels in
each experiment. The results are averaged over 500 expesimde sigma’s of these
single RBF kernels are assigned heuristically in the folhgway. The smallest sigma
is the average distance of each data pattern to its neaighboe The largest sigma is
the average distance of each data pattern to its furtheg ipei.

The results for both single kernel classifiers, kernel coratidon methods and clas-
sifier combination methods with spiral dataset and sonasgatre in Figure 4(a) and
Figure 4(b), respectively. For these two datasets, the sermek the augmented ker-
nel and the composite kernel all have very similar perforceanThe Fisher classifier
combiner is much better than kernel combination methodspbdor the generalized
augmentation kernel under the situation that a high cdiogldactor is assigned during
the construction of the generalized augmentation kerrtés 3uggests that the classi-
fier combiner is more preferable than kernel combinationhods$ when data is with
varying local distributions, especially if the empiricalature spaces of the combined
kernel is assumed to be uncorrelated.

Table 1. datasets.

dataset |biomedIMOX |auto-mpgheartiris |wine
# features 5 8 6 13| 4| 13
# classes 2 4 2 2 13| 3
# objects) 194 | 192 398 |297|150 178

5.2 Experiment 2: Benchmark Data

Table 2. Results of single kernels, augmented kernel, direct sumgkeromposite kernel and the
Fisher combiner.

datasets

method biomed] IMOX Jauto-mpg heart | iris [ wine
average error rate of 500 experiments
single kernel 1| 0.1245| 0.0788| 0.1704 | 0.3828| 0.0692| 0.2610
single kernel 2| 0.1336| 0.0794( 0.1497 | 0.3041| 0.0365| 0.3147
direct sum kerngD.1206|0.0587| 0.1418 | 0.3346| 0.0423| 0.2803
augmented kernegD.1362| 0.0607| 0.1396 {0.3258(0.0402| 0.2684
composite kerngl0.1362| 0.0608| 0.1396 (0.3259(0.0402| 0.2684
fisher combiner| 0.1318| 0.0893| 0.1737 | 0.4242| 0.0750|0.2622




Six real world datasets [15-17] as shown in Table 1 with thelmer of features,
objects and classes, are used to have a more general iiEstign experiment 2.
The SVM paramete€ is set to 1 in all experiments to obtain a reasonable number
of support vectors. In all the experiments, the datasetridamly split into training
and testing datasets wi0% and 20% ratio. For all datasets, two RBF kernels are
built with the heuristic mentioned above and different noelh are used to combine
these two kernels in each experiment, and the results avdrages of 500 repeated
experiments. The results of all single kernel classifiezsn&l combination methods and
classifier combination methods with all datasets are showable 2. The results of the
generalized augmentation kernel with different valuefefdross term parameteare
given in Table 3.

From Table 2 and Table 3, we can see that given the right valtleet parameter
r, the generalized augmentation kernel can perform betéer tine best kernel combi-
nation (in bold) in all the datasets. Nevertheless, thegglues seem to be dependant
on the dataset and therefore there is a need to choose a doedeforehand. Also in
these datasets, the classifier combiner is in general woasethe kernel combination
methods.

Table 3. Results of the generalized augmentation kernel with diffevalues of the cross term
parameter-.

datasets
cross term parametefliomed IMOX [auto-mpg heart | iris | wine
average error rate of 500 experiments
0 0.1362| 0.0607| 0.1396 |0.3258| 0.0402| 0.2684
0.2 0.1263| 0.0576] 0.1375|0.3370| 0.0396| 0.2491
0.4 0.1231| 0.0524| 0.1365 | 0.3388| 0.0388| 0.2435
0.6 0.1196| 0.0458| 0.1435 | 0.3339| 0.0381| 0.2377
0.8 0.1222| 0.0449| 0.1456 | 0.3416| 0.0423| 0.2390
1 0.1189|0.0443| 0.1513|0.3580({0.0367|0.2316

6 Conclusions

In this study we proposed a method to construct the genethlimgmentation kernel
with multiple kernels. With the replication of empiricaldire functions and adding a
scaling factor to influence the correlation between kernetsgive more flexibility in
positioning the duplicated objects in the combined emairfieature space.

However, this scaling factor, also called the cross ternampater, seems to be de-
pendant on the dataset, and therefore it is more benefittasiparameter can be well
chosen before the process of learning. So far, we only chtheseptimal parameter
based on testing results and this is not really a practidatisa. Moreover, our exper-
iments only use two kernels so far in order to have a bettéghih®n the cross term
parameter. It is necessary, however, to include expersneitlh more kernels later on.
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