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Abstract. In recent years, together with bagging [5] and the random subspace
method [15], boosting [6] became one of the most popular combining techniques
that allows us to improve a weak classifier. Usually, boosting is applied to
Decision Trees (DT’s). In this paper, we study boosting in Linear Discriminant
Analysis (LDA). Simulation studies, carried out for one artificial data set and
two real data sets, show that boosting might be useful in LDA for large training
sample sizes while bagging is useful for critical training sample sizes [11]. In
this paper, in contrast to a common opinion, we demonstrate that the usefulness
of boosting does not depend on the instability of a classifier.

1    Introduction

When data are highly dimensional, having small training sample sizes com-
pared to the data dimensionality, it may be difficult to construct a good single classifi-
cation rule. Usually, a classifier, constructed on small training sets is biased and has a
large variance. Consequently, such a classifier may have a poor performance [1]. In
order to improve a weak classifier by stabilizing its decision, a number of techniques
could be used, for instance, regularization [2] or noise injection [3].

Another approach is to construct many weak classifiers instead of a single one
and combine them in some way into a powerful decision rule. Recently a number of
such combining techniques have been developed. The most popular ones are bagging
[5], boosting [6] and the random subspace method [15]. In bagging, one samples the
training set, generating random independent bootstrap replicates [4], constructs the
classifier on each of these and aggregates them by a simple majority vote in the final
decision rule. In boosting, classifiers are constructed on weighted versions of the train-
ing set, which are dependent on previous classification results. Initially, all objects
have equal weights, and the first classifier is constructed on this data set. Then, weights
are changed according to the performance of the classifier. Erroneously classified
objects get larger weights and the next classifier is boosted on the reweighted training
set. In this way a sequence of training sets and classifiers is obtained, which are then
combined by a simple majority vote or by a weighted majority vote in the final deci-
sion. In the random subspace method classifiers are constructed in random subspaces
of the data feature space. Then, only classifiers with the zero classification error on the
training set are combined by simple majority vote in the final decision rule.

Usually, bagging, boosting and the random subspace method are applied to
DT’s [7],[8],[9],[10],[15], where they often produce an ensemble of classifiers, which
is superior to a single classification rule. However, these techniques may also perform



well for other classification rules, than DT’s. For instance, it was shown that bagging
and boosting may be useful for perceptrons (see, e.g. [16]). It was demonstrated that
bagging may be beneficial in LDA for small and critical training sample sizes (when
the number of training objects is comparable with data dimensionality) [11]. Our ini-
tial study [17] has shown that also boosting may be advantageous in LDA.

In this paper we intend to study the usefulness of boosting for linear classifiers
and in particular to investigate its relation with the instability of classifiers. We con-
sider the nearest mean classifier [12], the Fisher Linear Discriminant function (FLD)
[12] and the regularized FLD [2]. This choice is made in order to observe many differ-
ent classifiers with a dissimilar instability and, by that, to establish whether the useful-
ness of boosting depends on the classifier instability or on other classifier peculiarities.
The chosen classification rules and their instability are discussed in section 4. One arti-
ficial data set and two real data sets representing the 2-class problem are used in our
simulation study. They are described in section 3, but first a short description of the
boosting algorithm is given in section 2. Simulation results on the performance of
boosting in LDA are discussed in section 5. Conclusions are summarized in section 6.

2    The Boosting Algorithm

Boosting, proposed by Freund and Schapire [6], is a technique to combine
weak classifiers, having a poor performance, in a strong classification rule with a better
performance. As it was already mentioned before, in boosting, classifiers and training
sets are obtained sequentially, in a strictly deterministic way. At each step, training
data are reweighted in such way that incorrectly classified objects get larger weights in
a new modified training set. By that, one actually maximizes margins between training
objects. It suggests the connection between boosting and Vapnik’s Support Vector
Classifier (SVC) [7],[13], as objects obtaining large weights may be the same as the
support objects. Boosting is organized by us in the following way.
1. Repeat forb=1,2,...,B.

a) Construct the classifier  on the weighted version

 of training data set , using

weights , i=1,...,n (  for b=1).

b) Compute probability estimates of the error ,

, and .

c) If , set , i=1,...,n, and renormalize so that

. Otherwise, set all weights , i=1,...,n, and restart.

2. Combine classifiers by the weighted majority vote with weights  to a
final decision rule.

3    Data

One artificial data set and two real data sets are used for our experimental study.
The first set is a 30-dimensionalcorrelated Gaussian data set (Data I) constituted by
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two classes with equal covariance matrices. Each class consists of 500 vectors. The
mean of the first class is zero for all features. The mean of the second class is equal to
3 for the first two features and equal to 0 for all other features. The common covariance
matrix is a diagonal matrix with a variance of 40 for the second feature and a unit vari-
ance for all other features. The intrinsic class overlap (Bayes error) is 0.064. This data
set is rotated using a 3030 rotation matrix which is  for the first two features
and the identity matrix for all other features.

Two real data sets are taken from the UCI Repository [14]. The first is the 34-
dimensionalionosphere data set (Data II) with 225 and 126 objects belonging to the
first and the second data class, respectively. The second is the 8-dimensionaldiabetes
data set (Data III) consisting of 500 and 268 objects from the first and the second data
class, respectively. These two data sets were also used in [8], when studying bagging
and boosting for decision trees. The diabetes data set was also used when bagging and
boosting were studied for LDA [8].

Training sets with 3 to 400, with 3 to 100 and with 3 to 200 objects per class are
chosen randomly from a total set for the data I, II and III, respectively. The remaining
data are used for testing. All experiments are repeated 50 times for independent train-
ing sets. In all figures the averaged results over 50 repetitions are presented. The stan-
dard deviations of the mean generalization errors for single and boosted linear
classifiers are of the similar order for each data set. When increasing the training sam-
ple size, they are decreasing approximately from 0.015 to 0.004, from 0.014 to 0.007
and from 0.018 to 0.004 for the data I, II and III, respectively. When the mean general-
ization error of the boosted regularized FLD shows a peaking behaviour on the iono-
sphere data set (see Fig. 4), its standard deviation is about 0.03.

4 The Performance and the Instability of Linear Classifiers

In order to study a large group of linear classifiers and their instability, let us
consider regularized classifiers in LDA.

TheRegularized Fisher Linear Discriminantfunction (RFLD) [2] is defined as

,

where the ridge estimate  is used instead of the mean class covariance matrix
. One can see, that the RFLD represents a large family of linear classifiers (see Fig.

1). When , one obtains theFisher Linear Discriminant function (FLD) [12]

.

When , the information concerning covariances between features is lost.
Then, the classifier approaches theNearest Mean Classifier (NMC) [12]

,

and the probability of misclassification may appreciably increase. Small values of the
regularization parameter  may stabilize the decision and improve the classifier per-
formance. However, for very small , the effect of regularization will be neglible. In
this case the RFLD performs similar to thePseudo Fisher Linear Discriminant
(PFLD) [12], having a high classification error around the critical training sample
sizes, when the number of training objects is comparable to the data dimensionality.

In order to understand better, when boosting can be beneficial, it is useful to
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consider the instability of a classifier [11]. The classifier instability is measured by us
by calculating the changes in classification of a training set caused by the bootstrap
replicate of the original learning data set. Repeating this procedure several times on the
training set (we did it 25 times) and averaging the results, an estimate of the classifier
instability is obtained. The mean instability of linear classifiers (on 50 independent
training sets) defined in this way is presented in Fig. 2. One can see that the instability
of the classifier decreases when the training sample size increases. The instability and
the performance of a classifier are correlated: more stable classifiers perform better
than less stable ones. In this example, however, the performance of the NMC does not

Fig. 1.Dependence of the generalization error of the RFLD on the regularization parameterλ
for Gaussian correlated data (a,b), for ionosphere data set (c,d) and diabetes data set (e,f)
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Fig. 1. The performance of the RFLD with different values ofλ for Gaussian correlated data
(Data I) (a,b), for ionosphere data set (Data II) (c,d) and for diabetes data set (Data III) (e,f)
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depend on the training sample size. In contrast to other classifiers, it remains a weak
classifier for large training sample sizes, while its stability increases. Theory of boost-
ing is developed for weak classifiers and large training sample sizes. Therefore, one
may expect that boosting may be beneficial for the NMC.

5    Boosting for Linear Classifiers

Let us now consider the performance of boosting in LDA on the example of the
NMC, the FLD and the RFLD with different values of regularization parameterλ.

The NMC. Boosting is useful for the NMC (see Fig. 3f, Fig. 4f and Fig. 5f).
Especially it performs nicely for the Gaussian correlated data set, reducing the general-

Fig. 2. The instability of the RFLD with different values ofλ for Gaussian correlated data
(Data I) (a,b), for ionosphere data set (Data II) (c,d) and for diabetes data set (Data III) (e,f)
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ization error of a single NMC more than twice. In boosting, wrongly classified objects
get larger weights. Mainly, they are objects on the border between classes. Therefore,
boosting performs best for large training sample sizes, when the border between data
classes becomes more informative. In this case, boosting the NMC performs similar to
the linear SVC [13]. However, when the training sample size is large, the NMC is sta-
ble. It puts us on the observation that, in contrast to bagging, the usefulness of boosting
may not depend directly on the stability of the classifier. It depends on the “quality” of
the erroreously classified objects (usually, around the border between data classes) and
on the ability of the classifier (its complexity) to distinguish them correctly.

The FLD. Simulation results (see Fig. 3a, Fig. 4a, Fig. 5a) show that boosting is

Fig. 3. The performance of the boosting (B=250) for linear classifiers onGaussian correlated
data (Data I). Boosting becomes useful, when increasing regularization and the RFLD
becomes similar to the NMC
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completely useless for the FLD. The performance and the stability of the FLD depends
on the training sample size. For small training sample sizes, the classifier is very unsta-
ble and has a poor performance, as sample estimates of means have a large bias and a
sample estimate of a common covariance matrix is singular or nearly singular. When
increasing the training sample size, the sample estimates are less biased, and the classi-
fier becomes more stable and performs better. In boosting, objects on the border
between data classes get larger weights. By that, the number of actually used training
objects decreases. When the training sample size is smaller than the data dimensional-
ity, all or almost all objects lie on the border. Therefore, almost all training objects are

Fig. 4.The performance of boosting (B=250) for linear classifiers onionosphere data (Data II).
Boosting becomes useful, when increasing regularization and the RFLD becomes similar to
the NMC
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used at each step of the boosting algorithm. One gets many similar classifiers that per-
form badly. Combining such classifiers does not improve the FLD. When the training
sample size increases, the FLD performs better. In this case, boosting may perform
similar to a single FLD (if the number of objects on the border is sufficiently large to
construct a good FLD) or may worsen the situation (if the number of actually used
training objects at each step of boosting is not sufficiently large to define a good FLD).

The PFLD. Boosting the PFLD, which is similar to the RFLD with a very small
value of the regularization parameterλ, is also useless (see Fig. 3b, Fig. 4b, Fig. 5b).
For the training sample sizes larger than the data dimensionality the PFLD, maximiz-

Fig. 5.The performance of boosting (B=250) for linear classifiers fordiabetes data (Data III).
Boosting becomes useful, when increasing regularization and the RFLD becomes similar to the
NMC
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ing the distance to all given samples, is equivalent to the FLD. For the training sample
sizes smaller than the data dimensionality, however, the PFLD finds a linear subspace,
which covers all the data samples. On this plane the PFLD estimates the data means
and the covariance matrix, and builds a linear discriminant perpendicular to this sub-
space in all other directions for which no samples are given. Therefore, for these train-
ing sample sizes, the apparent error (the classification error on the training set) of the
PFLD is always zero. Thus boosting is completely useless for the PFLD.

The RFLD. Considering the RFLD with different values of the regularization
parameterλ, one can see that boosting is also not beneficial for these classifiers with
exception of the RFLD with very large values ofλ, which performs similar to the
NMC. For small training sample sizes, when all or almost all training objects have
similar weights at each step of the boosting algorithm, the modified training set is sim-
ilar the original one, and the boosted RFLD performs similar to the original RFLD. For
critical training sample sizes, the boosted RFLD may perform worse or even much
worse (having a high peak of the generalization error) than the original RFLD. This is
caused by two reasons. The first is that the modified training sets used in boosting usu-
ally contain less training objects than the original training set. Smaller training sets
give more biased sample estimates of classes means and the covariance matrix than
larger training sets. Therefore, the RFLD constructed on the smaller training set usu-
ally has a worse performance. An ensemble of the worse quality classifiers constructed
on the smaller training sets may perform worse than the single classifier constructed on
the larger training set. The second reason is that the objects on the border between data
classes (which are getting larger weights in the boosting algorithm) have often other
distribution than the original training set. Therefore, on such modified training set, the
RFLD with certain value of the regularization parameterλ may perform differently
than the same RFLD on the original training set. Regularization may not be sufficient,
causing the generalization error peak similar to the RFLD with very small values ofλ.
However, on large training sample sizes, boosting may be beneficial for the RFLD, if
the single RFLD performs worse than a linear support vector classifier. As a rule, it is
the RFLD with very large values ofλ. Thus, boosting is useful only for the RFLD with
large values of the regularization parameterλ and for large training sample sizes.

6    Conclusions

Summarizing simulation results presented in the previous section, we can con-
clude the following:

Boosting may be useful in LDA for classifiers that perform poor on large train-
ing sample sizes. Such classifiers are the Nearest Mean Classifier and the Regularized
Fisher’s Linear Discriminant with large values of the regularization parameterλ,
which approximates the NMC.

Boosting is useful only for large training sample sizes, if the objects on the bor-
der give a better representation of the distribution of the data classes than the original
data classes distribution and the classifier is able (by its complexity) to distinguish
them well.

It was shown theoretically and experimentally for DT’s [7] that boosting
increases the margins of the training objects. By that, boosting is similar to the maxi-
mum margin classifiers [13], based on the number of support vectors. In this paper, we
have experimentally shown, that boosted linear classifiers may achieve the perfor-



mance of the linear support vector classifier when training sample sizes are large com-
pared with the data dimensionality.

As boosting is useful only for large training sample sizes, when classifiers are
usually stable, the performance of boosting does not depend on the instability of the
classifier.

The success of boosting depends on many factors including the training sample
size, the choice of a weak classifier (the DT, the FLD, the NMC or other), the exact
way how the training set is modified, the choice of the combining rule [17] and, finally,
the data distribution. By that, it becomes quite difficult to establish universal criteria
predicting the usefulness of boosting. Obviously, this question needs more investiga-
tion in future.
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