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Abstract. In recent years, together with bagging [5] and the random subspace
method [15], boosting [6] became one of the most popular combining techniques
that allavs us to impree a weak classifielUsually boosting is applied to
Decision Tees (DTS). In this papemwe study boosting in Linear Discriminant
Analysis (LDA). Simulation studies, carried out for one artificial data set and
two real data sets, siahat boosting might be useful in IX0for large training
sample sizes while bagging is useful for critical training sample sizes [11]. In
this paperin contrast to a common opinion, we demonstrate that the usefulness
of boosting does not depend on the instability of a classifier

1 Introduction

When data are highly dimensional,virey small training sample sizes com-
pared to the data dimensionalitymay be dificult to construct a good single classifi-
cation rule. Usuallya classifierconstructed on small training sets is biased and has a
large \ariance. Consequentlguch a classifier may Y@ a poor performance [1]. In
order to imprege a weak classifier by stabilizing its decision, a number of techniques
could be used, for instancegtgarization [2] or noise injection [3].

Another approach is to construct mameak classifiers instead of a single one
and combine them in someawinto a pwerful decision rule. Recently a number of
such combining techniquesveabeen desloped. The most popular ones are bagging
[5], boosting [6] and the random subspace method [15]. In bagging, one samples the
training set, generating random independent bootstrap replicates [4], constructs the
classifier on each of these and aggtes them by a simple majoritpte in the final
decision rule. In boosting, classifiers are constructed on weigaisidns of the train-
ing set, which are dependent onvioeis classification results. InitiaJlyall objects
have equal weights, and the first classifier is constructed on this data set. Then, weights
are changed according to the performance of the clasdtiissneously classified
objects get lager weights and the reclassifier is boosted on theaeighted training
set. In this vay a sequence of training sets and classifiers is obtained, which are then
combined by a simple majorityote or by a weighted majorityote in the final deci-
sion. In the random subspace method classifiers are constructed in random subspaces
of the data feature space. Then, only classifiers with the zero classification error on the
training set are combined by simple majoribterin the final decision rule.

Usually bagging, boosting and the random subspace method are applied to
DT’s [7],[8],[9],[10],[15], where the often produce an ensemble of classifiers, which
is superior to a single classification rule wéwer, these techniques may also perform



well for other classification rules, than BTFor instance, it ws shwn that bagging
and boosting may be useful for perceptrons (see, e.g. [16]asltdemonstrated that
bagging may be beneficial in 1ADfor small and critical training sample sizes (when
the number of training objects is comparable with data dimensionality) [11]. Our ini-
tial study [17] has shen that also boosting may be ativageous in LB.

In this paper we intend to study the usefulness of boosting for linear classifiers
and in particular to westicate its relation with the instability of classifierse\Won-
sider the nearest mean classifier [12], the Fisher Linear Discriminant function (FLD)
[12] and the rgularized FLD [2]. This choice is made in order to obsenaly differ-
ent classifiers with a dissimilar instability and, by that, to establish whether the useful-
ness of boosting depends on the classifier instability or on other classifier peculiarities.
The chosen classification rules and their instability are discussed in section 4. One arti-
ficial data set and twreal data sets representing the 2-class problem are used in our
simulation studyThey are described in section 3jtfirst a short description of the
boosting algorithm is gen in section 2. Simulation results on the performance of
boosting in LOA are discussed in section 5. Conclusions are summarized in section 6.

2 The Boosting Algorithm

Boosting, proposed by Freund and Schapire [6], is a technique to combine
weak classifiers, wang a poor performance, in a strong classification rule with a better
performance. As it as already mentioned before, in boosting, classifiers and training
sets are obtained sequentially a strictly deterministic ay. At each step, training
data are n@eighted in such ay that incorrectly classified objects geglrweights in
a nav modified training set. By that, one actually maximizesgnarbetween training
objects. It suggests the connection between boosting apdiké Support ¥ctor
Classifier (SVC) [7],[13], as objects obtainingdarweights may be the same as the
support objects. Boosting isganized by us in the foleing way.

1. Repeat fob=1,2,...B. b
a) Construct the classifier C'(X[) on the weighted ersion

X[= (wlixl, ngz, ngn) of training data seX = (X4, X, ..., X,)), using
weights w; J=l.n(wp = 1 for b=1).

. . _1¢ b.b
b) Compute probability estimates of the errorerry= n wig
b [0, if X; is classified correctly 1 -errOg'=
& =0 , , and ¢,= 5logG———70
Dl’ otherwise 27gerry g
b+1 b by . .
c)If 0< err,<0.5, setw; = W exp(—chi ),i=1,...n, and renormalize so that
n
b+1 . . b .
Wi =n. Otherwise, set all weightw; = 1, i=1,...n, and restart.

i=1
2. Combine cIassifier@b(XD) by the weighted majorityate with weightsc,, to a
final decision rule.

3 Data

One atrtificial data set and dweal data sets are used for axperimental study
The first set is a 30-dimensioradrrelated Gaussian datset Data [) constituted by



two classes with equal eariance matrices. Each class consists of Hovs. The

mean of the first class is zero for all features. The mean of the second class is equal to
3 for the first tvo features and equal to O for all other features. The comnvaniaoce

matrix is a diagonal matrix with axiance of 40 for the second feature and a \amit v

ance for all other features. The intrinsic clagsriap (Bayes error) is 0.064. This data

set is rotated using a 30 rotation matrix which |sf i} for the first tvo features

and the identity matrix for all other features.

Two real data sets are t@kfrom the UCI Repository [14]. The first is the 34-
dimensionaionosphee data set@ata II) with 225 and 126 objects belonging to the
first and the second data class, respelstiThe second is the 8-dimensiodébetes
data setData Ill) consisting of 500 and 268 objects from the first and the second data
class, respeately. These tw data sets were also used in [8], when studying bagging
and boosting for decision trees. The diabetes datassealso used when bagging and
boosting were studied for LA[8].

Training sets with 3 to 400, with 3 to 100 and with 3 to 200 objects per class are
chosen randomly from a total set for the data I, Il and Ill, reshetiThe remaining
data are used for testing. Akgeriments are repeated 50 times for independent train-
ing sets. In all figures theveraged resultsver 50 repetitions are presented. The stan-
dard deiations of the mean generalization errors for single and boosted linear
classifiers are of the similar order for each data set. When increasing the training sam-
ple size, the are decreasing approximately from 0.015 to 0.004, from 0.014 to 0.007
and from 0.018 to 0.004 for the data I, Il and IlI, respetti When the mean general-
ization error of the boostedgelarized FLD shas a peaking bek@ur on the iono-
sphere data set (see Fig. 4), its standavéhtien is about 0.03.

4 The Performance and the Instability of Linear Classifiers

In order to study a lge group of linear classifiers and their instahiligf us
consider rgularized classifiers in L.
TheReayularized Fsher Linear Discriminanfunction (RFLD) [2] is defined as

Oreip() = [x=3& "+ X (s ranxP-x).

where the ridge estimat8 + )\I is used instead of the mean clasgatiance matrix
S. One can see, that the RFLD representsge llamily of linear classifiers (see Fig.
1). When A = 0, one obtains thEisher Linear Discriminanfunction (FLD) [12]

gro(¥) = [x-5(X Y+ X5 x M -x?),

When A - o, the informatlon concerning eariances between features is lost.
Then, the classmer approaches Neaest Mean ClassifigfiNMC) [12]

Iumc(x) = [x——(x(l) +x(2))] (XD _x(@)y

and the probability of misclassification may appreciably increase. Satadisvof the

regularization parameteh may stabilize the decision and impecthe classifier per-

formance. Hwvever, for very small A , the efect of rgyularization will be nglible. In

this case the RFLD performs similar to tRseudo isher Linear Discriminant

(PFLD) [12], haing a high classification error around the critical training sample

sizes, when the number of training objects is comparable to the data dimensionality
In order to understand betterhen boosting can be beneficial, it is useful to



consider the instability of a classifier [11]. The classifier instability is measured by us
by calculating the changes in classification of a training set caused by the bootstrap
replicate of the original learning data set. Repeating this procedigmalsémes on the
training set (we did it 25 times) andeaiaging the results, an estimate of the classifier
instability is obtained. The mean instability of linear classifiers (on 50 independent
training sets) defined in thisay is presented in Fig. 2. One can see that the instability

of the classifier decreases when the training sample size increases. The instability and
the performance of a classifier are correlated: more stable classifiers perform better
than less stable ones. In thimmple, havever, the performance of the NMC does not
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depend on the training sample size. In contrast to other classifiers, it remains a weak
classifier for lage training sample sizes, while its stability increases. Theory of boost-
ing is dereloped for weak classifiers anddartraining sample sizes. Therefore, one
may &pect that boosting may be beneficial for the NMC.

5 Boosting br Linear Classifiers

Let us nov consider the performance of boosting inA.Bn the @ample of the
NMC, the FLD and the RFLD with ddrent \alues of rgularization parameteé.

The NMC Boosting is useful for the NMC (see Fig. 3f, Fig. 4f and Fig. 5f).
Especially it performs nicely for the Gaussian correlated data set, reducing the general-
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ization error of a single NMC more than twice. In boosting, wrongly classified objects
get lager weights. Mainlythey are objects on the border between classes. Therefore,
boosting performs best for g training sample sizes, when the border between data
classes becomes more inforraatiln this case, boosting the NMC performs similar to
the linear SVC [13]. Heever, when the training sample size isgaythe NMC is sta-
ble. It puts us on the obsation that, in contrast to bagging, the usefulness of boosting
may not depend directly on the stability of the classifiefepends on the “quality” of
the erroreously classified objects (usyapound the border between data classes) and
on the ability of the classifier (its compity) to distinguish them correctly

The FLD Simulation results (see Fig. 3a, Fig. 4a, Fig. 5ajvghat boosting is
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completely useless for the FLD. The performance and the stability of the FLD depends
on the training sample sizeoiFsmall training sample sizes, the classifieris/wnsta-

ble and has a poor performance, as sample estimates of mearsslage bias and a

sample estimate of a commorvagance matrix is singular or nearly singuMrthen
increasing the training sample size, the sample estimates are less biased, and the classi-
fier becomes more stable and performs hettetboosting, objects on the border
between data classes geglkrweights. By that, the number of actually used training
objects decreases. When the training sample size is smaller than the data dimensional-
ity, all or alImost all objects lie on the bord€herefore, almost all training objects are
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used at each step of the boosting algorithm. One getg sirailar classifiers that per-
form badly Combining such classifiers does not inyarthe FLD. When the training
sample size increases, the FLD performs helttethis case, boosting may perform
similar to a single FLD (if the number of objects on the border fcruftly lage to
construct a good FLD) or mayonsen the situation (if the number of actually used
training objects at each step of boosting is ndicetly lage to define a good FLD).

The PFLD Boosting the PFLD, which is similar to the RFLD witheaywsmall
value of the rgularization parametey, is also useless (see Fig. 3b, Fig. 4b, Fig. 5b).
For the training sample sizesdar than the data dimensionality the PFlniaximiz-
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ing the distance to all g&n samples, is equlent to the FLD. &t the training sample

sizes smaller than the data dimensionalityvever, the PFLD finds a linear subspace,
which corers all the data samples. On this plane the PFLD estimates the data means
and the ceariance matrix, anduilds a linear discriminant perpendicular to this sub-
space in all other directions for which no samples arengiTherefore, for these train-

ing sample sizes, the apparent error (the classification error on the training set) of the
PFLD is alvays zero. Thus boosting is completely useless for the PFLD.

The RFLD Considering the RFLD with dérent \alues of the mgularization
parametei\, one can see that boosting is also not beneficial for these classifiers with
exception of the RFLD with ery lage values ofA, which performs similar to the
NMC. For small training sample sizes, when all or almost all training objeets ha
similar weights at each step of the boosting algorithm, the modified training set is sim-
ilar the original one, and the boosted RFLD performs similar to the original RFEkD. F
critical training sample sizes, the boosted RFLD may perfoorsevor gen much
worse (haing a high peak of the generalization error) than the original RFLD. This is
caused by tw reasons. The first is that the modified training sets used in boosting usu-
ally contain less training objects than the original training set. Smaller training sets
give more biased sample estimates of classes means and/dhierm®e matrix than
larger training sets. Therefore, the RFLD constructed on the smaller training set usu-
ally has a wrse performance. An ensemble of these quality classifiers constructed
on the smaller training sets may performrse than the single classifier constructed on
the lager training set. The second reason is that the objects on the border between data
classes (which are getting dg@r weights in the boosting algorithm)vieaoften other
distribution than the original training set. Therefore, on such modified training set, the
RFLD with certain alue of the rgularization parametex may perform dfierently
than the same RFLD on the original training segWRarization may not be didient,
causing the generalization error peak similar to the RFLD veith small alues ofA.
However, on lage training sample sizes, boosting may be beneficial for the RFLD, if
the single RFLD performs avse than a linear supporeator classifierAs a rule, it is
the RFLD with \ery lage values ofA. Thus, boosting is useful only for the RFLD with
large \alues of the rgularization parameter and for lage training sample sizes.

6 Conclusions

Summarizing simulation results presented in th@ipus section, we can con-
clude the follaving:

Boosting may be useful in L®for classifiers that perform poor ondertrain-
ing sample sizes. Such classifiers are the Nearest Mean Classifier andutaei szl
Fishers Linear Discriminant with |lge \alues of the mularization parametexk,
which approximates the NMC.

Boosting is useful only for lge training sample sizes, if the objects on the bor-
der gve a better representation of the disttibn of the data classes than the original
data classes distation and the classifier is able (by its comxii@ to distinguish
them well.

It was shwn theoretically and »@erimentally for DTS [7] that boosting
increases the mgins of the training objects. By that, boosting is similar to the maxi-
mum magin classifiers [13], based on the number of suppantors. In this papewe
have experimentally shan, that boosted linear classifiers may aehithe perfor-



mance of the linear supportstor classifier when training sample sizes agelaom-
pared with the data dimensionality

As boosting is useful only for lge training sample sizes, when classifiers are
usually stable, the performance of boosting does not depend on the instability of the
classifier

The success of boosting depends onynfantors including the training sample
size, the choice of a weak classifier (the, e FLD, the NMC or other), thexact
way hav the training set is modified, the choice of the combining rule [17] and, finally
the data distribtion. By that, it becomes quite fiifult to establish unersal criteria
predicting the usefulness of boosting.v@isly, this question needs more/éstica-
tion in future.
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