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Abstract

We consider the problem of localizing renal cancer cell
nuclei in Tissue Micro Array (TMA) images. We address
this problem in three steps. An initial image processing-
based procedure finds potential candidate nuclei, while the
subsequent phase employs a trained classifier to prune the
candidate cell nuclei found in the first.

A third phase is then used to perform a clustering of
the positive classified blobs. In this work, we study cases
when the second step is attained by extracting fixed size
patches centred on the candidates, and representing these
images with pixel-intensity histograms or related pair-wise
distances (dissimilarities).

Our results, based on a Parzen classifier in the histogram
feature space, show that the proposed procedure attains an
optimal F1-measure of 0.9152 in localizing cell nuclei, pro-
viding state-of-the-art performance.

1. Introduction
Automatic localization of cell nuclei in tissue micro ar-

ray (TMA) images is important for rapidly diagnosing can-
cer and at the same time to increase the accuracy of cancer-
ous cell nuclei counts. The work presented proposes a pro-
cedure to automatically localize cell nuclei in TMA images.
In our framework this goal is reached in three steps, where
the second step makes use of pattern recognition techniques
in order to improve the results achieved obtained at the first
stage.
The reason for developing such a system is that one of
the possible diagnosis methods for Renal Cell Carcinoma
(RCC), one of the ten most frequent cancers in the EU
[5] and the USA, is based on the histological tissue anal-
ysis, and currently the diagnostic rules are based on the
precise counts of cancerous cell nuclei that are manually
found and counted by pathologists. Our framework could
be used to implement an almost fully automated cell nu-
clei localization in TMA images (fig. 1) where the experts
would only have to confirm the results and provide a de-

cision only in special cases, instead of analysing each sin-
gle TMA image. The proposed approach consists of three
sub-phases, namely: a simple image-processing based tech-
nique employed to find potential candidates, a classifica-
tion based phase aimed at pruning the found nuclei, and a
post-processing phase aimed at a fusion of the positive can-
didates. Similar approaches are not new in similar medical
imaging related and more specifically histo-pathological ap-
plications, employing not only approaches based on image-
processing algorithms but also involving the use of statisti-
cal pattern recognition.
Procedures similar to the one used in this work have been
employed for several different tissue types with images ob-
tained with different markers and technology, some based
on the Laplacian blob detector focused uniquely on the nu-
clei detection ([3]), others (like [10] [2]) have proposed a
fully automated framework starting with the detection, then
continuing with the segmentation and ending with a clas-
sification of the given images, while our focus lays on the
localization of the cell nuclei present in the images in order
to provide an additional instrument to the pathologists in the
analysis of TMA images. An interesting contribution to the
building of a benchmarking in the field of biomedical image
analysis is proposed in [8].
With respect to the RCC images provided by the Univer-
sity of Zürich (and used in this paper) the studies of [7]
and [6] have provided two different approaches in order
to deal with the problem at hand but, although the overall
scheme is to a certain extent comparable, the preprocessing
and classification techniques chosen were totally different
from the ones used in this work. Apart from the image-
processing procedure used, in this paper we have also stud-
ied dissimilarity-based approaches that have been charac-
terised by performances (in terms of F1-measure) signifi-
cantly far from those obtained in this work (using Parzen),
that as in [6] have reached a higher level than the one mea-
sured between the two pathologists (not equal to 1 due to
the inter-pathologist variability).



2. Proposed Approach
2.1. Laplacian blob detector

Our preprocessing stage has been carried out using one
of the most commonly used blob detectors based on the
Laplacian of the Gaussian (LoG). Given an input image
I(x, y), this image is convolved by a Gaussian kernel

k(x, y, σ) =
1

2πσ
exp

(
− (x2 + y2)

2σ

)
at a certain scale σ in order to have the following scale-
space representation:

L(x, y;σ) = k(x, y, σ) ∗ I(x, y).

The Laplacian operator:

∇2L = Lxx + Lyy

is then computed, which usually leads to strong positive re-
sponses for low intensity (dark) blobs of extent and strong
negative responses for high intensity (bright) blobs of sim-
ilar size. A typical problem that is related to employing
this type of operator at a particular scale is that its response
is strongly dependent on the relationship between the sizes
of the blobs present in the image and the width (σ) of the
Gaussian kernel used in the pre-smoothing. In our specific
problem we did not need to capture blobs of different (un-
known) size in the image domain, since the variance of the
cell nuclei sizes is quite limited, we therefore reached the
conclusion that a combined (with respect to scale and space
as in [13] and [14]) multi-scale approach is not necessary.

We have used images output of the Laplacian at differ-
ent scales and thresholded at a percentage of the local max-
ima in order to retrieve the darker blobs (regions around the
maxima) which should in principle correspond to the cell
nuclei. The found blobs are then used in the following clas-
sification stage.

2.2. Feature extraction

The previously described procedure (2.1) has been used
to find blobs that are then considered as potential cell-
nuclei. For each of the found blobs centroids locations
have been computed, and used to assign a label following
a distance criterion, therefore the positive label has been
assigned to those blobs whose centres were closer than a
fixed threshold (average radius of the nuclei) dr to any of
the given polygons representing the real cell nuclei present
in the tissue samples.

Using for instance all the image pixels to extract patches
instead of using the found blobs would have lead to a much
computationally heavier task and furthermore characterized
by highly imbalanced classes. The described procedure
(2.1) has been employed in order to reduce dramatically the

number of analysed patches while taking into account al-
most all the actual nuclei (found by the pathologists) there-
fore achieving close-to-one recall scores. The reason why
we have chosen a distance based criteria and not for instance
one based on the overlapping area is that this would have
been a too strict constraint (leading to low levels of recall)
while our initial goal was more to find many potential can-
didates or areas which may have contained a cell nuclei than
obtaining a precise localization in the first stage.

The second phase aims at the pruning of the found can-
didates through means of a classification process. We have
therefore extracted various features related to patches of
fixed patch sizes (30, 40, 60 and 80 pixels) extracted around
the centroids. These have been used in order to directly
represent our objects (namely the found blobs) in the com-
puted feature spaces or in related dissimilarity spaces. A
third stage meant as a post-processing aims at further reduc-
ing the number of positively classified candidates through a
clustering applied at the image level.

The features used in all our experiments have been the in-
tensity histograms of the whole patches, considering differ-
ent fixed binning sizes. While many publications ([12], [11]
and [16]) suggest that an adaptive binning approach might
be beneficial, our results do not generally show significant
differences between bin sizes. In the presented experiments
we have used 128 bins histograms.

2.3. Dissimilarity measures

Given two feature vectors x and y characterized by n
components xi and yi which in our case have been intensity
values, filters outputs or therefore related pixel-intensity
histograms bins. On the basis of these feature spaces we
have computed several distance measures that are briefly
listed in this section:

• Euclidean distance:

dl2(x, y) = ‖x− y‖2 =
√∑n

i=1(xi − yi)2

• l1 distance: dl1(x, y) = ‖x− y‖1 =
∑n
i=1 |xi − yi|

• Earth Mover’s Distance (EMD) in the closed form
solution, applicable for instance in case of univariate
histograms, where this measure is equivalent to the l1
distance between histograms cumulative distributions.

demd(x, y) =
n∑
i=1

∣∣∣∣∣∣
i∑

j=1

xj −
i∑

j=1

yj

∣∣∣∣∣∣
This measure has been effectively used in the work
[16].
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• Savitsky-Golay: this is a shape based distance mea-
sure between histograms and it is the l1 distance
between Gaussian derivatives of the spectra X (with a
smoothing parameter σ)

Xσ =
d

di
G(i, σ) ∗X

where the histogram X can be seen as a feature vector
x and xi its bins.

The shape-distance is defined as follows:

ds(x, y) =
∑n
i=1 |xs

i − ys
i| (as further explained in

[15]).

2.4. Parzen classifier and its dissimilarity-based
dual version

A simple linear classification algorithm in a dissimilarity
spaces is highly non-linear in its original feature space. In
particular a non-linear classifier like the Parzen windows
can be approximated by a linear decision function applied
in a ad-hoc constructed distance-space.

We consider in our experiments a nearest mean classifier
in the dissimilarity space built using the distance measure
derived from the Radial Basis Function (RBF) kernel:

kRBF(x, y) = exp
(
−‖x− y‖22

σ2

)
Since an RBF kernel is semi-positive definite and there-

fore fulfils the Mercer’s theorem we can derive a corre-
sponding distance measure in the way that follows:

d2
RBF = kRBF(x, x) + kRBF(y, y)− 2kRBF(x, y)

that leads to:

d2
RBF = 2− 2kRBF(x, y)

which is equivalent to:

d2
RBF = 1− kRBF(x, y) = 1− exp

(
−‖x− y‖22

σ2

)
(1)

Following the reasoning of ([17]) , we consider a two
class problem where N+ objects are labelled positively
(yi = +1) and conversely N− negatively (yi = −1), com-
puting the mean squared distances, in a RBF kernel space,
with a mapping φ such that: ‖φ(x) − φ(x′)‖22 = −k(x, x′)
the label yn of a test object xn would be defined as follows:

Figure 1. Left: Top left quadrant of a TMA spot from a ccRCC pa-
tient. Right: A trained pathologist localized and labelled the found
cell nuclei. The size of each nuclei (according to the pathologist)
correspond to the radius of the drawn polygon.

yn = sgn

 1
N+

∑
yi=+1

kRBF(xn, xi)−

1
N−

∑
yi=−1

kRBF(xn, xi)

 (2)

The equation (2) can be seen as the Bayes decision on
two Parzen windows estimates of the classes in the original
feature space.

If we then substitute the kernel kRBF using formula (1)
with the RBF distance (dRBF) we can eventually rewrite our
classifier as follows:

yn = sgn

 1
N−

∑
yi=−1

d2(xn, xi)−

1
N+

∑
yi=+1

d2(xn, xi)

 (3)

N.B.: this decision boundary is not equivalent to near-
est mean classification algorithm in the dissimilarity space
(defined in eq. (1)).

In this work we have tried to use other distance measure
which might not show a euclidean behaviour. We have con-
sidered an RBF kernel where the squared l2 distance has
been substituted with the other three measures listed above
in this section. From the so obtained kernels (which in some
cases might not be semi-positive definite), the pairwise dis-
tances have been computed following the formula (1) in or-
der to build different dissimilarity representations.
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3. Experiments setup and performance mea-
sure

The conducted experiments can be described with the
following steps. A Laplacian blob detector has been
applied on the images using the following scales range
σ = [0.5 : 0.5 : 20] and therefore thresholded th =
[0.01 : 0.01 : 0.2] to binarize the filter outputs, and even-
tually extract the blobs. Patches of fixed sizes (30, 40 60
and 80 pixels), positioned on the blobs centroids, have been
extracted from the original images, and labelled according
to the distance (from the centroids indicated by the pathol-
ogist). On these patches features as described in section 1
have been extracted and related dissimilarity spaces have
been computed, and employed to build several classifiers.
The classification stage enables us to reduce significantly
the number of potential cell nuclei, it is although not enough
to be able to match them univocally to the given nuclei with-
out losing in terms of precision. Therefore a clustering stage
3.1 (gaussian, hierachical) on the classifier output has been
used in order to achieve a further pruning. The just men-
tioned post-processing phase (3.1) could in principle have
taken place right after the extraction of blobs (first step),
but by doing this the training set size would have ended up
in being sensibly smaller, at the cost of the classification
performance. Therefore we have chosen to apply this step
only at the very end of the proposed framework.

Results of the experiments based on a leave one image
out classification scheme (software used: [4]) are provided
in terms of precision and recall per image (averaged over
the 8 images) according to the one to one matching (meant
as a linear assignment) performance measure described in
section: 3.2.

3.1. Clustering

In order to reduce the number of blobs classified as nu-
clei we performed a clustering step on the image level. We
therefore have been using four different approaches, the first
three based on hierarchical clustering (single/complete/ av-
erage linkage) where the average nuclei radius dr has been
taken as distance threshold between the clusters centroids.
The other methodology is based on a gaussian blurring (fig.
2.b) of the binary image of the (classified) blobs centra (fig.
2.a), which has been then thresholded (fig. 2.c) in order to
obtain clustered centra. The standard deviation identical in
both direction has been chosen as σ = dr/2, we used the
threshold th = 0.99th∗ where th∗ = 2/πd2

r is the max-
imum value (1/2πσ2) of a 2D gaussian with a covariance
matrix Σ = σI. The 1D example shown in fig. 2.d explains
the reasoning behind the choice of th. As soon as the mean
of a gaussian curve (the last on the right side) is laying fur-
ther than 2σ (dr) from the closest curve, the chosen thresh-
old enables us to distinguish it from the other curves, while

the three on the left side are clustered together as expected.

3.2. Performance measure

In order to evaluate the the detection performance we
make use of the Precision-Recall space, therefore we need
to count the true positives (TP), false positives (FP) and
false negatives (FN).

A possible performance measure might take into account
the view of a pathologist who in many cases might con-
sider multiple matches candidate-nucleus allowing then for
multiple true positives per actual cell nucleus. Therefore
the false positive rate (FP) would correspond to the number
of (by the classifier) positively labelled objects that at the
same time are missing a match (according to the criterion)
whereas each of the nuclei where the matched but nega-
tively classified blobs together with the not matched cell
nuclei would then be considered as false negatives. This
choice allows for multiple matches because the matched
blobs are indeed laying in the regions of real cell-nuclei
thus considering them does not look like a sensible eval-
uation. The above explained measure, used for the candi-
dates in the first stage, although simple and logic can not be
easily compared with the results available in literature, we
therefore chose an other measure based on a unique match
between blobs and cell nuclei.

We have firstly applied a clustering stage to reduce the
number of positively classified candidates (3.1) and then
computed a distance matrix between the centra of the nu-
clei and those of the pruned blobs. The one-to-one match
has then be determined employing a linear assignment al-
gorithm (Hungarian method) [9], with respect to this step
a major role is played by the chosen distance measure able
to emphasize the distance of pairs outside the given nuclei
radius (dr) but at the same time keeping the within-radius
euclidean distances unchanged. This distance d between the
nucleus ni and the candidate bj has been defined as follows:
d(ni,bj) = ‖ni − bj‖2 if dl2(ni,bj) < dr
else d(ni,bj) = d∗ where d∗ � maxi,j d(ni,bj).
The linear assignment algorithm finds the cheapest (w.r.t.

the overall distances sum) match between the two sets, the
pairs with a distance smaller than the radius are eventually
considered as positive matches (TP), the non matched can-
didates constitute the false positives (FP) and the non-found
nuclei are counted as false negatives (FN).

We have then used the following performance measure
based on precision (P = TP/(TP + FP)) and recall (R =
TP/(TP + FN)), the F1-measure (F = 2 PR/(P + R)).

3.3. Data description

Our data consists of 8 separate RGB images of 1500 x
1500 pixels size with a corresponding labels file (fig: 1).
Each image correspond to a TMA spot where the TMA-
block was generated in a trial from the University Hospi-
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Figure 2. found blobs centroids (a), blurred image (b), thresholded image (c), 1D example (d)

tal Zürich. The TMA slides were immunohistochemically
stained with the MIB-1 (Ki-67) antigen and scanned on a
ScanScope virtual slide light microscope scanner from Ape-
rio Technologies Inc. A lens with a magnification of 40x
was used, which resulted in a per pixel resolution of 0.23
µm. Eventually the spots related to single patients were ex-
tracted as separate images of 1500 x 1500 x 3 pixels size.
In order to produce the mentioned label files (which consti-
tute our gold standard) two pathologists (from the Univer-
sity Hospital Zürich) experts in renal cell carcinoma used a
software (developed at ETH Zürich) to annotate TMA spots
of 8 different patients. They marked the location of each
cell nucleus drawing a polygon around the nucleus centroid
of its approximates radius size. In total each pathologist
has detected more than 2000 cell nuclei on these images.
For obvious reasons the experts are not providing exactly
the same labelling (indicating the same cell nuclei with the
same sizes), a measure of this (minimal) disagreement is
therefore provided in section 4. For further details about the
methodology and technological equipment used to retrieve
the images used in this work we refer to [7].

We have eventually tested our procedure on Breast Can-
cer TMA images obtained from [1].

4. Results and discussion

The results in the form of Precision-Recall curves are
given in figure: 5 show the two phases characterizing this
study.

The first stage concerning the localization of the candi-
dates with means of several blob detectors is represented by
the cloud of blue ′+′ points where the scale (of the Lapla-
cian 2.1) and the applied threshold have been varied in the
way explained in 3. Therefore each single candidate has
been labelled according to a distance (between the centroids
of the found blobs and of the given nuclei) criterion. This

allows for counting the amount of true positives (TP), flase
positives (FP) and false negatives (FN) in order to compute
precision and recall for that particular setting of the blob-
detector. It is important to underline that the performance
measure used at this point is based on the less strict one de-
scribed in 3.2, while at this moment no classification stage
takes place.

The choice of such a labelling criterion has been taken in
order to allow for higher recall values, other criteria based
for instance on the area overlap would have been much more
restrictive therefore leading to smaller numbers of potential
cell nuclei, but since our goal is to perform a pruning of the
candidates this class of criteria has been avoided.

The blue ′∗′ point represents the level of disagreement
between the two pathologist considering one’s nuclei as the
ground truth and the other ones as candidates where the la-
belling criterion stayed unchanged. Those results concern-
ing the first stage of our framework are constant in all the
shown plots (fig. 5). Since our methodology heavily relies
on the pruning of the determined blobs, we have chosen to
focus the classification stage on those combinations of scale
and thresholds which lead to high level of recall and at the
same time not extremely low precision (red ′+′ points in the
plots).

The red squares represents the classification results ob-
tained training classifiers in feature spaces (or dissimilar-
ity spaces) computed on patches (of fixed size) extracted
around the centres of the found blobs. The green and black
points represent respectively the best and the worst results
in terms of F1-measure (harmonic mean of precision and re-
call), the underline (candidates) points are indicated in the
same way. The procedure used to compute the used perfor-
mance measure has been explained in the last part of section
3.2.

Of all the experiments described in 3 we reported the
most relevant ones in fig. 5 where a Parzen classifier has
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(a) (b)
Figure 3. Two portions of two different RCC images where the
blue ’+’ are the good classified centres the green are the false pos-
itive while the red circles are drawn around the nuclei.

(a) (b)
Figure 4. Two portions of a Breast cancer TMA image where the
green ’+’ are the classifier outputs centres, in (b) it is possible to
see the accuracy of the proposed methodology on the basis of the
ground truth (yellow contours)

been trained in the original feature space. The proposed
gaussian clustering (fig. 5.d) allows to reach a F1-measure
equal to 0.9152. Those achieved utilizing the dissimilar-
ity based approach have been characterised by significantly
smaller values of F1. In fig. 3 two portions of two RCC
TMA images are shown where the blue ’+’ correspond to
the matched candidates (the yellow are candidates before
the clustering stage), the green ’+’ are the unmatched re-
sults, while the red circles have been superimposed on the
(by pathologists) given nuclei. We propose also an exam-
ple where we applied the same methodology, object of this
work, where this is applied on a different sort of TMA im-
ages (fig. 4) of which the ground truth was given. The
image on the right side (fig. 4.b) shows the results in com-
parison with the superimposed ground truth, while the left
image, where no evaluation is possible, is meant as an other
example to be evaluated by experts.

5. Conclusions
Our results give an idea of the choices that we made in

order to build and evaluate our classification frameworks.
The disappointing results attained using the nearest mean
classifier in the proposed dissimilarity spaces underline the
higher non-linear characteristic of the problem at hand,
which is moreover confirmed by the extremely good results
achieved making of the Parzen windows classifier able to
reach an F1-score higher than the one measured between the
two pathologists. The results of the proposed framework on
the RCC TMA images, are clearly better than those in [7]
and comparable with those of [6] while the approach used
in the latter appears to be far more complex than ours. We
have also shown how well our method can perform on other
types of TMA images.
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