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On Selecting Middle-Length Feature Lines for
Dissimilarity-based Classification

Mauricio Orozco-Alzate, Robert P. W. Duin, and César Gerḿan Castellanos-Doḿınguez

Abstract—Raw or preprocessed measurements, such as sig-
nals and images, must be properly represented before using
computer methods for learning or classification. Feature-based
representations are traditionally used. An alternative is to build
a dissimilarity representation; that is, to describe the objects in
terms of measures of pairwise comparisons, which are referred
to a set of representative objects called prototypes. Given a
dissimilarity representation computed from a very small set of
prototypes, an option to overcome representational limitations is
the use of feature lines resulting from the the linear combination
of pairs of prototypes. The choice of a proper subset of feature
lines is an important issue, not just to obtain a good description
but also to reduce the dimensionality. In this paper, we consider
the selection of the middle-length feature lines, comparing the
results to those obtained when the longest lines are selected. A
number of experiments has been conducted on various artificial
and real-world data sets. In general, we find out that the middle-
length feature lines are more appropriate to represent moderately
curved subspaces.

Key Words—Classification, dissimilarity representation, feature
line, pattern recognition, selection.

I. I NTRODUCTION

H OW to learn from sensor measurements of a few ex-
amples of objects, e.g. signals or images belonging to

a number of classes, is the main interest in the study of
automatic pattern recognition. A crucial issue in this discipline
is to derive an appropiate mathematical representation from the
measurements. Two different but related approaches for ob-
taining such a representation can be considered: the traditional
way based on numerical features for each particular object and
the alternative one of representing objects in terms of their
dissimilarities to a set of prototypes. In the first approach,
objects are represented as points in a feature vector space;in
the second one, each dimension of the vectors corresponds to
a dissimilarity measure resulting from a pairwise comparison.

The nearest neighbor rule (1-NN) [1] is the classification
procedure typically applied to dissimilarities. In spite of its
simplicity and good asymptotic behavior, the applicability is
restricted under representational limitations, presenceof noise
and demanding specifications such as storage and computa-
tional effort. An alternative approach to learn from dissimi-
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larities —the so-called dissimilarity representations (DRs)—
was recently proposed [2], [3]. Such an approach basically
consists in using the dissimilarities to define a space and,
afterwards, constructing classifiers directly on it; for instance,
normal density based classifiers. One of the advantageous
properties of the DRs is the possibility to exploit larger
training sets, increasing the accuracy while the complexity
remains the same. A different approach to overcome the
limitations associated to the1-NN rule is the also recent
development of the nearest feature classifiers [4]–[6]. Such
classifiers are geometric extensions of the1-NN rule. The
nearest feature classifiers, in their basic setup, encompass the
nearest feature line (NFL) and the nearest feature plane (NFP)
classifiers, which aim at enriching the representation through
the interpolation and extrapolation between pairs and triples
of feature points.

In a previous study [7], we propose to combine both
strategies, namely DRs and NFL, in order to take advantage
of their individual benefits. The combined approach leads to
the so-called generalized dissimilarity representations(GDRs)
by feature lines, which in brief consists in using feature lines
as prototypes instead of feature points and then to build a
classifier on that representation. Since the number of feature
lines grows combinatorially, a strong regularization for the
classifiers must be used in order to counteract the effect of
the peaking phenomenon. In this paper, we study an alternative
procedure to deal with the dimensionality problem associated
to the feature lines. We propose to rank the feature lines
according to their length and then, to select those having
middle lengths; that is, extracting a subset of feature lines
placed in the middle of the ranking. In comparison with
the selection of largest and/or shortest feature lines as we
explore previously, the middle-length ones seem to be more
suitable to get a piecewise description of curved subspaces.
Our observations and discussions are supported by a series of
experiments with elongated or correlated data sets, which are
the type of problems naturally benefited by the generalization
using feature lines.

II. GENERALIZATION OF DISSIMILARITY

REPRESENTATIONSUSING FEATURE L INES

In this Section, we describe our procedure for generalizing
dissimilarity representations. Before explaining the algorithm
itself, the1-NN and NFL are reviewed as well as the alterna-
tive approach of learning from dissimilarity representations.
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A. The 1-NN and NFL Rules

Before defining the 1-NN and NFL rules, consider the
following brief comment on notation. The usual way to denote
the set of class labels isΩ = {ω1, . . . , ωc}. However, for the
sake of simplicity, we denote the membership or association
to one of theC classes by using the letterc, as a variable
running from1 to C. In addition, when a particular value ofc
is used as a subscript, it is written within parentheses. Taking
into account such a notation, we define1-NN as a rule that
classifies an objectx by assigning it the class labelĉ associated
to the nearest training object. In a feature space representation,
x is represented as a feature vectorx. Considering a training
setT = {xc

i , 1 ≤ c ≤ C, 1 ≤ i ≤ nc}, whereC is the number
of classes andnc the number of objects per class, the rule can
then be written as follows:

d(x,xĉ

î
) = min

1≤c≤C, 1≤i≤nc

d(x,xc
i ), (1)

where d(x,xc
i ) = ‖x − x

c
i‖ is usually the (weighted) Eu-

clidean or the city block norm. Several variations have been
proposed to enhance the 1-NN rule, e.g. the editing and
condensing rules (see [8] for a comprehensive review and com-
parison of these techniques) and the nearest feature classifiers
[4], [5]. From these last variations, the NFL classifiers has
received a considerable attention in the pattern recognition
field, showing its good performance in many applications
such as face recognition, audio retrieval, image classification,
speaker identification and object recognition [9]. In this study,
we particularly focus on that classfier, as an intermediate tool
to generalize dissimilarity representations.

The NFL classifier [4], is an extension of the1-NN method.
It generalizes each pair of prototype feature points belonging
to the same class:{xc

i , x
c
j} by a linear functionLc

ij , which is
called thefeature line. Such a line covers the subspace spanned
by the pair of points; that is,Lc

ij = sp(xc
i ,x

c
j). In order to

classify a queryx, it is projected ontoLc
ij as a point̃xc

ij (see
Fig. 1). This projection can be computed as

x̃
c
ij = x

c
i + τ(xc

j − x
c
i ), (2)

whereτ = (x−x
c
i ) · (x

c
j −x

c
i )/‖x

c
j −x

c
i‖

2 ∈ IR; τ is called
the position parameter.
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Fig. 1. Computation of the distance to a feature lineL
c
ij .

Afterwards, the decision is done by assigning tox the class
label ĉ associated to the nearest feature line; that means:

d(x, Lĉ

îĵ
) = min

1≤c≤C, 1≤i,j≤nc

i6=j

d(x, Lc
ij) (3)

whered(x, Lc
ij) = ‖x − x̃

c
ij‖.

B. Dissimilarity representations

A dissimilarity representation of an objectx is a set of
dissimilarities betweenx and the objects of a representation set
R, which is composed byn prototypes:R = {p1, p2, . . . , pn}
[3]. Under the most general conditions, such dissimilarities
may be derived from the objects directly, their measurements,
or some intermediate representation; for instance, from an
initial feature representation. As a result, the set ofn dissim-
ilarities from x to the prototypes constitutes the dissimilarity
representation ofx. It can be written as a vectorD(x,R) =
[d(x, p1), d(x, p2), . . . , d(x, pn)]. For a training setT of N
objects, it extends to anN × n dissimilarity matrixD(T,R)
[2]. Moreover, theN × N matrix D(T, T ) is a complete
representation. Although usuallyR is a subset ofT (R ⊆ T ),
they might be disjunct. Assumingrc prototypes per class, the
cardinality ofR is n =

∑C

c=1 rc.
A dissimilarity representationD(T,R) can be considered

also as a data-depending mappingD(·, R) : X × X → IRn

to the so-calleddissimilarity space, which is defined byR.
In such a space, each dimensionD(·, pi) corresponds to a
dissimilarity to a particular prototype. GivenD(T,R), a test
set S of new incoming objects is provided in terms of their
dissimilarities related toR, i.e. as a matrixD(S,R). In this
approach, the 1-NN rule in the original representation consists
in finding the minimum in each row ofD(S,R) and assigning
to x the class associated to the column where the minimum
value is found. Notice that the 1-NN rule is not performed
in the dissimilarity space. It is just a more general statement
than that given in (1). The issue of building classifiers in the
dissimilarity space, taking advantage of the whole information
available atT , is discussed below.

C. Classifiers in dissimilarity spaces

Dissimilarities, by definition, should be small for similar
objects and large for different ones. In consequence, they
provide discriminative information and allow for building
classifiers in the dissimilarity space. Any classifier defined in
vector spaces can be straightforwardly used in the dissimilarity
space. In particular, the use of normal density based classifiers
in dissimilarity spaces is suggested because the summation-
based distances are often approximately distributed according
to a clipped normal distribution [3]. Besides, a linear classifier
in a dissimilarity space is equivalent to a non-linear one inthe
underlying (original) space. In other words, a linear classifier
in the dissimilarity space is expected to perform as good
as a non-linear one in the original space, while having a
computational complexity comparable to that of the1-NN rule
[8].

For a two-class problem, a linear normal density based
classifier (BayesNL) based onR is defined by

f(D(x,R)) =

[

D(x,R) −
1

2

(

m(1) + m(2)

)

]T

×C
−1

(

m(1) − m(2)

)

+ log
P(1)

P(2)
,

(4)

where C is the sample covariance matrix,m(1) and m(2)

are the mean vectors andP(1), P(2) are the class prior
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probabilities. When the covariance matrices become singular,
they must be regularized by using, for example, the following
strategy [10]:Cλ

reg = (1 − λ) C + λdiag(C). The follow-
ing suboptimal value is suggested for practical applications:
λ ≤ 0.01 [11].

D. Generalization Procedure

Generalizing D(T,R) consists in creating the general-
ized dissimilarity representationDL(T,RL), where the sub-
script L denotes thatRL is composed by feature lines
instead of points. Analogously to the description in Sec.
II-B, for a generalized dissimilarity space, the considered
mapping isD(x,RL) : X × XL → IRnL . Therefore, the
generalized dissimilarity representationof x is the vector
D(x,RL) = [d(x,L1), d(x,L2), . . . , d(x,LnL

)], wherenL =
∑C

c=1 rc(rc − 1)/2.
To be consistent with the general scope of dissimilarity

representations, we should not assume that an accompanying
feature representation is always available. Thereby, we should
deriveD(·, RL) using just the information available atD(·, R)
instead of applying (2) and (3). Such a problem can be
addressed geometrically as follows: Consider the trianglein
Fig. 2, deriving the distances to feature lines consists in
computing the heighth of such a scalene triangle. Since
any metric triplet {dij , dik, djk} constitutes a Euclidean
triangle, we should either restrict our experiments to metric
distance matrices or correct them to be Euclidean. Let define
s = (djk +dij +dik)/2. Then, the area of the triangle is given
by:

A =
√

s(s − djk)(s − dij)(s − dik); (5)

but it is also known that area, consideringdij as base, is:

A =
dijh

2
(6)

We can solve (5) and (6) forh, which is the distance to
the feature line, i.e.d(xk, Lc

ij). The generalized dissimilarity
representation for a particular objectxk is constructed by
arranging thenL distances in a vectorD(xk, RL). For a
training setT , we have aN × nL generalized dissimilarity
matrix D(T,RL). In general,D(T,RL) is not square and has
two zeros elements per column. The information on a setS
of new test objects is provided in terms of their distances to
RL and arranged as a matrixD(S,RL).

dij

d ik

d
jk

Lc
ij

h

xc
i

xc
j

xk

Fig. 2. Scalene triangle for computing the distance to a feature line in terms
of dissimilarities.

There is no practical difference between building a linear
normal density based classifier in the original dissimilarity
space or in the generalized one. The BayesNL definition when

applied in the generalized dissimilarity space is the same as
that defined in Sec. II-C. It is just needed to replaceR by
RL in (4) where appropiate. Finally, notice thatD(T,RL)
may be high dimensional due to the combinatorial increase
of the number of feature lines. Such a potential problem
can be overcome by strongly regularizing the classifier or
by selecting, according to some criterion, a subset of feature
lines. Here we use both strategies to control the peaking
phenomenon; particularly, we use a length-based selectionthat
we proposed in [7], but now selecting the middle-length lines
instead of the longest ones as we did in our previous work. A
detailed explanation of this selection criterion is given in Sec.
III-B.

III. E XPERIMENTS AND RESULTS

In all our experiments, we derive the initial dissimilarities
from the corresponding feature representations, particularly us-
ing Euclidean distances in order to meet the metric constraint
mentioned above. The reported results shown in Figs. 5–8 are
based on 25 repetitions. A strong regularization ofλ = 0.01
was used for all cases. We do not present the resulting standard
deviations to keep the plots clear; however, we found that,
in general, those deviations vary between 1% and 6% of the
averaged errors. Before discussing the results in more detail,
the data sets used for the experiments and the length-based
selection method are presented.

A. Data Sets

TheWinedata come from the Machine Learning Repositary
[12] and describe three types of wine by 13 features.

The Laryngealdataset comes from the Bulgarian Academy
of Sciences and is available at [13]. The set was originally
used for a computer decision support system, in order to aid
diagnosis of laryngeal pathology and especially in detecting
its early stages. Normal and pathological voices are described
by 16 parameters in the time, spectral and cepstral domains.

We use a classical multidimensional scaling (MDS) for
visualizing the structures in the feature space of bothWineand
Laryngealdata sets (see Fig. 3 and alsomds_cs function in
[10]) .

(a) Winedata set (b) Laryngealdata set

Fig. 3. Scatter plots using a classical multidimensional scaling for theWine
andLaryngealdata sets.

In order to simulate a problem with intrinsic correlations,
we have created the rotated machine-printed digits shown in
Fig. 4(a). In digit (machine-printed or handwritten) recognition
problems, the two-class subproblem for digits “3” and “8”
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is usually considered for testing the recognition ability of a
particular algorithm. This two-class problem is more difficult
than the other two-class subproblems because the strokes for
the digits “3” and “8” are very similar. Considering that, we
have taken one16 × 16 example of each digit, namely “3”
and “8”, rotating them from−90◦ to 90◦ with steps of3◦.
Even though this is a very simple problem which indeed can
be corrected by using invariants [14], it is useful to illustrate
the piecewise description performed by the feature lines.

The rotated handwritten digitsare a subset of theDigits
data, which come from the Austrian Research Institute for
Artificial Intelligence [15]. Digits were downsampled to16×
16 pixels with Mitchell filter with parameter blur set to 2.5.
Similarly to the machine-printed digits, we selected a subset
of handwritten digits including various examples of “3” and
“8”, which were rotated from−60◦ to 60◦ (10◦ per step) as
shown in Fig. 4(c).

(a) Rotated machine-printed digits(b) Scatter plot using classical MDS

(c) Rotated handwritten digits (d) Scatter plot using classical MDS

Fig. 4. Digits ‘3’ and ‘8’ rotated (a)-(b) between−90
◦ and90

◦ with steps
of 3

◦ and (c)-(b) between−60
◦ and60

◦ with steps of10◦.

B. Length-based selection of feature lines

In [7], we presented a length-based selection procedure for
feature lines. In brief, it consists in ranking all the feature lines
according to their length (i.e.dij in Fig. 2) and, afterwards,
using such a criterion to decide if a feature line is included
in RL or not. Consider first the inclusion of the shortest
feature lines, which we call the ascending selection method.
In this case, the initial representation setRL for the ascending
method is the shortest feature line. Then, the second shortest
feature line is added toRL, followed by the third shortest
one and so on. The reverse case corresponds to the selection
in descending order. At the end, when all thenL feature
lines are included, the ascending and descending length-ranked
sets are flipped versions of each other. Our conclusion in [7]
was that just a few long feature lines are needed to describe
correlated data sets, in comparison with the number of short

feature lines required to reach a similar performance. Now,
we explore a slightly different alternative. Our hypothesis is
that the middle-length feature lines might be better to describe
slightly non-linear subspaces, i.e. curved manifolds. So,we
start the selection in the middle of the ranking. The first
included feature line is that exactly placed in in the middle
of the sorted list. Thereafter, taking the middle of the sorted
list as reference, feature lines placed at its left and rightsides
are alternately included.

C. Experimental Results

Classification errors obtained for both longest and middle-
length lines are shown in Figs. 5–8, as functions of the number
of feature lines included inRL. The maximum number of
prototypes considered isrc = 15. As a result, the total number
of feature lines is315 for the Wine data set (three-class
problem) and210 for the other two-class data sets. The best
results obtained by the1-NN rule and the BayesNL classifiers
in the dissimilarity space are also shown in the figures. For
each repetition, a new representation setR is randomly chosen.
Consequently, these best results, that we used as a reference,
do not necessarily correspond to the caseR = T .
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Fig. 5. Wine data set. Average classification errors in the generalized
dissimilarity space (GDS) of the BayesNL and 1-NN classifiers. Longest and
middle-length feature lines are incrementally included. Errors of the 1-NN
rule and the BayesNL in the dissimilarity space (DS) are also plotted as a
reference.

The first striking observation is that the BayesNL classifier
in GDS outperforms both the 1-NN rule and the BayesNL
in DS for theWine and Laryngealdata sets. In contrast, for
the digit recognition problems, the NFL rule outperforms the
dissimilarity-based classifiers as well as the 1-NN rule. How-
ever the fact we are interested in here, the benefit of using the
middle-length feature lines, is consistently observed in all the
figures. Notice that the solid curves in the figures are mostly
below the dotted ones. An interesting observation for theWine
data set is the remarkable improvement achieved when using
feature lines. Since the features were not scaled before to the
unit variance, we can attribute such an improvement to the
capacity of feature lines for dealing better with non-scaled
data. In Fig. 6, it is noteworthy that the middle-length feature
lines are beneficial for the NFL rule while the longest lines
provide a better description for the BayesNL classifier. The
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Fig. 6. Laryngealdata set. Average classification errors in the generalized
dissimilarity space (GDS) of the BayesNL and 1-NN classifiers. Longest and
middle-length feature lines are incrementally included. Errors of the 1-NN
rule and the BayesNL in the dissimilarity space (DS) are also plotted as a
reference.
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Fig. 7. Rotated machine-printed digits. Average classification errors in the
generalized dissimilarity space (GDS) of the BayesNL and 1-NN classifiers.
Longest and middle-length feature lines are incrementally included. Errors
of the 1-NN rule and the BayesNL in the dissimilarity space (DS) are also
plotted as a reference.

performances obtained by NFL in Figs. 7–8 and the structures
presented in Figs. 4(b) and 4(d) lead us to deduce that a few
middle-length feature lines may describe curved subspaces
better than a small number of the longest feature lines.

IV. CONCLUSION

In this study we have explored the use of middle-length
feature lines for generalized dissimilarity representations, com-
pared to the results obtained by using the longest feature
lines. Our experiments showed that the middle-length feature
lines may provide a more accurate representation for curved
subspaces than the description provided by the longest lines.
Such an observation was made not just for the dissimilarity-
based classifiers but also for the nearest feature line rule.The
middle-length feature lines may provide a better piecewise
description of the structure of the data because they are less
likely to cross the territory of the other class than the longest
feature lines. Besides, we can deduce that the middle-length
feature lines suffer less of extrapolation and interpolation
innacuracies, likely providing right directions. An apparently

0 50 100 150 200 250
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of prototype lines

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
er

ro
r 

ov
er

 2
5 

ru
ns

Rotated handwritten digits

 

 
NFL, middle
BayesNL in GDS, middle
NFL, longest
BayesNL in GDS, longest
1−NN
BayesNL in DS

Fig. 8. Rotated handwritten digits. Average classification errors in the
generalized dissimilarity space (GDS) of the BayesNL and 1-NN classifiers.
Longest and middle-length feature lines are incrementally included. Errors
of the 1-NN rule and the BayesNL in the dissimilarity space (DS) are also
plotted as a reference.

promising procedure is the recent proposal by Du and Chen
[9] to segment feature lines and remove those trespassing the
territory of other classes. We will use this selection procedure
in a our future work on classification in rectified generalized
dissimilarity representations.
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