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dimensional spaces.

In the problem of one-class classification one of the classes, called the target class, has to be
distinguished from all other possible objects. These are considered as non-targets. The need for solving
such a task arises in many practical applications, e.g. in machine fault detection, face recognition,
authorship verification, fraud recognition or person identification based on biometric data.

This paper proposes a new one-class classifier, the minimum spanning tree class descriptor
(MsT_cD). This classifier builds on the structure of the minimum spanning tree constructed on the target
training set only. The classification of test objects relies on their distances to the closest edge of that
tree, hence the proposed method is an example of a distance-based one-class classifier. Our experiments
show that the MsT_cD performs especially well in case of small sample size problems and in high-

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the problem of one-class classification [29,17,41,27,14,19]
one of the classes, called the target class, has to be distinguished
from all other possible objects, also called non-targets. The need
for solving such a task arises in many practical applications.
Examples are any type of fault detection [46] or target detection
such as face detection in images, abnormal behaviour, disease
detection [40], person identification based on biometric data or
authorship verification [23]. The problem of one-class classifica-
tion is characterised by the presence of a target class, e.g. a
collection of face images of a particular person. The goal is to
determine a proximity function of a test object to the target class
such that the resembling objects are accepted as targets and non-
targets are rejected. It is assumed that a well-sampled training set
of the target objects is available, while no (or very few) non-target
examples are present. The reason for this assumption is practical
since non-targets may occur only occasionally or their measure-
ments might be very costly. Moreover, even when non-targets are
available in a training stage, they may not always be trusted. They
may be badly sampled, with unknown priors and ill-defined
distributions. In essence, non-targets are weakly defined as they
may appear as any kind of deviation or anomaly from the target
examples, e.g. images of a face of non-target people or images of
arbitrary (non-face) objects. Still, one-class classifiers need to be
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trained in such a way that the errors on both target and non-target
classes are taken into account.

Many one-class classifiers have been proposed so far; see
[41,19] for a survey. They often rely on strong assumptions
concerning the distribution of objects, such as a normal distribu-
tion of the target class [6,2,37] or a uniform distribution of the
non-target class [41]. Following the later assumption, the training
of classifiers is based on a minimisation of the volume of a one-
class classifier (which is the volume captured by the classifier’s
boundary) such that the error on the target class does not increase
[42,39,4,33]. Usually such classifiers can be applied to any
distribution as they do not make assumptions on the target
distribution, but they may need to estimate many parameters.
Examples are support vector data description (SvpD) [42] or auto-
encoder neural net [17,28].

In this paper we propose a non-parametric classifier which is
based on a graph representation of the target training data, aiming
to capture the underlining data structure. The basic elements of
the proposed one-class classifier are the edges of the graph. Graph
edges can be considered as an additional set of virtual target
objects. These additional objects, in turn, can help to model a
target distribution in high-dimensional spaces and in small
sample size problems. This enriches the representation of
relations in the data. Additionally, we can look at graph edges as
a set of possible transformation paths that allow one to transform
one target object into another within the domain of the target
class.

The layout of this paper is as follows. Section 2 presents the
formal notation and describes the framework of one-class classi-
fication. In Section 3, a data descriptor based on the minimum
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Fig. 1. (a) An example of one-class classifier. The boundary of the one-class classifier depends on the choice of the threshold 6. Different boundaries are drawn as isolines.
(b) One-dimensional distribution of d(x|X,y). The threshold 0 is set to reject ¢ fraction of the training set X. Objects in X are distributed according to p(d(x|X,7)).

spanning tree (MST) is introduced. Section 3.2 discusses a possible
complexity parameter which gives a handle to describe the data
complexity and to simplify the classifier. Section 4 discusses the
related work. Section 5 explores both advantages and disadvan-
tages of the proposed classifier based on a set of experiments
conducted on both artificial and real-world data. The final
conclusions are presented in Section 6.

2. One-class classifiers

One-class classifiers are trained to accept target examples
and reject non-targets. It is assumed that during training
no or only a few non-target objects are available. In a part of the
further discussion we will also assume a presence of outliers
during training. Outliers may, e.g. arise from measurement
errors and can be considered as mislabelled target objects in the
training set.

Let X = {x;/x;c RV,i=1,...,n} be a training set in an N-
dimensional vector space drawn from the target distribution.
Assume that a one-class classifier is sought that characterises this
target class. In general, all one-class classifiers can be cast in the
following form:

hxIX,y) = A (dXxIX,y)<6)
{ 1 if xis classified as a target,
o

where 0 is a specified threshold and .#(-) is an indicator function.
The model h relies on the dissimilarity of a vector x to the
training-target data X. In general, h can also be based on
the similarity measure, for which the opposite sign (>) will be
used above. Furthermore, y determines the complexity of the
model h. The threshold 0 is optimised to reject a certain, usually
user-specified fraction ¢ of the target class such as 0.05, for
instance.

The fraction ¢ has to be determined from a given application. If
one expects the presence of outlier objects (mislabelled target
objects in the training set), setting £>0 makes the descriptor h
more robust. On the other hand, when there are no outliers in the
training set, ¢ indicates either desired or allowed maximal error
on the target class. For example, one may specify the maximum
number of allowed false alarms in a machine condition monitor-
ing. In such a case, 0 is optimised on the target class under the
assumption of a uniformly distributed non-target class. Given a
fixed target acceptance rate, (1 —¢), the threshold 0 is derived
from the target training set such that the one-class classifier
accepts the fraction (1 — ¢) of the target examples; see Fig. 1(b).

(1)

if x is classified as a non-target,

That is, given n training samples, 0 is determined such that
min 0 (2a)

n

1
=D XX )00 =&

i=1

s.t. (2b)

where d(x]X,y) is estimated on the training set X. A similar
equation, with a different sign (<), can be used when a similarity
is estimated by a classifier.

Apart from the threshold 0, the performance of a one-
class classifier is influenced by the complexity parameter y of
the classifier, e.g. a number of nodes in neural networks or
prototypes in a nearest neighbour. In general, a complexity
parameter y can be determined during training if the errors on
both the target and non-target classes are estimated, e.g. by using
cross-validation. However, in one-class classification only target
examples are available. Therefore, several criteria have been
proposed to determine y based on a single class. For instance, one
can assume a uniform distribution of non-target objects and select
y which minimise both the error on the target class and the
volume of the one-class classifier [43].

Many principles used in construction of two-class or multi-
class classifiers can also be applied for solving one-class
classification problems. Fig. 2 shows some examples of the one-
class classifiers trained on a 2D toy problem.? A more detailed
description of the methods can be found in [41,19]. The most
common approach to one-class classification is probabilistic in
nature [2]. Basically, the target class is modelled by a probability
density function (pdf). Specifying a suitable threshold on such a
pdf allows one to determine the class boundary, hence the
rejection point. A test sample is judged as a member of the target
class if its estimated probability is higher than the given
threshold. This can be realised by a parametric method such as
a mixture of Gaussians (MoG), Fig. 2(b) [37] or even a single
Gaussian pd £ equipped with a threshold, Fig. 2(a) [6], or by a non-
parametric method such as a Parzen density estimator based on

2 Solid lines denote classifier boundaries in Figs. 2(a)-(i), while dotted lines
illustrate the principles based on which classifiers are constructed in Figs. 2(a)-(g).
In subplots (a) and (b), the dotted lines indicate probability levels for a single
Gaussian and a mixture of three Gaussians, respectively. In subplot (c), the dotted
lines illustrate the width of a smoothing parameter. In subplot (d) the data have
been projected onto two features and the dotted lines show densities estimated
per feature; the densities are multiplied to create the classifier (solid line). In
subplots (e) and (f), the dotted lines show the three means and the averaged
nearest neighbour distance, respectively. Finally, in subplot (g), the first pca
direction of the data is shown. The last two plots show kernel-based one-
class classifiers for which the underlying principles cannot be easily depicted in
the input space.
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Fig. 2. Examples of one-class classifiers marked by solid lines. The principles behind the creation of some one-class classifiers are denoted by dotted lines. The threshold
was set to ¢ = 0.01. Concerning the 1-nearest neighbour (1-Nn), the threshold was applied to the average nearest neighbour distance. (a) Gaussian density, (b) MoG density,
(c) Parzen density, (d) Naive Parzen, (e) k-means, (f) 1-nN, (g) pca, (h) svpp and (i) LPDD.

the Gaussian kernel, Fig. 2(c) [31] or k-nearest neighbour
estimators, Fig. 2(f) [22]. Other popular approaches include neural
networks with auto-encoders [17,28] and self-organising maps
[30], as well as clustering techniques such as k-means, Fig. 2(e)
[18] or k-centres [16].

Alternative methods proposed to tackle the problem of one-
class classification do not rely on a probabilistic approach.
Instead, they aim to minimise the volume of the target domain,
which may be cast out in the form of linear programming, Fig. 2(i)
[4,25,33] or quadratic programming, Fig. 2(h) [42,39]. In parti-
cular, the svDD, a one-class classifier defined in the framework of
kernel methods, has been introduced in [42]. In the simplest case,
this classifier finds the smallest N-sphere that encloses all objects
from the target class; other flexible descriptions are enabled by
the use of kernels, Fig. 2(h).

In this paper, we propose a distance-based one-class classifier
that is based on a local neighbourhood relations but it takes into
account also the global structure of the data. The description of
the target class relies on a graph structure of the MsT.

3. Description of a target class by an MST

Let {X;,Xj} e X C RN be two examples from a target class. If
these two examples describe two similar objects in reality, they
should be neighbours in the representation space RY. We assume

that not only these examples but points from their proper
neighbourhoods also belong to the target class. For example, if
we assume the continuity within the target class in R", then there
exists a continuous transformation between these two examples.
This means that we can find a transformation for which all points
lying along such a path will also belong to the target class. For
simplicity, we can assume that the changes between neighbouring
objects can be approximated by linear transformations:

f(xi,).ij) =X;+ )vij(xj — X)), OSAUS] (3)

Several transformations are, however, possible since the training
set has usually more than two objects. To select a set of most
probable transformations we relate the length of each transfor-
mation vector to its probability of existence. To satisfy our
previous assumption about continuity in the target class we need
to select only (n — 1) linear transformations between the target
training objects.

Assume that X is a training set of n target examples x; € RY,
i=1,2,...,n.Let G = (X, &) be a fully connected, undirected graph
defined on X and let & = {e;;} be a set of all edges e; = (x;,X;). To
each edge e; we additionally assign a weight w;; related by its
length, i.e. w; = |lejll = [IX; — X;||. Note that the edges e; specify
our linear transformations. Our task is to find a subgraph ¥,
without loops, which connects all the vertices such that the total
weight, or the total length of the edges, is minimum. This gives us
the most probable set of transformations. Since the weights are
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Fig. 3. (a) Minimum spanning tree computed on a 2D training target set denoted by dots. (b) The distance of a new object X to an MST_cD is measured as the shortest

distance between x and its projection p(x) onto the closest edge in the MsT.

symmetric, it is sufficient to consider only the edges e; for which
i>j (or, alternatively, the edges e; for which i<j). Hence,
&) = ”22—*” This can equivalently be formulated as a problem of
finding (n — 1) edges that form a tree with a minimum total
weight:

min ) [lel|

ecy
st |9 =n—-1, 9cC&
3! path(x;,X;), V{X;,Xj} € X, i>], (4)

where 3! denotes a unique existence and path(x;X;) =
{Xi,Xiy1,...,X;}. Note that the transformations .7 are defined by
a set of subsequent linear transformations on the path from x;
to Xj.

Optimisation (4) is equivalent to computing the MsT [13] for a
given training set. Hence, training a descriptor on the target class
can be formulated as finding the MST on a set of training objects;
see also Fig. 3(a). As a result, the proposed classifier is called the
minimum spanning tree class descriptor (MST_CD).

Several algorithms have already been proposed for finding MST,
as it arises in many theoretical and practical problems. The most
popular algorithms, and ones of the oldest, are Prim’s [35] and
Kruskal’s [24] algorithms. Prim’s algorithm starts from an
arbitrary vertex, while Kruskal’s algorithm starts from the shortest
edge. The former procedure requires that the next edge to be
added is incident with a vertex in a temporary tree, whereas the
latter procedure just adds the next shortest edge that does not
form a loop.

3.1. Recognition with MST_cD

The training set is finite, so we can assume that not only the
edges of MST belong to the target class but also their neighbour-
hoods. A new object x is considered as a target if it lies in the
vicinity of the determined msT_cp. This is judged by the shortest
distance to the tree, i.e. the smallest distance to the set of the
(n — 1) edges; see Fig. 3(b). The projection of X onto a line defined
by the vertices {x;,X;} is

(X — X)) (X — X;)

Pe,(X) = X; + B (Xj — X;). (5)

I1Xj — X;
If P, (X) lies on the edge e; = (x;,X;), then the distance d(x|e;)
between x and the edge e; is computed as the Euclidean distance
between x and its projection P, (X). Otherwise, d(x|ey) is derived

as the shortest Euclidean distance to one of the vertices {x;, X;}

X — X)) (X — X;)

if 0< >—<1 then (a)
I1X; — Xil|
dxle;) = X — P, ()] (b) 6)
else
d(x|e;;) = min{[|x — X;[, [X — x;[l} (c)
end

The set of equations (6) determines the distance from a test object
X to a single edge e;;. The distance is computed in two ways, (6b)
or (6¢):

(1) if the projection Pe;(X) is between X; and x; then the distance
to the edge is computed as the distance between x and its
projection; Eq. (6b);

(2) otherwise the distance is computed as a nearest neighbour
distance between x and Xx; or X;; Eq. (6¢).

To determine if Pe, (X) is between x; and x; we check relation (6a).
If this relation is true then P, (X) is between x; and x;.

The distance of a new object X to the target class defined by X
is computed as the minimum distance to the set of (n — 1) edges of
the MST_CD

dusT_cp(XIX) = min_d(xe;). (7)
i€

The decision whether x belongs to the target or non-target class is
based on the threshold 0. This threshold is set on the distance
dyst_cpXIX) such that

hyst_cp = #(dust_cpXIX)<0). (8)

Note, however, that according to the above definition, the distance
dyst_cpXIX) equals zero for all training objects. Therefore, all
target training objects will be accepted by the mMsT_cp for any
positive 6. Hence, the threshold 6 cannot correspond to an error
on the training class as computed in Eq. (2). This is the same
situation as for the k-NN classifier; see Fig. 2(f), where the
threshold is computed as the average nearest neighbour distance
instead of estimating it by (2). In our case we derive the threshold
0 based on a quantile function of the distribution of edge weights
w;j = |lej|l in the given MST.

Denote € = (lleqyll, leg)ll-- ., llemll) as a sorted sequence of
scalars such that |leg) || <|le@)l|< - - - <l|lem . The quantile function,
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specifying 0, is defined as

0= 2,(€) = llegmll, (9)

where [a] returns the nearest integer of a and o € [0, 1]. Thus, 2y(€)
is the minimum of &, 2;(€) is the maximum and 2y5(€) the
median. Therefore, 0 is determined from a particular set of
distances between the neighbouring objects in the MsT. In this
case, the MsT_cD has a single parameter 0 to be estimated. The
majority of one-class classifiers have at least two parameters to
be estimated: 0 and the complexity parameter 7.

Fig. 4 shows a 2D toy problem (as considered before) with
example MsT_cD classifiers. The threshold 0 equals 2¢5(€), 20.7(€)
or 2g95(€), respectively. Comparing the boundaries of the MST_CD
to other one-class classification models presented in Fig. 2, we
can observe that a manifold structure is more emphasised in case
of the MsT_cD. Also, the description of the target class is tighter
when compared to the density-based classifiers or the 1-NN from
Fig. 2. The proposed MsT_cD method is an example of a domain-
based classifier [19]. In such a case, it is required that the training
examples are drawn from a domain of a class (e.g. as specified by a
geometrical form in the input space), but not necessarily
according to their pdf’s as density-based classifiers demand. As
a result, the proposed one-class classifier is less sensitive to
sampling, which can be beneficial in frameworks such as active
learning [20].

3.2. Sparse MST_CD

The data description shown in Fig. 4 may be judged to be more
complex than strictly necessary; the original MsT_cD can there-
fore be simplified. By removing edges and vertices from the
MST_CD we obtain a sparse data description. This can be done
without a significant change in the original description.

To find a set of superfluous edges we first compute the longest
path in the MsT, i.e. the first principal direction of the graph. This is
the path between two vertices that yields maximum length. The
second longest path, found by excluding edges from the first
principal direction, represents the second principal direction, and
so on. Fig. 5 shows the first and second principle directions in an
MST example.

The tree representation of the data can therefore be simplified
by considering only a few principle directions. All paths in the
graph can be computed using either Dijkstra’s or Jordan’s
algorithm [7]. To simplify the graph description of the target data
in this paper, we use Jordan’s algorithm since it is more
computationally efficient. Moreover, it allows one to compute all
paths in the MsT simultaneously.

Given an initial set & = {e;} of ”22*” edges in a fully connected
undirected data graph, we have simplified the description of the
target data to (n — 1) edges of the corresponding MsT. In addition,
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we have introduced a complexity parameter y which specifies the
number of principle directions used to describe the target data. y
can be estimated as a fraction of the total length of edges in
the MsT_cD. Now, since we may have disconnected objects, the
threshold 6 can be set, if possible, such that ¢ is an error on the
training set. ¢ equals the fraction of objects that lie outside
the class descriptor.

Fig. 6 shows a sparse MsT_cD with a fixed value of 0
determined such that ¢ = 0.1, equal to the error on the training
set, and three values of the complexity parameter. We can notice
that a sparse one-class classifier, y =1, captures the data
characteristics almost as good as the MsT_cD with the maximum
complexity; it equals to the complete MsT. This is because the
intrinsic dimensionality of the data in Fig. 6 is one. Hence, a single
principle direction is sufficient to capture the characteristics of
our 2D toy problem. This can easily be seen if we plot the ratio of
the length of each principal direction (PD;) to the total sum of all
edge lengths (3 |IPD;||) in the complete MST; see Fig. 7(a). In
addition, we also compute this statistics for four ucI repository
data sets. These plots provide some insight whether it is beneficial
to simplify the graph or not.

If needed, our one-class classifier can be simplified even
further by removing superfluous vertices and the associated

5t ]
.IV.. N “’\:
o
0l |
)
. s
S
s 0 5

Fig. 5. First (dotted line) and second (dashed line) principal directions in an
example MSsT. Solid lines denote the remaining edges.
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Fig. 4.

Example solutions of the MsT_cD for different thresholds 6.
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Fig. 6. Examples of a sparse MsT_cD. The threshold 0 was determined on the target class such that ¢ equals 0.1 and the complexity y decreases from left to right asy = 5,3

and 1.
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Fig. 7. The ratio of the length of each principle direction to the sum of all edge lengths in the msT: (a) for data shown in Fig. 3 and (b) for four uczt repository data sets.

edges from the MmsT_cD. Given an existing tree, a vertex X, and the
two associate edges are removed if the distance between x; and
its projection onto the new edge e; is larger than a specified
constant. We use Eq. (5) to find the projection of the vertex on the
new edge. If for the triple {X;X;,X;} <X, and the edges
{ei. ey} € MST, the distance between X, and its projection onto
e;j is smaller than ¢, Xy — P, (Xi)|l <¢, then the edges ey, and e; are
replaced by a new edge e; and X, is removed from the class
descriptor. The complexity of such an MsT classifier can be
adjusted to the complexity of the data.

Similar to other distance-based and density-based one-class
classifiers, our class descriptor may be influenced by outliers in a
training set. A small set of outliers in the training set can largely
influence a description boundary. If one expects that outliers are
present, the MST_cD can be made more robust by removing, e.g. a
fraction of the training objects from the MsT with the longest
edges. In the experiments presented in the paper, we assume no
outliers are present in the training set.

4. Related work

The proposed classifier can be related to other known methods.
In particular, a multi-class classifier, the nearest feature line
method (NFLM) was introduced in [26]. In the NFLM, one describes

a training set by a set of lines between all pairs of objects from a
particular class. The new object is classified into one of the classes
from the training set based on the distance to the nearest line
from the set. It has been shown there that the NFLM performs well
in face recognition problems in comparison to the nearest
neighbour methods. However, the NFLM method has some
disadvantages. A test object can be close to a line determined by
two training objects, which may lie far from the bulk of the
training set. Hence, the method is not suitable for one-class
classification problems since the volume of the resulting descrip-
tors may be infinite. In our MmsT_cD, we focus on the description of
the target class only and we compute the distance to the closest
edge of the (sparse) MST of that class. Moreover, in the NFLM, the
testing stage can be computationally expensive for a large training
set, since for each test object it is required to compute distances to
1 Z,-C:I n;(n; — 1) lines, where n; is a number of objects in the ith
class and C is the total number of classes. In our method, we
compute distances to at most (n — 1) edges.

The idea of describing a data set by a graph is not entirely new.
During a training of a self-organising map (som) one usually fits a
2D or 3D grid to represent an underlying distribution of the data.
As a result, a set of vertices is obtained, while the corresponding
graph edges are neglected. Moreover, the size and the (usually
low) dimensionality of the grid have to be specified beforehand.
Here, we describe the target data by using the entire graph, the
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MST, including the edges. Moreover, we introduced a graph
description where the structure of the graph is learnt from a given
training set and not specified beforehand.

Several clustering algorithms proposed in the literature also
rely on graphs. Examples include CURE, ROCK and CHAMELEON; see
[21] for a survey. The CURE algorithm is very similar to the MST
with the possibility of data pre-selection and scaling. The
CHAMELEON procedure is a more advanced two-stage clustering
method. In the first stage, small clusters are created based on the
k-NN criterion, and they are agglomerated in the second stage. The
decision to join clusters is based on the length of edges of graphs
within and between the small clusters.

Similar to the proposed MsT_cD we could also describe the
data manifold by non-parametric density methods based on
the Parzen or nearest neighbour estimators. However, the finite
training size makes it usually difficult to accurately approximate
the density of a target class by non-parametric models. Another
possibility is to use subspace methods such as kernel-pca [38].
However, the parameters of such descriptions (parameters of the
kernel function as well as the intrinsic dimensionality of the data)
have to be estimated from the given training set or specified by
the user. Several techniques that are used for visualisation of high-
dimensional data can also be applied here. For example, the
techniques like isomap [45], local linear embedding [36] or multi-
dimensional scaling [12]. However, they may be difficult to apply
to new data without re-computing their models. In addition, these
types of algorithms often require several parameters to be set
beforehand. Moreover, since the volumes of the resulting
descriptions (as defined by the boundaries of the one-class
classifier) are infinite, this may lead to high non-target acceptance
rates.

5. Experiments

To study the performance of one-class classifiers, a receiver—
operator characteristics (Roc) curve is often used [3]. It is a
function of the true positive ratio (target acceptance) versus the
false positive ratio (non-target acceptance). Of course, examples of
non-target objects are necessary to evaluate it. These are available
in a validation stage only. In order to compare the performance of
various classifiers, the area under the rRoC curve (AUC) measure
can be used [3]. It computes the auc, which is the total
performance of a one-class classifier integrated over all thresh-
olds. The larger the aucC is, the better is the performance of a one-
class classifier. The auc value less than 0.5 indicates that a
particular classifier is worse than random guessing.

Except for the Colon data in Table 1, the experiments are
performed on the data sets taken from the ucI repository [15].
The Colon data set is an example of gene expression data and a
very small sample size problem; the details can be found in [1]. All
multi-class problems are transformed to one-class classification
problems by setting a chosen class as a target set and all
remaining classes as non-targets. Tables 1 and 2 compare the
performance of the MST_cD and several existing one-class classi-
fiers. The comparison is based on the Auc measure. The target
class was randomly split into equal parts between the training and
test sets. All one-class classifiers were trained on the target data
only and tested on both target data and all available non-target
data. The experiments were repeated 20 times and the results are
averaged.

The name of a class that was set to a target class is indicated in
the parentheses below the name of the data set. The total sizes of
the target class and the non-target class, denoted as |X|/|X|, and
the dimensionality N of data are also provided. Concerning the
Parzen and k-NN one-class classifiers, the complexity parameter y

Table 1
The value of auc with standard deviations (in parentheses) for a number of one-
class classifiers trained on small sample size problems from the ucI repository

Data set Spectf Sonar Nist Arrhythmia Concordia Colon
Target class  (0) (mines) (0) (normal)  (2) (normal)
1X1/1X] 95/254  111/97  200/1800 237/183 400/3600 22/44
Dim. N 44 60 256 278 1024 1908
Classifier AUC

Gauss 83.3(3.3) 68.0(3.1) 90.3(1.3) 60.6(0.6) 80.3(1.7) 70.4(1.1)
MoG 77.6(3.1) 70.4(3.5) 50(0.0) 57.7(16.6) 50(1.1) 50.0(0.0)
Naive Parzen 90.2(3.7) 53.2(3.9) 83.6(5.5) 77.4(0.7) 84.6(0.7) 70.0(1.5)
Parzen 87.9(2.7) 80.5(3.1) 55.1(3.2) 57.7(16.6) 50.2(2.2) 36.4(22.4)
k-Means 92.3(1.7) 69.8(3.7) 97.6(0.7) 76.6(0.6) 86.2(2.5) 66.8(3.1)
1-NN 92.6(2.9) 76.3(4.3) 86.6(5.7) 76.0(0.8) 90.1(0.8) 71.3(3.3)
k-NN 92.3(1.5) 69.6(4.8) 98.0(0.5) 76.0(0.8) 90.1(0.9) 71.3(3.3)
Auto-encoder 81.7(6.2) 59.6(6.5) 83.2(2.8) 52.2(2.1) 51.2(1.5) 50.0(0.0)
PCA 90.1(3.0) 69.6(3.3) 98.2(0.8) 80.7(1.0) 82.4(0.4) 70.7(1.6)
SOM 97.5(2.1) 80.1(3.4) 96.9(0.8) 77.2(0.7) 88.7(2.0) 68.2(2.6)
MST_CD 98.1(2.6) 81.1(3.1) 98.3(0.6) 79.6(0.6) 91.1(0.1) 73.3(3.0)
k-Centres 90.9(1.6) 66.8(4.1) 96.9(0.7) 76.7(1.6) 81.5(3.6) 68.4(2.9)
SVDD 97.8(3.3) 76.1(3.2) 0.3(0.2) 58.1(16.4) 12.1(1.1) 36.4(22.4)
MPM 98.0(7.4) 78.5(3.0) 0.3(0.2) 77.1(0.5) 90.1(0.6) 50.0(0.0)
LPDD 93.4(3.3) 63.6(2.7) 0.3(0.2) 57.7(16.6) 86.4(0.4) 41.8(20.0)
CHAMELEON  94.4(0.7) 77.8(1.0) 95.8(2.1) 76.0(0.8) 80.7(0.4) 39.1(5.1)

The mean and standard deviation were calculated from 20 hold-out repetitions.

Table 2
The value of auc with standard deviations (in parentheses) for a number of one-
class classifiers trained on low-dimensional problems from the uczt repository

Data set Biomed  Liver Ecoli Diabetes Breast Abalone
Target class (normal) (healthy) (periplasm) (present) (benign) (classes 1-8)
IX|/1X] 127/67 145/200 52/284 500/268 241/458 1407/2770
Dim. N 5 6 7 8 9 10

Classifier AUC

Gauss 90.0(0.4) 58.6(0.5) 92.9(0.3) 70.5(0.3) 82.3(0.2) 86.1(0.2)

MoG 91.2(0.9) 60.7(0.6) 92.0(0.4)
Naive Parzen 93.1(0.2) 61.4(0.7) 93.0(0.8)

67.4(0.3) 78.5(1.3) 85.3(0.5)
67.9(0.3) 96.5(0.4) 85.9(0.4)

(

(
Parzen 90.0(1.1) 59.0(0.3) 92.2(0.4) 67.6(0.4) 72.3(0.5) 86.3(0.1)
k-Means 87.8(12) 57.8(10) 89.1(16) 65.9(0.7) 84.6(3.5) 79.2(11)
1-NN 89.1(0.8) 59.0(0.9) 90.2(0.9)  66.7(0.7) 69.4(0.6) 86.5(0.1)
k-nn 89.1(0.8) 59.0(0.9) 90.2(0.9)  66.7(0.7) 69.4(0.6) 86.5(0.1)
Auto-encoder 85.6(2.2) 56.4(0.9) 87.8(1.0)  59.8(1.8) 38.4(0.9) 82.6(0.3)
pca 89.7(0.5) 54.9(0.5) 66.9(11)  58.7(0.2) 30.3(10) 80.2(0.1)
soM 88.7(0.8) 59.6(0.7) 89.0(1.1)  69.2(0.7) 79.0(2.3) 81.4(0.3)
MST_CD 89.8(1.0) 58.0(0.9) 89.7(0.9) 66.9(0.7) 75.6(1.8) 87.5(0.1)
k-Centres  87.8(2.4) 53.7(4.1) 86.3(12) 60.6(1.6) 71.5(12.4) 76.0(0.8)
SVDD 2.2(0.3) 4.7(1.4) 89.4(0.8) 57.7(9.8) 70.0(0.6) 80.6(0.1)
MPM 79.2(5.7) 58.7(0.9) 80.2(0.5)  65.6(0.7) 69.4(0.6) 59.4(0.1)
LPDD 86.5(2.6) 56.4(2.6) 89.6(0.5) 66.8(0.7) 80.0(0.5) 69.7(0.1)
CHAMELEON 72.7(1.9) 58.0(0.9) 75.8(1.6) 65.1(1.0) 66.9(0.8) 70.6(0.4)

The mean and standard deviation were calculated from 20 hold-out repetitions.

was optimised by the leave-one-out error [10]. For the k-means, k-
centres, MoG, SOM, SVDD, MPM and LPDD methods, y was optimised
using the consistency approach [44] with the threshold 6
determined such that ¢ = 0.1. One-class Pca retains 0.95 variance
of the training set. For the CHAMELEON descriptor, the 3-NN is used
as the first stage clustering and the threshold is computed as the
average length of the cluster edges. In MsT_cD, the complete MST
is used (hence 7y is maximal). The best and no significantly worse
than the best result in Tables 1 and 2 are marked bold.
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The data sets in Table 1 represent a collection of small sample
size problems, in which the number of training samples is smaller
or similar to the number of dimensions (remember that only half
of |X| reported in Tables 1 and 2 is used for training). We can
observe that the MsT_cD always performs best or one of the best,
however, not always significantly better than other methods. In
high-dimensional spaces, density-based classifiers do not perform
well. This can be observed from the auc performances presented
in Table 1. The performance of 50.0 that appears for the classifiers
like Parzen, auto-encoder or MoG indicates that all test objects
were classified as non-targets. This is caused by insufficient
information in the training set to correctly estimate the
parameters of those classifiers. This also leads to the worse than
random performance of the kernel-based methods (svpp, MpM and
LPDD), especially for the Nist data.

In Table 1, the Nist and Concordia sets describe hand-written
digit recognition problems. Objects in these data sets are
represented by vectors in pixel-based vector spaces. Digits
represented in such a way are usually distributed along lower-
dimensional manifolds since pixels corresponding to the corners,
edges of images do not contribute to the information about
classes. Therefore, our one-class classifier describes the target
class better by emphasising the low-dimensional manifold
structure of the data. The average of two vectors representing
digits in the pixel-based space, e.g. 1s rotated clockwise and
anticlockwise, does not necessarily create a representation of a
new digit 1. Therefore, the data subspace of the digits is not a
lower-dimensional hyperplane, but rather a nonlinear manifold.
Since the MST_CD is able to model that it outperforms the pca on
these data sets.

The data sets in Table 2 represent a collection of low-
dimensional problems, in which the size of the training set is
larger than the data dimensionality. We can observe that most
one-class classifiers, including the MsT_cD, perform well on such
problems. However, on small sample size problems reported in
Table 1, the MmsT_cD performs among first five best classifiers. In
addition, we can notice that the performance of a pca based one-
class classifier, which performed well in high-dimensional pro-
blems, now deteriorates. For the Biomed, Ecoli, Liver and Abalon
data sets, the MsT_cD classifier performs insignificantly worse
than the best classifier. Comparing the sizes of the training sets
with data dimensionality, these sets can be considered as
moderate sample size problems.

Analysing the results from Table 1, we can conclude that the
MST_CD tends to outperform other one-class classifiers in (very)
small sample size problems and for high-dimensional data. The
results from Table 2 also confirm that the MsT_cD performs well in
moderate sample size problems.

Optimisation of complexity parameter y is an important issue
when performance of a classifier is considered. Several algorithms
have been proposed to optimise y [43,44]. In Table 3 we present
few interesting examples of how auc changes for different values
of y. For Nist data set increasing complexity parameter also
increases the performance of MsT_cD. The data set is an example
of a high-dimensional manifold-like structure. Therefore, MST_CD,
with a high complexity, as well as other subspace-based

Table 3
AUC versus complexity parameter y

b 1 3 5 7 MST
Data set AUC

Nist 90.1(0.3) 91.0(0.5) 93.2(1.3) 92.1(0.2) 98.3(0.6)
Sonar 80.8(3.2) 79.5(2.7) 80.9(1.8) 83.1(2.5) 81.1(3.1)
Breast 92.1(1.2) 89.3(1.7) 86.3(0.5) 85.2(1.5) 75.6(1.8)

classifiers, performs well on such data. Similar results were
obtained for Concordia data set.

On the other hand for Sonar data set a wide range of
complexity parameters gives similar performance. To explain this
phenomenon see Fig. 7(b). Sonar data set has a long first principal
direction. Almost an entire data set structure is captured in the
first direction. Therefore, adding additional directions changes
performance slightly.

The last example is the most interesting one. For the Breast
data set reducing complexity of MST_CD increases its performance.
It is well known that classes in this data set are normally
distributed. Decreasing 7 in MST_cD changes the shape of a
decision boundary making it more ellipsoidal; Fig. 4. Therefore,
the performance for Breast data set improves as the complexity of
the classifier decreases. Similar behaviour of MsT_cD performance
has been observed for Breast and Biomed data sets. We can
conclude that a reduction of complexity of MST_CD may improve
the performance for data sets from Table 2.

5.1. Comparison of one-class classifiers in a classifier projection
space

The auc performance is an overall measure which does not
provide full information about the performance and comparison
of classifiers. The same values of auc for two classifiers may be
computed on different objects in a test set. In order to get more
insight into the behaviour of various one-class classifiers, we can
compare classifiers by comparing their assignments for the given
test data. One of the simplest measure is the disagreement
coefficient. It counts the number of assignments that a pair of
classifiers disagree, normalised by the cardinality of the test set.
This defines a dissimilarity between two classifiers with respect to
the given data.

Given a set of L one-class classifiers, an L x L disagreement
matrix reflects the pairwise relations between all examined
classifiers. Now a vector space representation can be found such
that the computed disagreements are preserved as distances in
that space as well as possible. This is achieved by a 2D linear
projection, a variant of multi-dimensional scaling [8]. The
resulting space is called a classifier projection space [32], since
the vectors in that space represent the classifiers, and the
Euclidean distances between them reflect the disagreements
between the classifiers. It helps one to visually judge the
similarity between classifiers, a step towards the classifier
tribology.

Fig. 8 allows us to judge the similarity of the predictions made
by the MsT_cD to these of other one-class classifiers. The two plots
shown there visualise the characterisation of one-class classifiers
by their label disagreements on the test set, consisting of both
target and non-target objects. Two (L + 1) x (L + 1) disagreement
matrices are computed. They are based on the predicted assign-
ments of L = 16 one-class classifiers applied to the test data from
Tables 1 and 2, respectively. Since we know the true labels for the
test data, they are used as the assignments of the oracle, i.e. of the
perfect (L + 1)-th class descriptor. The oracle is denoted as ‘0’ and
added as a comparison. Remember that this presentation is not
based on the auc as the classifiers’ disagreements are calculated
for a single threshold of (0.1) on the rROC curve.

Dashed circular lines represent the same performance, hence
classifiers with the same number of misclassified objects in a test
set, as they reflect the distance to the oracle 0. We can see from
these plots that the MsT_cD is the most similar to the NN, k-NN and
the k-means, while it is very different from the density-based one-
class classifier as well as the support vector based classifiers, svpp,
LpDD and MPM. This is, of course judged in the sense of predicted
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Fig. 8. Classifier projection space: the characterisation of one-class classifiers by their disagreements for the data sets from (a) Table 1 and (b) Table 2. The oracle, i.e. a

classifier that predicts true labels, is denoted by o.

membership. Although the values of auc for the MsT_cD, Pca and
soM methods are quite similar in Table 1, the way the assignments
are made, indicate the classifiers are really different. This is
reflected in large distances between their vector representations
in the classifier projection space, as depicted in Fig. 8.

By observing Fig. 8(a), we can notice that the bulk of classifiers
built by the methods such as the svpp, MmpM, PCa, Gauss, 1-NN or
soM has a similar performance to that of the msT_cp. This is
judged by the similar Euclidean distance of each class descriptor
to the oracle o. The labels predicted by these classifiers are,
however, very different than those of the MsT_cD as reflected in
the, large distance of the MsT_cD to this bulk. Fig. 8(b) shows that
the majority of classifiers performs well on these well-sampled
data sets, but still the distances from MST_cD to other classifiers
are large in the classifier projection space, which indicates that
the msT_cD descriptor is of a different kind. In this case, the
MST_CD is most similar to the Parzen class descriptor. Since the
MST_CD is quite diverse from the standard one-class classifiers, it
may be considered as a valuable member in the committee where
one-class classifiers need to be combined.

We have noticed that the MsT_cD descriptor performs well for
high-dimensional data, e.g. on the digit data represented as
vectors in a pixel-based space in the Nist and Concordia data sets.
The other group of problems that is usually characterised by high
dimension and small sample size are problems encountered in
bioinformatics, similar to Colon data set in Table 1.

Here, we focus on the microarray gene expression data.
Microarrays are a new technology to investigate the expression
levels of thousands of genes simultaneously. They present new
statistical problems because such problems are usually charac-
terised by a huge dimensionality and a very small number of
examples. To describe the behaviour of one-class classifiers we
select the Leukemia data with 25 target objects in 3571-
dimensional space and the Mates data with 46 target objects in
4919-dimensional space. These data sets were originally used in
[11]. The threshold of the one-class classifiers was set such that
no training objects are rejected as the data are extremely small.
The related classifier projection space is shown in Fig. 9. Although
the presented results suggest that the MsT_cD performs well on
microarray data, the reader should be aware that such claims need
much more support than just two publicly available data.

5.2. Computational complexity

To determine the MsT for a given data set we can use either
Prim’s or Kruskal’s algorithm. Their computational complexity is
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Fig. 9. Classifier projection space for one-class classifiers trained on the Mates and
Leukemia data.

O(&1og |X|) = @‘(”ZT*"log n). To find the threshold 6 from (9), at
most ()(nlog n) operations are needed as it involves only sorting of
edge lengths. Hence, the computational complexity of MST_CD
based on the full MST is (O(#log n). Recently, authors [34,5] have
proposed even less computationally expensive algorithms for
determining the msT, in the order of ¢(5™ (5, n)), where o is
an inverse of Ackermann’s function.>Pettie and Ramachandran
[34] have also shown that the proposed algorithm has a high
probability to be linear in n. Moreover, efficient parallel algo-
rithms exist to compute the MST [9], making it a computationally
attractive data descriptor for large data sets. It should also be
noted that the computational complexity of training the MST_CD is
lower than the computational complexity of many other machine
learning algorithms, which can be in the order of @(n?), for the
support vector machine (svm), for instance.

The sparse MsT_CD involves the computation of principle
directions. To compute all principle directions using Jordan’s
algorithm requires (¢(n®logn)) operations [7]. Therefore, the
complexity is still quadratic in the number of objects.

Table 4 presents averaged running time in seconds for several
one-class classifiers. The complexity of classifiers were set in the
same way as in the experiments in Tables 1 and 2 and the
threshold was set to 0.1. Experiments were performed on Mac-
Book Pro, 2GHz Intel, 2GB RAM and all classifiers were
implemented in Matlab. The time was measured for two data
sets: Diabetes with 250 training, 518 test objects and 8 features

3 The Ackermann function A(i, ) is a function of two parameters whose values
grow extremely fast. It is defined recursively as A(0,j) =j+ 1 for j>0, A(i,0) =
A(i—1,1) for i>0 and A(i,j) = A(i — 1,A(i,j — 1)) for i,j>0. The inverse Ackermann
function o(i,j) is a function of two parameters whose values grow extremely
slowly. It is defined as o(m,n) = min{i>1 : A(i, |%}]) >log,n}.
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Table 4

Running time of classifiers averaged over 20 trials for two data sets, Diabetes and Concoria

Gauss MoG N. Parzen Parzen k-Means 1-NN k-NN A. Encoder PCA SoM MST_CD k-Centres SVDD MPM LPDD CHAMELEON
Diabetes

0.5 0.7 24 0.2 0.1 0.1 0.1 120 0.3 1959 13 41 0.8 0.5 71 50.4

0.3 0.1 1.2 0.2 0.1 0.2 0.2 0.5 0.1 0.1 0.5 0.2 0.2 0.2 0.3 0.4
Concordia

24 6504 1214 0.6 0.6 0.2 0.2 7401 2.8 636.8 13 1.0 0.5 0.3 24 121

13 17107 354.5 34 0.4 2.1 23 4092 8.8 1.7 29 1.0 1.3 1.2 1.4 10.1

The first row shows training and the second testing time.

and Concordia data set with 200 training, 3800 test objects and
1024 features. We can see that running times for MST_cD almost
do not depend on dimensionality of data sets. Similar to other
distance-based classifiers, like 1-NN k-centres, the computational
complexity of MST_CD is mostly driven by the number of objects.
The same holds for kernel-based classifiers like L.PDD and svDD.
On the other hand density-based classifiers, e.g. a single Gauss,
MoG or neural network based auto-encoder depend on both the
number of objects and the number of dimensions. The computa-
tion of all principal paths for Diabetes took about 20s and for
Concordia about 12s. Comparison of the optimisation of ¢ using
the consistency criterion [44] for support vector-based svDD took
210 and 185s, respectively.

An implementation of the MsT_cD has been included into
DD_TOOLS, a data description toolbox for one class classification
problems. It is freely available for academic purposes and can be
downloaded from www.prtools.org.

6. Conclusions

This paper proposes a new one-class classifier based on the
minimum spanning tree (MST). The complexity of the classifier
equals the complexity of the MsT and the threshold is determined
as a fraction on a distribution of the edge lengths in the MsT. The
basic elements of the classifier are the edges of the tree which can
be considered as additional virtual elements that capture more
characteristics of the training objects. As an extension, we also
propose a way to reduce the complexity of the classifier either by
selecting only the first few principal directions or by removing
superfluous edges.

The presented classifier performs well in high-dimensional
spaces and in small sample size problems in comparison to other
existing one-class classifiers. Since the MsT_cD is constructed on
different principles than other one-class classifiers, it becomes a
valuable member of a committee in the task of combing
classifiers. Possible extensions of the MsST_cD are the one-
class classifiers based on different graph structures such as the
minimum stainer tree, for instance.
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