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Abstract. Seismic object detection is a relatively new field
in which 3-D bodies are visualized and spatial relationships
between objects of different origins are studied in order to
extract geologic information. In this paper, we propose a
method for finding an optimal classifier with the help of a
statistical feature ranking technique and combining differ-
ent classifiers. The method, which has general applicability,
is demonstrated here on a gas chimney detection problem.
First, we evaluate a set of input seismic attributes extracted
at locations labeled by a human expert using regularized dis-
criminant analysis (RDA). In order to find the RDA score for
each seismic attribute, forward and backward search strate-
gies are used. Subsequently, two non-linear classifiers: mul-
tilayer perceptron (MLP) and support vector classifier (SVC)
are run on the ranked seismic attributes. Finally, to capitalize
on the intrinsic differences between both classifiers, the MLP
and SVC results are combined using logical rules of maxi-
mum, minimum and mean. The proposed method optimizes
the ranked feature space size and yields the lowest classifica-
tion error in the final combined result. We will show that the
logical minimum reveals gas chimneys that exhibit both the
softness of MLP and the resolution of SVC classifiers.

1 Introduction

When fluids migrate upwards through a sedimentary se-
quence, rocks are cracked or chemically altered and connate
gas might stay behind after the fluids have passed. In pro-
cessed seismic data these effects manifest themselves as sub-
tle vertical noise trails. It is worth studying such trails as they
reveal hydrocarbon migration paths and thus provide useful
information about the petroleum system. On conventional
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seismic displays only large vertical noise trails can be rec-
ognized as gas chimneys. Meldahl et al. (1999) developed
a pattern recognition technique to facilitate the interpretation
of gas chimneys. Their method transfers a seismic volume
into a new volume that highlights only vertical disturbances.
They refer to this new volume as “The Chimney Cube”. The
cube is generated by a neural network that was trained on
multiple attributes extracted at positions labelled by a human
expert. The target vectors for the neural network are (1,0) and
(0,1) representing chimneys and non-chimney locations, re-
spectively. In the application phase the node representing the
chimney class is output. Values in the volume are represent-
ing chimney “probability”, which ranges from approximately
0 to 1.

The chimney cube is used in the study of petroleum
systems. Interpretation of fluid migration paths involves
studying spatial relationships between chimneys, source
rocks, reservoir traps, faults, hydrocarbon indicators (DHIs)
and seepage-related features such as pock-marks and mud-
volcanoes. The seismic evidence is combined with regional
geological knowledge, well data, pressure data, basin mod-
els, geo-chemical measurements and other relevant informa-
tion in an integrated study of the petroleum system. Since
the first publications on chimney cubes (Meldahl et al., 1999
and Heggland et al., 1999) many cubes have been pro-
cessed and interpreted around the world. Successful appli-
cations, revealing vertical hydrocarbon migration pathways
between source, reservoirs and the seabed, fault seal anal-
ysis and prospect ranking have been reported by Heggland
et al. (2000), Meldahl et al. (2001), Aminzadeh and Con-
nolly (2002), Connolly et al. (2002), and Ligtenberg and
Thomsen (2003).

The main purpose of this paper is to present an improved
method for seismic object detection. Our objective is to en-
hance both classifier performance and the resolution of the
final image. We demonstrate our method on a chimney de-
tection problem. However, our method (like Meldahl et al.,
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1999) can be applied to any seismic object by providing a
set of locations labeled by an expert as “object” and “non-
object” and tuning the input attributes for the classifier. In or-
der to rank the relevant importance of each seismic attribute
in the classification problem, we use regularized discriminant
analysis (RDA) with forward and backward search strategy.
This allows defining a rank for each seismic attribute that ef-
ficiently results in lower combined classification errors. Two
well-known non-linear classifiers, namely multilayer percep-
tron (MLP) and support vector classifier (SVC) are used to
find output posterior probabilities of chimney and non chim-
ney class separately. These classifiers have different proper-
ties that become evident in their corresponding chimney pre-
diction results. This implies that the different natural charac-
teristics for finding multi dimensional hyper-plane boundary
will appear in their output. In order to have a mixed sense of
both, the stage of classifier combining will apply with three
mean, minimum and maximum logical rules.

2 Attribute selection and feature extraction

Seismic attributes that are generated from the seismic data
highlight special information relative to the propagated wave
field. From a pattern recognition point of view, each com-
puted seismic attribute is called a “feature”. The proce-
dure for finding appropriate features consists of two separate
parts. Firstly a geophysicist has to choose an initial set of
attributes from a seismic point of view and secondly a statis-
tical feature extraction algorithm is applied to reduce this set
by minimizing some class separability measure, for instance
the classification error.

In the first stage, the seismic attributes are selected based
on experience and knowledge of interpreter. Chopra and
Marfurt (2005) extensively discussed different ideas about
cataloging seismic attributes. Taner et al. (1994) state a
useful taxonomy for seismic attributes, i.e. physical ver-
sus geometrical ones. Physical attributes give informa-
tion about the physics of wave propagation in subsurface
(e.g. phase, frequency and amplitude), while the geometrical
attributes underscore shape and geometry of the reflection
events (e.g. dip, azimuth and continuity). For the purpose
of seismic object detection, it is often necessary to consider
both physical and geometrical evidences of the desired ob-
ject. Thus a seismic interpreter should choose meaningful
and sufficient attributes from both the above categories for
the classification task. Although the tuning and exact def-
inition of the set is data dependent, Tingdahl et al. (2001)
introduced a set of attributes for chimney detection.

Although the set of attributes should contain all the infor-
mation required for the detection of gas chimneys, individual
attributes may be too noisy, or may be much correlated with
other attributes, making them less informative when they are
used in conjunction with the correlated attributes. To define
a concise and non-redundant attribute set, feature extraction

techniques have been developed. The idea is to construct sev-
eral subsets of the original features and to estimate a class-
separability criterion on that. In order to estimate the separa-
tion, one typically has to have labeled data available. For this
application it means that a seismic interpreter should provide
some chimney and non-chimney pick locations. Given the
criterion values for all feature subsets, one can choose the
feature subset with a maximum class-separabiliy. The crite-
rion that is used in this paper is the classification performance
obtained by RDA (Friedman, 1989).

Assume ak (any arbitrary integer greater than 1) class
problem andp seismic attributes with values ofxp; then,
vectorX=[x1, x2, x3..., xp] is defined as the selected seis-
mic attribute values in every seismic trace sample,µk as the
mean vector for classk, Ck as the covariance matrix of the
k-th class, andPk as the prior probability for classk. The log-
probability for objectXi for n available seismic labeled picks
(where,i=1,. . . ,n) under the assumption that the classes are
Gaussian distributed is,

dk(Xi) = (Xi − µk)
T C−1

k (λ, γ )(Xi − µk)

+ ln |Ck(λ, γ )| − 2 lnPk (1)

Whereλ andγ are the regularization parameters that deter-
mine the added value to the diagonal of the covariance matrix
and how much it will therefore deviate from the maximum
likelihood solution. In practice, values ofλ andγ should be
found by optimization techniques.

When the amount of labeled picks is relatively small it is
hard to obtain reliable estimates for (in particular) the covari-
ance matrix due to its singularity in inversion procedure. For
these situations one regularizes the covariance matrix by en-
larging the diagonal of the maximum likelihood solution6̂k

and by adding a fixed constant to the diagonal of the unity
matrix (I ),

Ck = (1 − λ − γ )6̂k + λ diag(6̂k) + γ I . (2)

To classify a seismic pickXi , the log-probabilities of the
classes are compared and it is assigned to the class with the
highest log-probability:

ŷ(Xi) = k whendk(Xi) ≥ dl(Xi), ∀k 6= l, (3)

whereŷ(Xi) is the estimated label forXi . The final crite-
rion value is the fraction of well-classified picks among all
the picks that have been supplied by the seismic interpreter.
Assuming eachn labeled picks has the true label ofyi , ν de-
fines a subset of features and thatXν

i indicates that pickXi

is represented by this subset of features. Then the criterion
value is defined as:

J ν =
1

n

n∑
i=1

K.i,

{
K = 1; if yi = ŷ(Xν

i )

K = 0; if yi 6= ŷ(Xν
i )

(4)

The strategy of searching the above criterion through all the
possible feature subsets can be done with different methods.
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We used two algorithms “forward” and “backward” to find
rankings of the features based on the RDA criterion (van
der Heijden et al., 2004). In the forward feature selection
method, the initial subset is empty. Features are added one
by one and the feature for which the criterionJ ν is increas-
ing most is added to the set. This proceeds until a pre-defined
number of features are added, or until the criterion value does
not improve anymore. In the backward method, first all at-
tributes are used; then, they are removed one by one keeping
the class separability as large as possible. Note that both ap-
proaches are not guaranteed to obtain the optimal solution.
For finding the optimal solution in principle all subsets have
to be tested. Because this is very time extensive in prac-
tice, these sub-optimal feature selection approaches are often
taken.

3 Classifications

The next step is to classify data, i.e. finding a decision bound-
ary between two classes. In this problem, we use a neu-
ral network and a support vector classifier as two outstand-
ing non-linear classifiers. The scheme of the total classifi-
cation algorithm is presented in Fig. 1. The application of
neural networks in geosciences is discussed by some authors
in recent years (Lees, 1996; van der Baan and Jutten, 2000;
Aminzadeh and de Groot, 2006). A typical neural network
classifier is the MLP, the mathematical idea of perceptron is
introduced by Rosenblatt, 1958. Tuning and parameteriza-
tion of a neural network is a hard task, as one must decide
about so many parameters, like the number of hidden lay-
ers, number of units in every layer, initial weights, method of
training, network architecture, momentum term, activation
function of neurons and so on. For some of them, some sug-
gestions are given in the literature, for example Hornik et al.
(1989) discussed the point that adding extra hidden layers to
a MLP is not very fruitful in the network performance. Jang
et al. (2005) fully discussed different single and hybrid strate-
gies for supervised training of adalines, multilayer percep-
tron, radial basis and modular networks. They also mention
about the problem of having no constraint on nodes (except
differentiability) of adaptive neural networks, their further at-
tempts to define such necessary constraints even makes the
network structure more complex. Still, tuning a neural net-
work is a crucial issue that most often cannot be done fully in
practice. Although the parameterization is very sensitive; but
regarding MLP’s smooth boundary, it is popular for different
classification purposes.

Another classifier which is used in this study is SVC. It is
aimed to maximize the geometrical margin between classes
for the situations that classes are linearly separable. The
complete mathematical formalization of SVC is discussed
by many authors (Corres and Varpnik, 1995; Varpnik, 1995;
Kecman et al., 2001). ConsideringN data samples (zi),
each with a labelyi∈{1, −1}, i=1, ..., N , assume that a lin-

ear classifierg(z)=wT z+b (b is a constant) is able to sepa-
rate the set of data samples perfectly meaning:

wT zi + b ≥ 1 whenyi = +1
wT zi + b ≤ −1 whenyi = −1

. (5)

It can be shown that the margin between the classes is in-
versely proportional to the norm ofw. Therefore, to maxi-
mize the margin we should minimizewT w. For non-linear
separable data (like what we deal in seismic object detec-
tion) a “kernel trick” will be applied to the maximum margin
hyper plane. This transforms data to a higher dimensional
space and finds linear hyper plane there, while in original
data space a non-linear margin will be constructed. (for more
detail, Varpnik, 1995). In this paper, we used the so-called
Gaussian (or radial basis) kernel. This transformation con-
tains a free parameterσ that controls the smoothness of the
transformation. For smaller values it gives very detailed and
sharp boundaries and for larger values smoother ones will be
obtained.

MLP and SVC both have some advantages and disadvan-
tages. The MLP is a flexible classifier that can efficiently
train on most data distributions. Because of its random
weight initialization, its output is not identical after each run.
Furthermore, when the number of training samples is limited,
the MLP tends to overfit. It adapts its weights so far that it
also fits the noise in the data perfectly. In practice, MLP net-
work should stop in a particular training time to avoid biasing
the result and loosing the generality. This implies that MLP
classification error which is very near to zero on training data
does not give sense while applying on test data. On the other
hand, the SVC is a deterministic procedure and will always
obtain the same solution when the training samples are not
changed. It appears that by maximizing the margin between
the two classes, the SVC overfits much less than the MLP. A
drawback of the SVC is that it can basically only predict the
output label, only +1 or−1. To obtain a confidence of the
classification output, it is possible to fit a logistic function
to the (linear) output of the SVC (Platt et al., 1999). In the
experiments shown in this paper it appeared that the output
probabilities are still relatively crisp, i.e. the SVC outputs are
rarely around 0.5.

In order to use the power of both MLP and SVC, the
idea of combining classifiers is helpful to complete classi-
fication task. Kuncheva (2004) mentioned combining idea
as a natural step when a critical mass of knowledge from a
single classifier model has been accumulated, but the final
performance.1 is not satisfactory yet. To exploit the value
of this approach in seismic object detection, we used mini-
mum, maximum and mean logical rules for combing the re-
sults of MLP and SVC. Minimum criteria select a class with

1Performance here is referred to ability to interpret the results
in true physical domain (inline, crossline and time slice) as well as
average output error.
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Select relevant seismic attributes 

Pick chimney and non chimney locations on a seismic section 

Forward search (RDA criteria) Backward search (RDA criteria) 

Find optimal solution based on average combined error curve 

Combining SVC and MLP  

  Chimney posterior probability section 

Training MLP  Training SVC  Training MLP  Training SVC  

Combining SVC and MLP  

Fig. 1. The scheme of proposed classification algorithm.

Table 1. The output rank for seismic attributes with forward and backward search algorithms.

Seismic attributes (feature) Forward Backward
rank rank

Reference time 7 5

Seismic 5 8

Energy (time window: [−40, 40]) 12 4

Similarity (time window: [−120,−40], spatial trace positions: (−1, 2)×(1,−2)) 3 9

Similarity (time window: [−40, 40], spatial trace positions: (−1, 2)×(1, −2)) 1 1

Similarity (time window: [40, 120], spatial trace positions: (−1, 2)×(1, −2)) 2 15

Similarity (trace window: [−120,−40], spatial trace positions: (1, 0)×(0, 0)) 13 16

Similarity (trace window: [−40, 40], spatial trace positions: (1, 0)×(0, 0)) 15 3

Similarity (trace window: [40, 120], spatial trace positions: (1, 0)×(0, 0)) 10 2

Polar dip 11 12

Curvedness 17 19

Curvedness (time shift:−80 (ms)) 19 17

Curvedness (time shift: 80 (ms)) 18 18

Seismic (low pass: 40 Hz) 8 10

Wavelet spectral decomposition (center frequency: 35 Hz) 6 14

Wavelet spectral decomposition (center frequency: 60 Hz) 4 7

Polar dip variance (time window: [−40, 40]) 14 11

Event asymmetry 16 13

Event zero crossing (negative-positive) 9 6
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Fig. 2. A section from in-line 133 of F3 seismic data. Red picks are “chimney” and blue picks 
are “non-chimney” locations.  

 

Fig. 2. A section from in-line 133 of F3 seismic data. Red picks are
“chimney” and blue picks are “non-chimney” locations.

 

Fig. 3. Spatial and temporal distribution of pick locations in F3
seismic cube.

that gives the minimum output of the input classifiers, simi-
larly two latter ones give maximum and mean output.

4 Experimental results

In this study, we used the seismic dataset from the F3 block
in the Dutch sector of the North Sea. The presence of gas
seepage is discussed in direct measurements (e.g. headspace
gas analysis) of this area (Schroot, 2005). In the seismic data,
there are evidences of wave scattering and loss of continuity.
Meanwhile, it is not feasible to fully describe the shape of a
chimney just on the seismic data or on a single relevant at-

 

Fig. 4. Learning curve for different structures of MLP (top) and
SVC (bottom) after 25 repetitions. There are two dominant linear
trends in almost every diagram. This indicates having at least 150
objects for MLP and 75 for SVC are essential.

tribute. Figure 2 shows some locations in the seismic data la-
beled as chimneys (red) or as non chimneys (blue). In Fig. 3,
the position of these picked locations in the original seismic
cube is displayed and marked. We introduced 950 represen-
tative pick locations, with equal number of objects in each
chimney and non-chimney class. In order to evaluate the gen-
eralization of trained classifiers in a proper way it is needed
to have such a picking strategy. This shows training and eval-
uating classifiers on the same seismic data may cause a posi-
tive bias in the results even if the picks themselves are differ-
ent. Through our experiment, using one spatial location for
training and the other one for testing gives 2% higher average
classification error with respect to the situation in which data
from two locations are mixed with each other in the training
and testing sets. We used the case in which picks from two
different geometrical locations are mixed with each other and
formed training and testing sets.

The results of the RDA criterion based on the forward and
backward search algorithms for seismic attribute selection is
shown in Table 1. The results are obtained after 50 cross val-
idation tests within the training set which is a random subset
(70%) of spatially mixed pick locations. In the other word,
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Fig. 5. Classification error based on forward search strategies for
four MLP (top) and six SVC (bottom) structures versus number of
active ranked features.

the routine is repeated 50 times within 670 chosen objects
with random selection. As both search algorithms are sub-
optimal (a complete exhaustive search of all possible subsets
of the seismic attributes is not practically feasible), the ranks
obtained from backward and forward applications are not the
same. In order to find a “best”, but still suboptimal subset
from the list, we will enter the attributes based on their ranks
as the features for the MLP and the SVC.

The MLP structure used in this study is a feed forward ar-
chitecture using the back propagation learning rule and one
hidden layer with 5, 10, 15 and 20 elements. The target val-
ues for training are set to 0.1 and 0.9 to avoid over training. In
the training phase of the back propagation procedure weight
decay and the momentum rule are used for regularization. In
our implementation of the SVC, the optimization of the ra-
dial basis kernel is done with the golden search algorithm and
the parabolic interpolation for just on one feature space size
(Brent, 1973). After determining the optimum sigma for the
kernel width, 6 near sigma values are also used repetitively to
evaluate the SVC on all possible feature space size. It is nec-
essary to scale each input feature with respect to its variance
in training and testing set for both MLP and SVC. Finally,
a sigmoid function is applied on the SVC output optimizing

 

Fig. 6. Classification error based on backward search strategies for
four MLP (top) and six SVC (bottom) structures versus number of
active ranked features.

the likelihood of the posterior probabilities over the training
set for achieving soft posterior probabilities.

Prior to building a final classifier, studying learning curves
is a useful tool for judging the minimum number of required
pick locations (training objects in the pattern recognition ter-
minology). Figure 4 shows how increasing the number of
training objects decreases the classification error of the MLP
and the SVC (so called learning curves). Regarding two
dominant apparent slopes, a promising minimum number of
training objects is 150 pick locations for MLP and 75 for
SVC.

Figures 5 and 6 show the average MLP and SVC classifi-
cation errors versus ranked feature sizes based on the forward
and backward selection procedures, respectively. These are
computed over 5 repetitions of classification procedure with
different random training sets. The idea for this repetition
is to decrease noise in the classification error. The average
classification errors of combining different structures of the
MLP and the SVC are shown in Fig. 7. The role of feature
space dimensionality is more evident here with respect to the
single classifier case, so the 13 ranked features found by the
forward algorithm are chosen as the optimum set of this ob-
ject detection experiment.
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Fig. 7. Minimum averaged classification error for combined rules
(minimum, maximum and mean) versus number of active ranked
features for forward and backward methods. The figure shows
backward ranking gives better performance rather than forward
(i.e. lower error).

Figure 8 shows the posterior probabilities of the chimney
class of the mentioned MLP and SVC structures. It is ob-
vious that the output of the MLP is softer in the course of
its variance inside the possible areas of “chimney” and “non
chimney”, whereas the result of the SVC is more likely to
distinguish between areas with the same characteristics. The
extra softness of the MLP makes tackling the near surface
wave scattering ambiguity quite impossible, while the seem-
ingly higher resolution of the SVC image helps to decide bet-
ter in this part. As reported by Schroot (2005), this area is
formed as a result of shallow gas packets. In the leaking re-
flector between time coordinates 1160–1360 (ms) with low
continuity, the SVC gives slightly lower probability of chim-
ney (yellow color) while the MLP reported it as high proba-
ble area. The result of the SVC is crisp inside the interested
area of the chimney class (red color), which is softer in MLP
one.

5 Discussion

The algorithm finally distinguishes seismic attributes with
rank 14–19 in Table 1 based on the backward method to
be excluded from the classifiers. This yields a better per-
formance in a less complicated feature space. As stated ear-
lier, performance means interpretability in physical domain
as well as the average classification error. The corresponding
average error of the combined classifier is 11.5%, which is
acceptable regarding its corresponding MLP and SVC com-
ponents. The average calculated error (Figs. 5 and 6) for the
MLP with 20 elements is 11.1% and for SVC with the op-
timized kernel is 13.5% classification error on the final test
set. As we mentioned above a random subset with the size
of 70% of whole objects is devoted for the training and an
independent test set with remnant 30% is used for testing the
results.

 

Fig. 8. Posterior probability of “chimney” class from MLP (top)
and SVC (bottom). MLP has soft output with high chimney prob-
ability on leaking reflector (dark red), while the result of SVC is
different for observed chimneys (red), high amplitudes (light green)
and leaking reflector (yellow).

The second and most important parameter for evaluating
the performance is the meaning of posterior probabilities in
physical domain (confidences) and their consistency with the
direct measurement experiments and other petroleum system
intergradient’s (e.g. fault cube, porosity, well logs).The confi-
dences of the chimney class for the combined SVC and MLP
classifiers by the above method are shown in Fig. 9. The
minimum combining rule is a good choice, because it pre-
serves the soft ability of a neural network in an appropriate
manner. For this combiner, the extra softness of the blue
area (“no chimney”) is decreased while the softness of the
red area (“chimney”) is increased in comparison with the re-
sults of the MLP and the SVC. By the minimum combiner
confidences, MLP output dominates inside the red area and
the SVC mainly elsewhere. As a result, the minimum rule
can highly constrain the softness of the MLP to a meaningful
area. Mean and maximum combiner outputs are less useful
as they have some disadvantages in proper imaging of the
chimneys. Figure 10 compares the results of the MLP and
the minimum combiner from a part of the seismic section,
apparently in the case of resolution the minimum combiner
shows better results in comparison with the MLP. The low
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Fig. 9. Posterior probability of “chimney” class for combining MLP
and SVC with minimum (top), maximum (middle) and mean (bot-
tom) rules.

coherent reflector between time coordinates 1160–1360 (ms)
is taken out from the high probable area for chimney in the
minimum combiner result, while the same area has a high
chimney confidence in the MLP section.

6 Conclusions

Among the meaningful seismic attributes proposed by a seis-
mic interpreter for the purpose of seismic object detection
(chimney, fault, salt and . . . ), the user implicitly favors fea-
ture ranking to the classification task with “object” and “non-
object” picks. On the other hand, the classification with two
potential non-linear methods (MLP and SVC) provides two
different results consistent with their strategies: the MLP can
handle very well overlapping class domains while the SVC
searches for a “gap” between the classes. Combining is a hy-

 

Fig. 10. Zoom section of seismic section (top), MLP section (mid-
dle) and minimum combiner section (bottom). In the bottom image,
the leaky reflector (1160–1360 ms) is taken out from the most prob-
able area (dark red) given by MLP. Resolution of combiner chimney
section is more consistent with the original seismic section rather
than soft MLP result.

brid tool for finding the lowest average error for an optimized
feature space dimensionality and also using different strate-
gies. It is concluded that a realistic image which is based
on the softness of the MLP and the higher resolution of the
SVC is obtained. The system is valuable especially when the
interpreter does not have any insight for choosing the best at-
tribute set for a specific seismic object detection problem. It
is just needed to pick the suspicious locations on seismic data
or one of the attribute sections, the algorithm then can sug-
gest the most optimum attributes. It also guarantees to use
both intrinsic property of MLP and SVC in an appropriate
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way. We plan to analyze other seismic objects using the pro-
posed algorithm in future studies.
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