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On Selecting Middle-Length Feature Lines for
Dissimilarity-based Classification

Mauricio Orozco-Alzate, Robert P. W. Duin, and$ar Gerran Castellanos-Domguez

Abstract—Raw or preprocessed measurements, such as sig-larities —the so-called dissimilarity representations €pR
nals and images, must be properly represented before using was recently proposed [2], [3]. Such an approach basically
computer methods for learning or classification. Feature-based consists in using the dissimilarities to define a space and
representations are traditionally used. An alternative is to build - oo . " . !
a dissimilarity representation; that is, to describe the objects in afterwards, cpnstructmg clas§|f|ers directly on it; fostance,
terms of measures of pairwise comparisons, which are referred Normal density based classifiers. One of the advantageous
to a set of representative objects called prototypes. Given a properties of the DRs is the possibility to exploit larger
dissimilarity representation computed from a very small set of training sets, increasing the accuracy while the compjexit
prototypes, an option to overcome representational limitations is remains the same. A different approach to overcome the
the use of feature lines resulting from the the linear combination ." . "~ . . .
of pairs of prototypes. The choice of a proper subset of feature limitations associated to thé-NN rule is Fh_e also recent
lines is an important issue, not just to obtain a good description development of the nearest feature classifiers [4]-[6].hSuc
but also to reduce the dimensionality. In this paper, we consider classifiers are geometric extensions of théN rule. The
the selection of the middle-length feature lines, comparing the nearest feature classifiers, in their basic setup, encrthas
results to those obtained when the longest lines are selected. Anearest feature line (NFL) and the nearest feature plan@NF

number of experiments has been conducted on various artificial |assifi hich ai ¢ iching th tati o
and real-world data sets. In general, we find out that the middle- C'aSSIIErS, which aim at enriching the representa ionugp

length feature lines are more appropriate to represent moderaty ~ the interpolation and extrapolation between pairs andesip

curved subspaces. of feature points.
Key Words—Classification, dissimilarity representation, feature ~ In a previous study [7], we propose to combine both
line, pattern recognition, selection. strategies, namely DRs and NFL, in order to take advantage
of their individual benefits. The combined approach leads to
I. INTRODUCTION the so-called generalized dissimilarity representat{@BRs)

by feature lines, which in brief consists in using featuree$
OW to learn from sensor measurements of a few ex:

. . : . S prototypes instead of feature points and then to build a
amples of objects, e.g. signals or images belonging o . .
! o : classifier on that representation. Since the number of featu
a number of classes, is the main interest in the study 0

automatic pattern recognition. A crucial issue in this ilikce lines grows combinatorially, a strong regularization fbet

) - ) . . classifiers must be used in order to counteract the effect of
is to derive an appropiate mathematical representation fhe the peaking phenomenon. In this paper. we study an alteenati
measurements. Two different but related approaches for op)- P gp ) Papet, y

taining such a representation can be considered: theitraalit procedure to deal with the dimensionality problem assediat

way based on numerical features for each particular objett afo the feature lines. We propose to rank the feature lines
y P according to their length and then, to select those having

the alternative one of representing objects in terms ofrthel . . . . .
dissimilarities to a set of prototypes. In the first approac iddle lengths; that is, extracting a subset of featuresline
) laced in the middle of the ranking. In comparison with

objects are represented as points in a feature vector s'pacef . :
. : h{a selection of largest and/or shortest feature lines as we
the second one, each dimension of the vectors corresponds 10

A ! o . explore previously, the middle-length ones seem to be more
a dissimilarity measure resulting from a pairwise comaris

The nearest neighbor ruld-(N) [1] is the classification suitable to ggt a piecewise dgscnpuon of curved subspa_lces
) . . e Our observations and discussions are supported by a séries o
procedure typically applied to dissimilarities. In spité its . . )
L : . U .. experiments with elongated or correlated data sets, whieh a
simplicity and good asymptotic behavior, the applicapili

restricted under representational limitations, presericeise the_ type of pro_blems naturally benefited by the generatipati
. . utsmg feature lines.
and demanding specifications such as storage and compufa-

tional effort. An alternative approach to learn from disisim
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A. The 1-NN and NFL Rules B. Dissimilarity representations

Before defining the 1-NN and NFL rules, consider the A dissimilarity representation of an object is a set of
following brief comment on notation. The usual way to denotéissimilarities betweem and the objects of a representation set
the set of class labels 8 = {w,...,w.}. However, for the R, which is composed by prototypes:R = {p1,pa,...,pn}
sake of simplicity, we denote the membership or associatif#. Under the most general conditions, such dissimilesiti
to one of theC classes by using the letter as a variable may be derived from the objects directly, their measurement
running from1 to C. In addition, when a particular value ef Or some intermediate representation; for instance, from an
is used as a subscript, it is written within parenthesesingak initial feature representation. As a result, the set afissim-
into account such a notation, we defihed\N as a rule that ilarities from z to the prototypes constitutes the dissimilarity
classifies an objeat by assigning it the class labéhssociated representation of. It can be written as a vectdd(z, R) =
to the nearest training object. In a feature space reprasemt [d(z,p1), d(z,p2), ..., d(x,p,)]. For a training setl’ of N
r is represented as a feature vectorConsidering a training objects, it extends to atv x n dissimilarity matrix D(7', R)
setT = {x§,1 < ¢ < C,1 <i<n.}, whereC is the number [2]. Moreover, the N x N matrix D(T,T) is a complete
of classes ana,. the number of objects per class, the rule cai¢presentation. Although usually is a subset of” (R C T),

then be written as follows: they might be disjunct. Assuming. prototypes per class, the
) cardinality of R is n = >, r...
d(@, )= _ _min_ _ d(z,z), (1) A dissimilarity representatioiD(7’, R) can be considered
T also as a data-depending mappibg-, R) : X x X — IR"
where d(z, z§) = [z — x{|| is usually the (weighted) Eu- to the so-calleddissimilarity spacewhich is defined byR.

clidean or the city block norm. Several variations have be@h such a space, each dimensi@n-,p;) corresponds to a
proposed to enhance the 1-NN rule, e.g. the editing aggsimilarity to a particular prototype. GiveR(T', R), a test
condensing rules (see [8] for a comprehensive review and cogat .S of new incoming objects is provided in terms of their
parison of these techniques) and the nearest featurefessi dissimilarities related taz, i.e. as a matrixD(S, R). In this
[4], [5]. From these last variations, the NFL classifiers hagpproach, the 1-NN rule in the original representation istsis
received a considerable attention in the pattern recagnitiin finding the minimum in each row ab (S, R) and assigning
field, showing its good performance in many applicationg ; the class associated to the column where the minimum
such as face recognition, audio retrieval, image clastifica value is found. Notice that the 1-NN rule is not performed
speaker identification and object recognition [9]. In tHisdy, in the dissimilarity space. It is just a more general stat@me
we particularly focus on that classfier, as an intermediaé t than that given in (1). The issue of building classifiers ia th
to generalize dissimilarity representations. dissimilarity space, taking advantage of the whole infdiora
The NFL classifier [4], is an extension of theNN method. available atT’, is discussed below.
It generalizes each pair of prototype feature points betang
to the same clasgzy, ¢} by a linear functionZ

. _ ij» Whichis ¢ cjassifiers in dissimilarity spaces
called thefeature line Such a line covers the subspace spanned .. . .~ | I -
Dissimilarities, by definition, should be small for similar

gllgstg?y p;gu?r;?';ti?; gr‘;teftfég onggé{swé)b;?nt;gi;g objects and large for different ones. In consequence, they
Fig. 1). This projection can be computed as prov@e dlgcrlmlnqtlvg !nfqrmatlon and aIIow.for buﬂdmg
classifiers in the dissimilarity space. Any classifier defiire
5;% =x5+ T(m}? —x5), (2) Vvector spaces can be straightforwardly used in the disaiityil
space. In particular, the use of normal density based @lssi
wherer = (z —xf) - (2§ — xf) /|| — x{||> € R; 7 is called jn dissimilarity spaces is suggested because the summation

the position parameter based distances are often approximately distributed dirmpr
- to a clipped normal distribution [3]. Besides, a linear slfisr
* in a dissimilarity space is equivalent to a non-linear onth
1 ) underlying (original) space. In other words, a linear dféess
‘\d(m’L” L5 in the dissimilarity space is expected to perform as good
1 SRRRER S as a non-linear one in the original space, while having a
- ./*ic//m.a computational complexity comparable to that of fhBIN rule
"""" @ [8].
For a two-class problem, a linear normal density based
Fig. 1. Computation of the distance to a feature lirfg. classifier (BayesNL) based aR is defined by
T
Afterwards, the decision is done by assigningetthe class f(D(z,R)) = |D(x,R) — 1 (m(l) 4 m(z))
label ¢ associated to the nearest feature line; that means: 2 P (4)
ey _ . c xC~ (myy) — mya) + log =2,
d@, L) = __min _ d(@L5) 3) (M) —m() P
i#j

where C' is the sample covariance matrixg;) and m o)
whered(z, Lf;) = ||z — ;|| are the mean vectors antt,), Py are the class prior
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probabilities. When the covariance matrices become singulapplied in the generalized dissimilarity space is the same a
they must be regularized by using, for example, the follgwirthat defined in Sec. 1I-C. It is just needed to repldgedy
strategy [10]:C;,, = (1 —X) C + Xdiag(C). The follow- Ry in (4) where appropiate. Finally, notice th&(T, Ry)

ing suboptimal value is suggested for practical applicestio may be high dimensional due to the combinatorial increase
A <0.01 [11]. of the number of feature lines. Such a potential problem
can be overcome by strongly regularizing the classifier or
by selecting, according to some criterion, a subset of featu
o ] ] ] lines. Here we use both strategies to control the peaking
~ Generalizing D(T, R) consists in creating the generalphenomenon: particularly, we use a length-based seletttiin
ized dissimilarity representatioh (T’ R..), where the sub- \ye nronosed in [7], but now selecting the middle-lengthdine
script L. denotes thatR; is composed by feature linesingiead of the longest ones as we did in our previous work. A

instead of points. Analogously to the description in Seggailed explanation of this selection criterion is givarSec.
II-B, for a generalized dissimilarity space, the considerq),_g.

mapping isD(z,R;) : X x X, — IR"*. Therefore, the
generalized dissimilarity representatioof = is the vector IIl. EXPERIMENTS AND RESULTS

D(z,R;) = [d(x, L1),d(x, Ls),...,d(z, L,, )], whereny = . . o
Z(g TL()T _[ 1()96/2 1), d(w, L) (@, Ln, )] e In all our experiments, we derive the initial dissimilaggi
e ' irom the corresponding feature representations, paaiityulis-

D. Generalization Procedure

To be consistent with the general scope of dissimilari Euclid dist " order t t th i mtrai
representations, we should not assume that an accompan'i uclidéan distances in order to meet the metric cormstral

feature representation is always available. Thereby, weldh . o
P y y based on 25 repetitions. A strong regularization\of 0.01

derive D(-, Ry,) using just the information available &k(-, R) .
instead of applying (2) and (3). Such a problem can Bgéas used for all cases. We do not present the resulting sthnda

addressed geometrically as follows: Consider the triamgle . eviations to keep th_e _plots clear; however(; we fouond that,
Fig. 2, deriving the distances to feature lines consists A general, those deviations vary between 1% and 6% of the

computing the heighth of such a scalene triangle. Sinceaveraged errors. Before discussing the results in morel,deta

any metric triplet {di;, ds, d;i} constitutes a Euclidean the da_lta sets used for the experiments and the length-based

triangle, we should either restrict our experiments to -metrselectlon method are presented.

distance matrices or correct them to be Euclidean. Let define

s = (d;x +di; +dir,) /2. Then, the area of the triangle is giverfr- Data Sets

by: The Winedata come from the Machine Learning Repositary
A= \/5(8 —dji)(s — dij) (s — dir); (5) [12] and describe three types of wine by 13 features.

The Laryngealdataset comes from the Bulgarian Academy
but it is also known that area, consideridg as base, is: of Sciences and is available at [13]. The set was originally
di;h used for a computer decision support system, in order to aid
N (6) diagnosis of laryngeal pathology and especially in detecti

o . its early stages. Normal and pathological voices are dsstri
We can solye (5,) and (6) foh, which |s'the d!stgnge .to by 16 parameters in the time, spectral and cepstral domains.
the featurelllne, |.ed(a:k,L.§j). The gener.ahzed dissimilarity We use a classical multidimensional scaling (MDS) for
representation for a particular object is constructed by g alizing the structures in the feature space of btheand

arranging then, distances in a vectoD(zy, Rr). FOr @ | aryngealdata sets (see Fig. 3 and alsds_cs function in
training setT, we have aN x njy generalized dissimilarity [10]) .

matrix D(T, Rr). In general,D(T, Ry,) is not square and has

tioned above. The reported results shown in Figs. 5-8 are

A=

two zeros elements per column. The information on a$%et . R
of new test objects is provided in terms of their distances t . R Y A

* Bk sy T T
R;, and arranged as a matriX(S, Ry,). ﬁ;i@;ﬁ *j .

* ¥ & o T o

*x *** By ¥ +ox %

* * * F *; *

v+ *
(a) Winedata set (b) Laryngealdata set

Fig. 3. Scatter plots using a classical multidimensionalisgdbr the Wine

Fig. 2. Scalene triangle for computing the distance to a fedtoe in terms andLaryngealdata sets.

of dissimilarities.
In order to simulate a problem with intrinsic correlations,

There is no practical difference between building a lineave have created the rotated machine-printed digits shown in
normal density based classifier in the original dissimari Fig. 4(a). In digit (machine-printed or handwritten) rendpn
space or in the generalized one. The BayesNL definition whproblems, the two-class subproblem for digits “3” and “8”
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is usually considered for testing the recognition abilifyao feature lines required to reach a similar performance. Now,
particular algorithm. This two-class problem is more diffic we explore a slightly different alternative. Our hypotlses
than the other two-class subproblems because the strokestliat the middle-length feature lines might be better to desc
the digits “3” and “8” are very similar. Considering that, weslightly non-linear subspaces, i.e. curved manifolds. \Be,
have taken ond6 x 16 example of each digit, namely “3" start the selection in the middle of the ranking. The first
included feature line is that exactly placed in in the middle
Even though this is a very simple problem which indeed canf the sorted list. Thereafter, taking the middle of the etrt
list as reference, feature lines placed at its left and raighes
are alternately included.

and “8”, rotating them from—90° to 90° with steps of3°.

be corrected by using invariants [14], it is useful to ilhase
the piecewise description performed by the feature lines.
The rotated handwritten digitsare a subset of th®igits

data, which come from the Austrian Research Institute fgf Experimental Results

Artificial Intelligence [15]. Digits were downsampled 16 x

16 pixels with Mitchell filter with parameter blur set to 2.5.
Similarly to the machine-printed digits, we selected a stib
of handwritten digits including various examples of “3” an

“8”, which were rotated from-60° to 60° (10° per step) as
shown in Fig. 4(c).

4
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R R A R AR )
PP IPWGE
oI Rrug g
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Bdoaglcvag
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"

o

% S
++13;‘w #F ++

R - T TR
gl we g

&
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(a) Rotated machine-printed digitgb) Scatter plot using classical MDS

(c) Rotated handwritten digits (d) Scatter plot using classical MDS

Fig. 4. Digits ‘3’ and ‘8’ rotated (a)-(b) betweer90° and90° with steps
of 3° and (c)-(b) between-60° and60° with steps of10°.

B. Length-based selection of feature lines

feature lines. In brief, it consists in ranking all the featlines

‘:'?f feature lines included iR;. The maximum number of

Classification errors obtained for both longest and middle-
length lines are shown in Figs. 5-8, as functions of the numbe

prototypes considered is = 15. As a result, the total number
of feature lines is315 for the Wine data set (three-class
problem) and210 for the other two-class data sets. The best
results obtained by th&e-NN rule and the BayesNL classifiers
in the dissimilarity space are also shown in the figures. For
each repetition, a new representationBés randomly chosen.
Consequently, these best results, that we used as a rederenc

do not necessarily correspond to the cése- T

I o o o
> wn ) ~

o
w

Average classification error over 25 runs

Fig. 5.

Wine data set

—— NFL, middle
x--- NFL, longest

- - -1-NN
—-—-BayesNL in DS

—+— BayesNL in GDS, middle

* -~ BayesNL in GDS, longest

50 100 150 200 250 300
Number of prototype lines

350

Wine data set. Average classification errors in the generalized

dissimilarity space (GDS) of the BayesNL and 1-NN classifiecngest and
middle-length feature lines are incrementally included.oEsrof the 1-NN
rule and the BayesNL in the dissimilarity space (DS) are alsttqul as a

reference.

The first striking observation is that the BayesNL classifier
In [7], we presented a length-based selection procedure forGDS outperforms both the 1-NN rule and the BayesNL
in DS for the Wine and Laryngealdata sets. In contrast, for
according to their length (i.el;; in Fig. 2) and, afterwards, the digit recognition problems, the NFL rule outperforme th
using such a criterion to decide if a feature line is includedissimilarity-based classifiers as well as the 1-NN rulewHo

in Ry or not. Consider first the inclusion of the shortestver the fact we are interested in here, the benefit of usimg th
feature lines, which we call the ascending selection methadiddle-length feature lines, is consistently observedliitha

In this case, the initial representation ¢&t for the ascending figures. Notice that the solid curves in the figures are mostly
method is the shortest feature line. Then, the second shorteelow the dotted ones. An interesting observation forifiee
feature line is added tdz., followed by the third shortest data set is the remarkable improvement achieved when using
one and so on. The reverse case corresponds to the seledgature lines. Since the features were not scaled beforeeto t
in descending order. At the end, when all thg feature unit variance, we can attribute such an improvement to the
lines are included, the ascending and descending lengiteda capacity of feature lines for dealing better with non-sdale
sets are flipped versions of each other. Our conclusion in [@ta. In Fig. 6, it is noteworthy that the middle-length teat
was that just a few long feature lines are needed to describes are beneficial for the NFL rule while the longest lines
correlated data sets, in comparison with the number of shprovide a better description for the BayesNL classifier. The
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Laryngeal data set

o
o
a1
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—#— BayesNL in GDS, middle []
x -~ NFL, longest
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- - —1-NN

o
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x —-—-BayesNL in DS

o I
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w a S o
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Average classification error over 25 runs

o
N

100 150 200
Number of prototype lines
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Fig. 6. Laryngealdata set. Average classification errors in the generaliz
dissimilarity space (GDS) of the BayesNL and 1-NN classifiecngest and
middle-length feature lines are incrementally included.oEsrof the 1-NN
rule and the BayesNL in the dissimilarity space (DS) are alsttqd as a
reference.

Rotated machine-printed digits
0.5 T T

T T
—— NFL, middle

—*— BayesNL in GDS, middle |1
X x-- NFL, longest
* - BayesNL in GDS, longest |
* — — —1-NN

0454 *

0.4

0.35(]

—-—-BayesNL in DS

Average classification error over 25 runs

. . .
100 150 200 250

Rotated handwritten digits
0.5 T T

—— NFL, middle
—*— BayesNL in GDS, middle |{
x-- NFL, longest
* -- BayesNL in GDS, longest| |
— — —1-NN
—-—-BayesNL in DS

0.45

0.4

0.35

Average classification error over 25 runs

0.05 y

100 150 200
Number of prototype lines

250

%glg. 8. Rotated handwritten digitsAverage classification errors in the

generalized dissimilarity space (GDS) of the BayesNL andNLdWssifiers.
Longest and middle-length feature lines are incrementaltyudted. Errors
of the 1-NN rule and the BayesNL in the dissimilarity space X2& also
plotted as a reference.

promising procedure is the recent proposal by Du and Chen
[9] to segment feature lines and remove those trespassing th
territory of other classes. We will use this selection pchoe

in a our future work on classification in rectified generalize
dissimilarity representations.
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Number of prototype lines

Fig. 7. Rotated machine-printed digité\erage classification errors in the
generalized dissimilarity space (GDS) of the BayesNL andNLdWassifiers.

Longest and middle-length feature lines are incrementalyuded. Errors  [1]
of the 1-NN rule and the BayesNL in the dissimilarity space X2& also
plotted as a reference. [2]

performances obtained by NFL in Figs. 7-8 and the structuréss)]
presented in Figs. 4(b) and 4(d) lead us to deduce that a fgw
middle-length feature lines may describe curved subspaces
better than a small number of the longest feature lines. [5]

IV. CONCLUSION 6]

In this study we have explored the use of middle-length
feature lines for generalized dissimilarity representai com-  [7]
pared to the results obtained by using the longest feature
lines. Our experiments showed that the middle-length featu
lines may provide a more accurate representation for curvesl
subspaces than the description provided by the longed. line
Such an observation was made not just for the dissimilarity-
based classifiers but also for the nearest feature line Thie. [9]
middle-length feature lines may provide a better piecewiileo]
description of the structure of the data because they age les
likely to cross the territory of the other class than the kestg
feature lines. Besides, we can deduce that the middleHengt
feature lines suffer less of extrapolation and interpotati
innacuracies, likely providing right directions. An apgatly
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