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Abstract

Problems in which abnormal or novel situations should be detected can
be approached by describing the domain of the class of typical exam-
ples. These applications come from the areas of machine diagnostics,
fault detection, illness identification or, in principle, refer to any prob-
lem where little knowledge is available outside the typical class. In this
paper we explain why proximities are natural representations for domain
descriptors and we propose a simple one-class classifier for dissimilarity
representations. By the use of linear programming an efficient one-class
description can be found, based on a small number of prototype objects.
This classifier can be made (1) more robust by transforming the dissimi-
larities and (2) cheaper to compute by using a reduced representation set.
Finally, a comparison to a comparable one-class classifier by Campbell
and Bennett is given.

1 Introduction

The problem of describing a class or a domain has recently gained a lot of attention, since it
can be identified in many applications. The area of interest covers all the problems, where
the specified targets have to be recognized and the anomalies or outlier instances have to
be detected. Those might be examples of any type of fault detection, abnormal behavior,
rare illnesses, etc. One possible approach to class description problems is to construct one-
class classifiers (OCCs) [13]. Such classifiers are concept descriptors, i.e. they refer to all
possible knowledge that one has about the class.

An efficient OCC built in a feature space can be found by determining a minimal volume
hypersphere around the data [14, 13] or by determining a hyperplane such that it separates
the data from the origin as well as possible [11, 12]. By the use of kernels [15] the data is
implicitly mapped into a higher-dimensional inner product space and, as a result, an OCC in
the original space can yield a nonlinear and non-spherical boundary; see e.g. [15, 11, 12, 14].

Those approaches are convenient for data already represented in a feature space. In some
cases, there is, however, a lack of good or suitable features due to the difficulty of defining
them, as e.g. in case of strings, graphs or shapes. To avoid the definition of an explicit
feature space, we have already proposed to address kernels as general proximity measures
[10] and not only as symmetric, (conditionally) positive definite functions of two variables



[2]. Such a proximity should directly arise from an application; see e.g. [8, 7]. Therefore,
our reasoning starts not from a feature space, like in case of the other methods [15, 11, 12,
14], but from a given proximity representation. Here, we address general dissimilarities.

The basic assumption that an instance belongs to a class is that it is similar to examples
within this class. The identification procedure is realized by a proximity function equipped
with a threshold, determining whether an instance is a class member or not. This proximity
function can be e.g. a distance to an average representative, or a set of selected proto-
types. The data represented by proximities is thus more natural for building the concept
descriptors, i.e. OCCs, since the proximity function can be directly built on them.

In this paper, we propose a simple and efficient OCC for general dissimilarity represen-
tations, discussed in Section 2, found by the use of linear programming (LP). Section 3
presents our method together with a dissimilarity transformation to make it more robust
against objects with large dissimilarities. Section 4 describes the experiments conducted,
and discusses the results. Conclusions are summarized in Section 5.

2 Dissimilarity representations

Although a dissimilarity measure D provides a flexible way to represent the data, there
are some constraints. Reflectivity and positivity conditions are essential to define a proper
measure; see also [10]. For our convenience, we also adopt the symmetry requirement.
We do not require that D is a strict metric, since non-metric dissimilarities may naturally
be found when shapes or objects in images are compared e.g. in computer vision [4, 7].
Let z and pi refer to objects to be compared. A dissimilarity representation can now be
seen as a dissimilarity kernel based on the representation set R={p1, .., pN} and realized
by a mapping D(z, R) : F → RN , defined as D(z, R) = [D(z, p1) . . . D(z, pN)]T . R
controls the dimensionality of a dissimilarity space D(·, R). Note also that F expresses a
conceptual space of objects, not necessarily a feature space. Therefore, to emphasize that
objects, like z or pi, might not be feature vectors, they will not be printed in bold.

The compactness hypothesis (CH) [5] is the basis for object recognition. It states that
similar objects are close in their representations. For a dissimilarity measure D, this means
that D(r, s) is small if objects r and s are similar.If we demand that D(r, s)=0, if and only
if the objects r and s are identical, this implies that they belong to the same class. This can
be extended by assuming that all objects s such that D(r, s)<ε, for a sufficient small ε, are
so similar to r that they are members of the same class. Consequently, D(r, t)≈D(s, t) for
other objects t. Therefore, for dissimilarity representations satisfying the above continuity,
the reverse of the CH holds: objects similar in their representations are similar in reality
and belong, thereby, to the same class [6, 10].

Objects with large distances are assumed to be dissimilar. When the set R contains objects
from the class of interest, then objects z with large D(z, R) are outliers and should be
remote from the origin in this dissimilarity space. This characteristic will be used in our
OCC. If the dissimilarity measure D is a metric, then all vectors D(z, R), lie in an open
prism (unbounded from above1), bounded from below by a hyperplane on which the objects
from R are. In principle, z may be placed anywhere in the dissimilarity space D(·, R) only
if the triangle inequality is completely violated. This is, however, not possible from the
practical point of view, because then both the CH and its reverse will not be fulfilled.
Consequently, this would mean that D has lost its discriminating properties of being small
for similar objects. Therefore, the measure D, if not a metric, has to be only slightly non-
metric (i.e. the triangle inequalities are only somewhat violated) and, thereby, D(z, R) will
still lie either in the prism or in its close neigbourhood.

1the prism is bounded if D is bounded



3 The linear programming dissimilarity data description

To describe a class in a non-negative dissimilarity space, one could minimize the volume of
the prism, cut by a hyperplane P : w

T D(z, R)=ρ that bounds the data from above2 (note
that non-negative dissimilarities impose both ρ≥0 and wi≥0). However, this might be not
a feasible task. A natural extension is to minimize the volume of a simplex with the main
vertex being the origin and the other vertices vj resulting from the intersection of P and
the axes of the dissimilarity space (vj is a vector of all zero elements except for vji =ρ/wi,
given that wi 6=0). Assume now that there are M non-zero weights of the hyperplane P , so
effectively, P is constructed in a RM . From geometry we know that the volume V of such
a simplex can be expressed as V = (VBase/M !) · (ρ/||w||2), where VBase is the volume of
the base, defined by the vertices vj . The minimization of h = ρ/||w||2, i.e. the Euclidean
distance from the origin to P , is then related to the minimization of V .

Let {D(pi, R)}N
i=1, N = |R| be a dissimilarity representation, bounded by a hyperplane P ,

i.e. w
T D(pi, R) ≤ ρ for i = 1, . . . , N , such that the Lq distance to the origin dq(0, P ) =

ρ/||w||p is the smallest (i.e.q satisfies 1/p+1/q = 1 for p≥1) [9]. This means that P can
be determined by minimizing ρ − ||w||p. However, when we require ||w||p = 1 (to avoid
any arbitrary scaling of w), the construction of P can be solved by the minimization of ρ
only. The mathematical programming formulation of such a problem is [9, 1]:

min ρ
s.t. w

T D(pi, R) ≤ ρ, i = 1, 2, .., N, ||w||p = 1, ρ ≥ 0.
(1)

If p=2, then P is found such that h is minimized, yielding a quadratic optimization prob-
lem. A much simpler LP formulation, realized for p = 1, is of our interest. Knowing that
||w||2≤||w||1≤

√
M ||w||2 and by the assumption of ||w||1 =1, after simple calculations,

we find that ρ ≤ h = ρ/||w||2 ≤
√

M ρ. Therefore, by minimizing d∞(0, P ) = ρ, (and
||w||1 =1), h will be bounded and the volume of the simplex considered, as well.

By the above reasoning and (1), a class represented by dissimilarities can be characterized
by a linear proximity function with the weights w and the threshold ρ. Our one-class
classifier CLPDD, Linear Programming Dissimilarity-data Description, is then defined as:

CLPDD(D(z, ·)) = I(
∑

wj 6=0

wjD(z, pj) ≤ ρ), (2)

where I is the indicator function. The proximity function is found as the solution to a soft
margin formulation (which is a straightforward extension of the hard margin case) with
ν∈(0, 1] being the upper bound on the outlier fraction for the target class:

min ρ + 1
ν N

∑N
i=1 ξi

s.t. w
T D(pi, R) ≤ ρ + ξi, i = 1, 2, .., N∑
j wj = 1, wj ≥ 0, ρ ≥ 0, ξi ≥ 0.

(3)

In the LP formulations, sparse solutions are obtained, meaning that only some wj are posi-
tive. Objects corresponding to such non-zero weights, will be called support objects (SO).

The left plot of Fig. 1 is a 2D illustration of the LPDD. The data is represented in a metric
dissimilarity space, and by the triangle inequality the data can only be inside the prism
indicated by the dashed lines. The LPDD boundary is given by the hyperplane, as close to
the origin as possible (by minimizing ρ), while still accepting (most) target objects. By the
discussion in Section 2, the outliers should be remote from the origin.

Proposition. In (3), ν∈(0, 1] is the upper bound on the outlier fraction for the target class,
i.e. the fraction of objects that lie outside the boundary; see also [11, 12]. This means that
1
N

∑N
i=1(1 − CLPDD(D(pi, ·)) ≤ ν.

2P is not expected to be parallel to the prism’s bottom hyperplane
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Figure 1: Illustrations of the LPDD in the dissimilarity space (left) and the LPSD in the similarity
space (right). The dashed lines indicate the boundary of the area which contains the genuine objects.
The LPDD tries to minimize the max-norm distance from the bounding hyperplane to the origin,
while the LPSD tries to attract the hyperplane towards the average of the distribution.

The proof goes analogously to the proofs given in [11, 12]. Intuitively, the proof follows
this: assume we have found a solution of (3). If ρ is increased slightly, the term

∑
i ξi in the

objective function will change proportionally to the number of points that have non-zero ξi

(i.e. the outlier objects). At the optimum of (3) it has to hold that Nν ≥ #outliers.

Scaling dissimilarities. If D is unbounded, then some atypical objects of the target class
(i.e. with large dissimilarities) might badly influence the solution of (3). Therefore, we
propose a nonlinear, monotonous transformation of the distances to the interval [0, 1] such
that locally the distances are scaled linearly and globally, all large distances become close to
1. A function with such properties is the sigmoid function (the hyperbolical tangent can also
be used), i.e. Sigm(x) = 2/(1 + e−x/s) − 1, where s controls the ’slope’ of the function,
i.e. the size of the local neighborhoods. Now, the transformation can be applied in an
element-wise way to the dissimilarity representation such that Ds(z, pi)=Sigm(D(z, pi)).
Unless stated otherwise, the CLPDD will be trained on Ds.

A linear programming OCC on similarities. Recently, Campbell and Bennett have
proposed an LP formulation for novelty detection [3]. They start their reasoning from
a feature space in the spirit of positive definite kernels K(S, S) based on the set
S = {x1, .., xN}. They restricted themselves to the (modified) RBF kernels, i.e. for
K(xi, xj) = e−D(xi,xj)

2/2 s2

, where D is either Euclidean or L1 (city block) distance.
In principle, we will refer to RBFp, as to the ’Gaussian’ kernel based on the Lp distance.
Here, to be consistent with our LPDD method, we rewrite their soft-margin LP formula-
tion (a hard margin formulation is then obvious), to include a trade-off parameter ν (which
lacks, however, the interpretation as given in the LPDD), as follows:

min 1
N

∑N
i=1(w

T K(xi, S) + ρ) + 1
ν N

∑N
i=1 ξi

s.t. w
T K(xi, S) + ρ ≥ −ξi, i = 1, 2, .., N∑
j wj = 1, wj ≥ 0, ξi ≥ 0.

(4)

Since K can be any similarity representation, for simplicity, we will call this method Linear
Programming Similarity-data Description (LPSD). The CLPSD is then defined as:

CLPSD(K(z, ·)) = I(
∑

wj 6=0

wjK(z, xj) + ρ ≥ 0). (5)

In the right plot of Fig. 1, a 2D illustration of the LPSD is shown. Here, the data is rep-
resented in a similarity space, such that all objects lie in a hypercube between 0 and 1.
Objects remote from the representation objects will be close to the origin. The hyperplane
is optimized to have minimal average output for the whole target set. This does not nec-
essarily mean a good separation from the origin or a small volume of the OCC, possibly
resulting in an unnecessarily high outlier acceptance rate.



LPDD on the Euclidean representation
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Figure 2: One-class hard margin LP classifiers for an artificial 2D data. From left to right, s takes
the values of 0.3d, 0.4d, 0.5d, d, 3d, where d is the average distance. Support objects are marked by
squares.

Extensions. Until now, the LPDD and LPSD were defined for square (dis)similarity ma-
trices. If the computation of (dis)similarities is very costly, one can consider a reduced
representation set Rred ⊂R, consisting of n<<N objects. Then, a dissimilarity or similar-
ity representations are given as rectangular matrices D(R, Rred) or K(S, Sred), respectively.
Both formulations (3) and (4) remain the same with the only change that R/S is replaced by
Rred/Sred. An another reason to consider reduced representations is the robustness against
outliers. How to choose such a set is beyond the scope of this paper.

4 Experiments

Artificial datasets. First, we illustrate the LPDD and the LPSD methods on two artificial
datasets, both originally created in a 2D feature space. The first dataset contains two clus-
ters with objects represented by Euclidean distances. The second dataset contains one uni-
form, square cluster and it is contaminated with three outliers. The objects are represented
by a slightly non-metric L0.95 dissimilarity (i.e. d0.95(x, y) = [

∑
i(xi−yi)

0.95]1/0.95). In
Fig. 2, the first dataset together with the decision boundaries of the LPDD and the LPSD
in the theoretical input space are shown. The parameter s used in all plots refers either to
the scaling parameter in the sigmoid function for the LPDD (based on Ds) or to the scaling
parameter in the RBF kernel. The pictures show similar behavior of both the LPDD and
the LPSD; the LPDD tends to be just slightly more tight around the target class.

LPDD on the Euclidean representation
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Figure 3: One-class LP classifiers, trained with ν =0.1 for an artificial uniformly distributed 2D data
with 3 outliers. From left to right s takes the values of 0.7dm, dm, 1.6dm, 3dm, 8dm, where dm is
the median distance of all the distances. e refers to the error on the target set. Support objects are
marked by squares.



LPDD on the L0.95 representation
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Figure 4: One-class LP classifiers for an artificial 2D data. The same setting as in Fig.3 is used, only
for the L0.95 non-metric dissimilarities instead of the Euclidean ones. Note that the median distance
has changed, and consequently, the s values, as well.
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Figure 5: One-class LP classifiers, trained with ν = 0.1, for an artificial uniformly distributed 2D
data with 3 outliers, given by the L0.95 non-metric rectangular 50×6 dissimilarity representations.
The upper row shows the LPDD’s results and bottom row shows the LPSD’s results with the kernel
RBF0.95 . The objects of the reduced sets Rred and Sred are marked by triangles. Note that they differ
from left to right. e refers to the error on the target set. Support objects are marked by squares.

This becomes more clear in Fig. 3 and 4, where three outliers lying outside a single uni-
formly distributed cluster should be ignored when an OCC with a soft margin is trained.
From these figures, we can observe that the LPDD gives a tighter class description, which
is more robust against the scaling parameter and more robust against outliers, as well. The
same is observed when L0.95 dissimilarity is used instead of the Euclidean distances.

Fig. 5 presents some results for the reduced representations, in which just 6 objects are
randomly chosen for the set Rred. In the left four plots, Rred contains objects from the
uniform cluster only, and both methods perform equally well. In the right four plots, on
the other hand, Rred contains an outlier. It can be judged that for a suitable scaling s, no
outliers become support objects in the LPDD, which is often a case for the LPSD; see also
Fig. 4 and 3. Also, a crucial difference between the LPDD and LPSD can be observed w.r.t.
the support objects. In case of the LPSD (applied to a non-reduced representation), they lie
on the boundary, while in case of the LPDD, they tend to be ’inside’ the class.

Condition monitoring. Fault detection is an important problem in the machine diagnos-
tics: failure to detect faults can lead to machine damage, while false alarms can lead
to unnecessary expenses. As an example, we will consider a detection of four types of
fault in ball-bearing cages, a dataset [16] considered in [3]. Each data instance consists
of 2048 samples of acceleration taken with a Bruel and Kjaer vibration analyser. After
pre-processing with a discrete Fast Fourier Transform, each signal is characterized by 32
attributes. The dataset consists of five categories: normal behavior (NB), corresponding



Table 1: The errors of the first and second kind (in %) of the LPDD and LPSD on two dissimilarity
representations for the ball-bearing data. The reduced representations are based on 180 objects.

Euclidean representation
Method Error

Optimal s # of SO NB T1 T2 T3 T4

LPDD 200.4 10 1.4 0.0 45.0 69.8 70.0
LPDD-reduced 65.3 17 1.1 0.0 20.2 47.5 50.9
LPSD 320.0 8 1.3 0.0 46.7 71.7 74.5
LPSD-reduced 211.2 6 0.6 0.0 39.9 67.1 69.5

L1 dissimilarity representation
Method Error

Optimal s # of SO NB T1 T2 T3 T4

LPDD 566.3 12 1.3 0.0 1.6 20.9 19.8
LPDD-reduced 329.5 10 1.3 0.0 2.3 18.7 16.9
LPSD 1019.3 8 0.9 0.0 2.2 27.9 27.2
LPSD-reduced 965.7 5 0.3 0.0 3.5 26.3 27.5

to measurements made from new ball-bearings, and four types of anomalies, say, T1 – T4,
corresponding either to the damaged outer race or cages or a badly worn ball-bearing. To
compare our LPDD method with the LPSD method, we performed experiments in the same
way, as described in [3], making use of the same training set, and independent validation
and test sets; see Fig. 6.

The optimal values of s were found for both LPDD and
Train Valid. Test

NB 913 913 913
T1 747 747
T2 913 996
T3 996
T4 996

Figure 6: Fault detection data.

LPSD methods by the use of the validation set on the Eu-
clidean and L1 dissimilarity representations. The results
are presented in Table 1. It can be concluded that the
L1 representation is far more convenient for the fault de-
tection, especially if we look at the fault type T3 and T4

which were unseen in the validation process. The LPSD
performs better on normal instances (yields a smaller er-
ror) than the LPDD. This is to be expected, since the
boundary is less tight, by which less support objects (SO) are needed. On the contrary, the
LPSD method deteriorates w.r.t. the outlier detection. Note also that the reduced represen-
tation, based on randomly chosen 180 target objects (≈ 20%) mostly yields significantly
better performances in outlier detection for the LPDD, and in target acceptance for the
LPSD. Therefore, we can conclude that if a failure in the fault detection has higher costs
than the cost of misclassifying target objects, then our approach should be recommended.

5 Conclusions

We have proposed the Linear Programming Dissimilarity-data Description (LPDD) classi-
fier, directly built on dissimilarity representations. This method is efficient, which means
that only some objects are needed for the computation of dissimilarities in a test phase.
The novelty of our approach lies in its reformulation for general dissimilarity measures,
which, we think, is more natural for class descriptors. Since dissimilarity measures might
be unbounded, we have also proposed to transform dissimilarities by the sigmoid function,
which makes the LPDD more robust against objects with large dissimilarities. We em-
phasized the possibility of using the LP procedures for rectangular dissimilarity/similarity
representations, which is especially useful when (dis)similarities are costly to compute.

The LPDD is applied to artificial and real-world datasets and compared to the LPSD detec-
tor as proposed in [3]. For all considered datasets, the LPDD yields a more compact target
description than the LPSD. The LPDD is more robust against outliers in the training set, in



particular, when only some objects are considered for a reduced representation. Moreover,
with a proper scaling parameter s of the sigmoid function, the support objects in the LPDD
do not contain outliers, while it seems difficult for the LPSD to achieve the same. In the
original formulation, the support objects of the LPSD tend to lie on the boundary, while
for the LPDD, they are mostly ’inside’ the boundary. This means that a removal of such an
object will not impose a drastic change of the LPDD.

In summary, our LPDD method can be recommended when the failure to detect outliers is
more expensive than the costs of a false alarm. It is also possible to enlarge the description
of the LPDD by adding a small constant to ρ. Such a constant should be related to the
dissimilarity values in the neighborhood of the boundary. How to choose it, remains an
open issue for further research.
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