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Limits on the Majority Vote Accuracy in Classifier Fusion

Abstract. We derive upper and lower limits on the majority vote accuracy with respect to
individual accuracy p, the number of classifiers in the pool (L), and the pairwise dependence
between classifiers, measured by Yule’s Q statistic. Independence between individual classi-
fiers is typically viewed as an asset in classifier fusion. We show that the majority vote with
dependent classifiers can potentially offer a dramatic improvement both over independent clas-
sifiers and over the individual accuracy p. A functional relationship between the limits and the
pairwise dependence Q is derived. Two patterns of the joint distribution for classifier outputs
(correct/incorrect) are identified to derive the limits: the pattern of success and the pattern

of failure. The results support the intuition that negative pairwise dependence is beneficial
although not straightforwardly related to the accuracy. The pattern of success showed that
for the highest improvement over p, all pairs of classifiers in the pool should have the same
negative dependence.

Keywords: Classifier combination, classifier fusion, majority vote, limits on majority vote,
independence and dependence, diversity.
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1 Introduction

Let D = {D1, . . . , DL} be a set (called also pool, team, ensemble, mixture, etc.) of classifiers
such that Di : <n → Ω, where Ω = {ω1, . . . , ωc}, assigns x ∈ <n a class label ωj ∈ Ω. The
majority vote method of combining classifier decisions, one of many methods in this important
research area is to assign the class label ωj to x that is supported by the majority of the
classifiers Di.

Finding independent classifiers is one aim of classifier fusion methods for the following
reason. Let L be odd, Ω = {ω1, ω2}, and all classifiers have the same classification accuracy
p. The majority vote method with independent classifier decisions gives an overall correct
classification accuracy calculated by the binomial formula

Pmaj =
bL/2c
∑

m=0

(

L
m

)

pL−m(1− p)m, (1)

where bac denotes the largest integer less than or equal to a. The majority vote method
with independent classifiers is guaranteed to give a higher accuracy than individual classifiers
when p > 0.5 [12, 13]. The probability of a correct classification for p = 0.6, 0.7, 0.8, 0.9 and
L = 3, 5, 7, 9 is shown in Table 1.

Table 1: Tabulated values of the majority vote accuracy of L independent classifiers with individual
accuracy p

L = 3 L = 5 L = 7 L = 9

p = 0.6 0.6480 0.6826 0.7102 0.7334
p = 0.7 0.7840 0.8369 0.8740 0.9012
p = 0.8 0.8960 0.9421 0.9667 0.9804
p = 0.9 0.9720 0.9914 0.9973 0.9991

Can we do better than that if the classifiers were dependent? The notion of dependence

between classifiers can be perceived as lack of independence but there are various ways of
further interpretation associated with diversity, orthogonality, complementarity, etc. [11,14]. It
has been recognized that quantifying and studying the dependencies is an important issue in
combining classifiers [11]. Numerous measures of dependence and diversity have been proposed
in the literature. We can summarize the current results as follows:

1. When classifiers output estimates of the posterior probabilities P̂ (ωs|x), and the outputs
for each class are combined by averaging, or by an order statistic such as minimum,
maximum or median, the classification error rate above the Bayes error (called the added
error) depends on the correlation between the estimates (see [25,26]). Positively correlated
classifiers only slightly reduce the added error, uncorrelated classifiers reduce the added
error by a factor of 1/L, and negatively correlated classifiers reduce the error even further.
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2. When classifiers output class labels, the classification error can be decomposed into bias
and variance terms [2,9] or into bias and spread terms [3]. In both cases the second term
accounts for the diversity of the ensemble. These results have been used to study the
behavior of classifier ensembles in terms of the bias-variance trade-off.

3. For the case of classifier outputs in the form of a correct/incorrect vote, four levels of
diversity are detailed in [22]: Level 1, where no more than one classifier is wrong on each
data point. Level 2, where for each data point up to bL/2c could be wrong (the majority
is always correct). Level 3, where at least one classifier is correct for each data point, and
Level 4, where there might be points for which none of the classifiers is correct.

4. It is recognized that a negative correlation should be pursued when designing classifier
ensembles. The negative correlation training of neural networks is one such method
[15–17,21].

Practically, there is no unique choice of a measure of diversity or dependence. There are
pairwise measures which are calculated for each pair of classifiers in D and then averaged
[4, 7, 8, 23–26]; measures that use the idea of entropy or correlation of individual outputs with
the averaged output of D [2, 3, 9, 10, 18, 21], and also measures which base the calculations on
the distribution of “difficulty” of the data points [5, 6, 14, 19, 20, 27].

The Yule’s Q statistic is derived as the equivalent of the correlation coefficient for binary
(correct/incorrect) valued measurements. So that positive Q values show positive dependency,
negative values show negative dependency and zero shows no dependency. As with the corre-
lation coefficient the range is from −1 to +1. Since the correlation coefficient is thought of as
the most natural choice of a dependence measure for continuous-valued classifier outputs, we
chose Q for the case of binary outputs.

Even though there is an abundance of diversity measures, there is also a notable lack of
studies that relate diversity and accuracy. Here we are interested in establishing theoretical
limits on the majority vote accuracy and finding a functional relationship between the limits
and the diversity of the team. The main finding to date is that of Lam and Suen [12, 13] who
have studied the accuracy of the majority vote method for the special case of equally accurate
and independent classifiers for oddand even L. They find that the majority vote is guaranteed
to do better than an individual classifier when the classifiers have an accuracy greater than 0.5.
We extend the results of Lam and Suen for equally accurate classifiers and odd L but without
the restriction that the classifiers be independent.

The paper follows two lines: the first one is based on a synthetic example where we demon-
strate that accuracy of the majority vote over three classifiers, each of accuracy 60 %, can vary
between 40 % and 90 %. The example also shows that it is impossible to identify a straight-
forward relationship between the Q statistic for the pairs of individual classifiers and and the
majority vote. The second line of study defines and analyses two probability distributions over
the combinations of correct/incorrect votes of L classifiers. In Section III the pattern of success

and pattern of failure are defined. Based on these we obtain the upper and lower bounds on
the majority vote accuracy Pmaj as a function of the individual accuracy p and the number of
classifiers L in the pool D. We also calculate the pairwise dependences for the two patterns, as
functions of p. Section IV offers an analysis, and Section V, our conclusions.
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2 Dependence between classifiers

2.1 Q statistics for pairwise dependence

Let Z = {z1, . . . , zN} be a labeled data set, zj ∈ <
n coming from the classification problem in

question. For each classifier Di we design an N -dimensional output vector yi = [y1,i, . . . , yN,i]
T

of correct classification, such that yj,i = 1, if Di recognizes correctly zj, and 0, otherwise. There
are various statistics to assess the similarity of Di and Dk [1]. Yule [28] suggested that the Q
statistic be used as a measure of association. The Q statistic for two classifiers is

Qi,k =
N11N00 −N01N10

N11N00 + N01N10
, (2)

where Nab is the number of elements zj of Z for which yj,i = a and yj,k = b (see Table 2).

Table 2: A 2× 2 table of the relationship between a pair of classifiers

Dk correct (1) Dk wrong (0)

Di correct (1) N 11 N10

Di wrong (0) N 01 N00

Total, N = N 00 + N01 + N10 + N11.

For statistically independent classifiers, Qi,k = 0. Q varies between −1 and 1. The
correlation between two binary classifier outputs (correct/wrong) yi and yj is

ρi,k =
N11N00 −N01N10

√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
. (3)

For any two classifiers, Q and ρ have the same sign, and it can be proved that |ρ| ≤ |Q|.
We chose Q to measure the dependency because it has been designed for 2 by 2 contingency
tables. It is also simpler to calculate from the table entries.

2.2 A synthetic example

Let D = {D1, D2, D3} and N = |Z| = 10. We assume that all three classifiers have the
same individual accuracy of correct classification, p = 0.6. This is manifested by each classifier
labeling correctly 6 of the 10 elements of Z. Given these requirements, all possible combinations
of distributing 10 elements into the 8 combinations of outputs of the three classifiers are shown
in Table 3. For a correct overall decision by the majority vote for some zj ∈ Z, at least two of
the three outputs yi should be 1. The last column of Table 3 shows the majority vote accuracy
of each of the 28 possible combinations. It is obtained as the proportion (out of 10 elements)
of the sum of the entries in columns ‘111’, ‘101’, ‘011’ and ‘110’ (two or more correct votes).
The best and the worst cases are highlighted in the table.
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To clarify the entries in Table 3, consider as an example the first row. The number 2 in the
column under the heading ‘101’, displayed vertically, means that exactly 2 elements of Z are
correctly recognized by D1 and D3 (the top and the bottom 1’s of the heading) and misclassified
by D2 (the zero in the middle).

Table 3: All possible combinations of correct/incorrect classification of 10 objects by three classifiers
so that each classifier recognizes exactly 6 objects. The entries in the table are the number of
occurrences of the specific binary output of the three classifiers in the particular combination. The
majority vote accuracy Pmaj is shown in the last column.

1 1 0 0 1 1 0 0
No 1 0 1 0 1 0 1 0 Pmaj

1 1 1 1 0 0 0 0

1 0 2 2 2 4 0 0 0 0.8
2 0 2 3 1 3 1 0 0 0.8
3 0 3 3 0 3 0 0 1 0.9
4 1 1 1 3 4 0 0 0 0.7
5 1 1 2 2 3 1 0 0 0.7
6 1 2 2 1 2 1 1 0 0.7
7 1 2 2 1 3 0 0 1 0.8
8 2 0 0 4 4 0 0 0 0.6
9 2 0 1 3 3 1 0 0 0.6
10 2 0 2 2 2 2 0 0 0.6
11 2 1 1 2 2 1 1 0 0.6
12 2 1 1 2 3 0 0 1 0.7
13 2 1 2 1 2 1 0 1 0.7
14 2 2 2 0 2 0 0 2 0.8
15 3 0 0 3 2 1 1 0 0.5
16 3 0 0 3 3 0 0 1 0.6
17 3 0 1 2 1 2 1 0 0.5
18 3 0 1 2 2 1 0 1 0.6
19 3 1 1 1 1 1 1 1 0.6
20 3 1 1 1 2 0 0 2 0.7
21 4 0 0 2 0 2 2 0 0.4
22 4 0 0 2 1 1 1 1 0.5
23 4 0 0 2 2 0 0 2 0.6
24 4 0 1 1 1 1 0 2 0.6
25 4 1 1 0 1 0 0 3 0.7
26 5 0 0 1 0 1 1 2 0.5
27 5 0 0 1 1 0 0 3 0.6
28 6 0 0 0 0 0 0 4 0.6

The table offers at least two interesting facts
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• There is a case where the majority vote produces 90 % correct classification. Although
purely hypothetical, this vote distribution is possible and offers a dramatic increase over
the individual rate p = 0.6.

• Combining classifiers using the majority vote is beneficial or “neutral” in a great deal of
the cases. In this example, in 12 of the 28 cases (42.9 %) the combined accuracy is greater
than the limit for independent classifiers (Pmaj ≥ 0.7). For another 11 cases (39.3 %),
the accuracy did not improve on the individual rate (Pmaj = p = 0.6). In the remaining 5
cases (17.8 %) the overall accuracy was below the individual error rate (Pmaj < 0.6). It is
unknown which of these 28 distributions is most likely to occur in a real-life experiment.
Therefore, even though most of the cases are no worse than the individual classifiers,
improvement over p is not guaranteed.

For each pool D, there are L(L − 1)/2 pairs of classifiers. Denote by Qi,j the Q value for
classifiers Di and Dj. The Q statistic was calculated for each pair of classifiers for each of the
28 combinations. For the winning combination (Pmaj = 0.9), Q1,2 = Q2,3 = Q1,3 = −0.5. For
the worst case (Pmaj = 0.4), Q1,2 = Q2,3 = Q1,3 = 0.333. Table 4 shows the sorted Pmaj and
the corresponding Q1,2, Q2,3 and Q1,3. As can be seen in the table, there is no clear pattern
of relationship between Pmaj and the Q’s. For a general observation, we averaged separately
the Q’s for all 12 combinations for which Pmaj > 0.6481 (favorable) and the 16 combination for
which Pmaj ≤ 0.648 (unfavorable). The averaged Q of the favorable combinations is −0.1227,
and that of the unfavorable combinations is 0.2873. However, the values of the Q’s for both
groups: favorable and unfavorable, are scattered over the whole range from −1 to 1, and
extracting a consistent relationship does not seem to be possible.

The same type of synthetic experiment was carried out for N = 50. From the total of
3037 possible combinations, 1217 (40.0 %) have Pmaj > 0.648 (favorable group). The worst
part of the unfavorable group, i.e., with Pmaj < 0.6, consisted of 874 (28.8 %) combinations.
The averaged values of Q for the two groups are similar to the values in our previous example,
−0.1200 for the favorable group and 0.2370 for the unfavorable one. Figure 1 displays the
histograms of all Q’s for the favorable and unfavorable groups of classifier teams. In the top
two plots, one Q per ensemble was considered as the mean of the three pairwise Q’s. In the
bottom two plots, all pairwise Q’s were pooled, so the total count is 3×3037 = 9111. Generally,
the favorable Q’s tend to be more on the negative side. Again, we have to emphasize that these
experiments do not correspond to any real classification problem. Here we assumed that each
possible distribution of votes occurs once (or with the same probability). In real-life problems
we can expect only a small part of these distributions to appear, most probably distributions
corresponding to positively dependent classifier outputs.

The simulation was run for L = 3 classifiers (any number of classes c) with N = 10, 20, and
30 and with individual accuracy p = 0.6, 0.7, 0.8 and 0.9. Table 5 shows the minimum and the
maximum values of Pmaj.

As a measure of overall dependence for a pool of three classifiers we took the maximum
and the average of the three Q’s, and these are shown in the last two columns of Table 4. The
relationship between Qmax and Pmaj is shown in the left plot of Figure 2, and between Qavr

1see Table 1 for p = 0.6 and L = 3
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Table 4: Sorted by Pmaj combination from Table 3, the corresponding pairwise Q’s.

No Pmaj Q1,2 Q1,3 Q2,3 Qavr Qmax

21 0.4 0.33 0.33 0.33 0.33 0.33
15 0.5 0.88 -0.50 -0.50 -0.04 0.88
17 0.5 0.33 -0.50 0.33 0.05 0.33
22 0.5 0.88 0.33 0.33 0.51 0.88
26 0.5 0.88 0.88 0.88 0.88 0.88
8 0.6 1.00 -1.00 -1.00 -0.33 1.00
9 0.6 0.88 -1.00 -0.50 -0.21 0.88
10 0.6 0.33 -1.00 0.33 -0.11 0.33
11 0.6 0.33 -0.50 -0.50 -0.22 0.33
16 0.6 1.00 -0.50 -0.50 0.00 1.00
18 0.6 0.88 -0.50 0.33 0.24 0.88
19 0.6 0.33 0.33 0.33 0.33 0.33
23 0.6 1.00 0.33 0.33 0.55 1.00
24 0.6 0.88 0.33 0.88 0.70 0.88
27 0.6 1.00 0.88 0.88 0.92 1.00
28 0.6 1.00 1.00 1.00 1.00 1.00
4 0.7 0.88 -1.00 -1.00 -0.37 0.88
5 0.7 0.33 -1.00 -0.50 -0.39 0.33
6 0.7 -0.50 -0.50 -0.50 -0.50 -0.50
12 0.7 0.88 -0.50 -0.50 -0.04 0.88
13 0.7 0.33 -0.50 0.33 0.05 0.33
20 0.7 0.88 0.33 0.33 0.51 0.88
25 0.7 0.88 0.88 0.88 0.88 0.88
1 0.8 0.33 -1.00 -1.00 -0.56 0.33
2 0.8 -0.50 -1.00 -0.50 -0.67 -0.50
7 0.8 0.33 -0.50 -0.50 -0.22 0.33
14 0.8 0.33 0.33 0.33 0.33 0.33
3 0.9 -0.50 -0.50 -0.50 -0.50 -0.50

and Pmaj, in the right plot. Both are calculated on all possible combinations of three votes for
N = 50 objects.

Figure 2 shows that Pmaj is not strongly associated with either Qmax or Qavr. However, it
is possible to identify a threshold on each Q such that any combination of votes which has a
“more negative” Q value (Qmax or Qavr) belongs to the favorable group, i.e., such combinations
are better than a pool of independent classifiers. Shown in Table 6 are the thresholds Qthr

max or
Qthr

avr for N = 10, 20, and 30, and for p = 0.6, 0.7, 0.8 and 0.9.
This example motivated our further study on the relationship between p, Q, and Pmaj.
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Figure 1: Histograms of the Q statistic for the “favorable” and “unfavorable” combinations of
classifier outputs, N = 50.

Table 5: The minimum and the maximum values of the majority vote Pmaj for L = 3 classifiers of
accuracy p with N objects

p N = 10 N = 20 N = 30
Pmax Pmin Pmax Pmin Pmax Pmin

0.6 0.9 0.40 0.9 0.40 0.9 0.40
0.7 1.0 0.60 1.0 0.55 1.0 0.56
0.8 1.0 0.75 1.0 0.70 1.0 0.70
0.9 1.0 0.90 1.0 0.85 1.0 0.86

3 Limits on the majority vote accuracy

In the example in Section II we enumerated all possibilities of correct/incorrect votes for three
classifiers and N objects. Here we define and analyze two probability distributions over the
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Figure 2: Plot of Pmaj against Qmax and Qavr for all possible combinations of 3 votes for N = 50
objects.

Table 6: Threshold dependence values guaranteeing that the combination is “favorable”

p N = 10 N = 20 N = 30
Qthr

avr Qthr
max Qthr

avr Qthr
max Qthr

avr Qthr
max

0.6 -0.375 -0.5 -0.375 -0.5 -0.43 -0.5
0.7 -0.63 -1.0 -0.45 -0.47 -0.52 -0.66
0.8 -1.0 -1.0 -0.6 -1.0 -0.7 -1.0
0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

possible combinations of L correct/incorrect votes.

3.1 The “pattern of success”

The three-classifier problem from the previous section can be visualized using two pairwise
tables in Table 7 (see also Table 2)

This time we chose for convenience the entries in the table to be the probabilities of oc-
currence of the respective combination of correct and wrong outputs. For example, c is the
probability of occurrence of the triple (011), i.e., D1 wrong, D2 correct, D3 correct. Therefore,

a + b + c + d + e + f + g + h = 1. (4)

The probability of correct classification of the majority vote of the three classifiers is (two
or more correct)
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Table 7: The probabilities in two 2-way tables illustrating a 3-classifier voting team.

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0
1 a b
0 c d

D1 ↓ 1 0
1 e f
0 g h

Pmaj = a + b + c + e. (5)

All three classifiers have the same individual accuracy p, which brings in the following three
equations

a + b + e + f = p, D1 correct ;
a + c + e + g = p, D2 correct ;
a + b + c + d = p, D3 correct

(6)

Maximizing Pmaj in (5) subject to conditions (4), (6) and a, b, c, d, e, f, g, h ≥ 0, for p = 0.6,
we obtain Pmaj = 0.9 with the pattern highlighted in Table 3: a = d = f = g = 0, b = c = e =
0.3, h = 0.1. This example, optimal for 3 classifiers, indicates the possible characteristics of
the best combination of L classifiers. The “pattern of success” and “pattern of failure” defined
later follow the same intuition although we do not include in this study a formal proof for their
optimality.

Consider the pool D of L (odd) classifiers, each with accuracy p. For the majority vote to
give a correct answer we need bL/2c+1 or more of the classifiers to be correct. Intuitively, the
best improvement over the individual accuracy will be achieved when exactly bL/2c + 1 votes
are correct. Any extra correct vote for the same x will be “wasted” because it is not needed to
give the correct class label. Correct votes which participate in combinations not leading to a
correct overall vote are also “wasted”. To use the above idea we make the following definition

Definition 1.The “pattern of success” is a distribution of the L classifier outputs for the

pool D such that:

1. The probability of any combination of bL/2c + 1 correct and bL/2c incorrect votes is α;

2. The probability of all L votes being incorrect is γ;

3. The probability of all other combinations is zero.

For L = 3, the 2-table expression of the pattern of success is shown in Table 8.
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Table 8: The Pattern of Success

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0
1 0 α
0 α 0

D1 ↓ 1 0
1 α 0
0 0 γ = 1− 3α

Here no votes are “wasted”, the only combinations that occur are where all classifiers are
incorrect or exactly bL/2c+1 are correct. To simplify notation, let l = bL/2c. The probability
of a correct majority vote (Pmaj) for the pattern of success is the sum of the probabilities of
each correct majority vote combination. Each such combination has probability α. There are
(

L
l + 1

)

ways of having l + 1 correct out of L classifiers. Therefore

Pmaj =

(

L
l + 1

)

α. (7)

The pattern of success is only possible when Pmaj ≤ 1, i.e., when

α ≤
1

(

L
l + 1

) . (8)

If Di gives a correct vote then the remaining L − 1 classifiers must give l correct votes.

There are

(

L− 1
l

)

ways in which the remaining L − 1 classifiers can give this, each with

probability α. So to have Di with an overall accuracy p the following must hold

p =

(

L− 1
l

)

α. (9)

Expressing α from (9) and substituting in (7) gives

Pmaj =
pL

l + 1
. (10)

Feasible patterns of success have Pmaj ≤ 1, so (10) requires

p ≤
l + 1

L
. (11)

If p > l+1
L

then Pmaj = 1 can be achieved, but there is an excess of correct votes to be
distributed among combinations of classifiers with less than l+1 correct votes. The improvement
over the individual p will not be as large as for the pattern of success but the majority vote
accuracy will be 1 anyway. The final formula for Pmaj is
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Pmaj = min
{

1,
pL

l + 1

}

. (12)

By definition, the pattern of success is symmetrical with respect to all classifiers. Hence all
pairs of individual classifiers have the same 2-way tables, and therefore the same Q. Shown be-
low is the 2-way table for the pattern of success containing the probabilities of correct/incorrect
combinations of Di and Dj from D.

Dj →
Di ↓ 1 0

1
(

L− 2
l − 1

)

α

(

L− 2
l

)

α

0
(

L− 2
l

)

α 1−3α

(

L− 2
l

)

The entries in the table are obtained by following similar patterns of combinatorial reasoning.
For example, the probability that both Di and Dj are correct is calculated by finding out the
number of times Di and Dj both cast correct votes in a “winning” combination. The number of
possible combinations is the number of all combinations of l− 1 classifiers (because Di and Dj

complete the required l + 1 correct votes) out of the remaining L− 2. Since the probability of

any “winning” combination is α, the probability to have Di and Dj both correct is

(

L− 2
l − 1

)

α.

The same reasoning shows that when only one of Di and Dj are correct, then for the other
L − 2 classifiers there must be l correct. As the probabilities in the four cells must sum to 1
then by using the fact that L is odd (and so equals 2l + 1), the probability that both Di and
Dj are incorrect is found.

Hence using (2) and (9) with these four probabilities, we obtain

Q =
1− 2p

1− p
. (13)

Note that Q is always negative for p > 0.5, and therefore the classifiers in the pattern of
success are not independent but are negatively dependent. Finally

Q = max

{

−1,
1− 2p

1− p

}

. (14)

3.2 The “pattern of failure”

Definition 2.The “pattern of failure” is a distribution of the L classifier outputs for the pool

D such that:
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1. The probability of any combination of bL/2c correct and bL/2c+ 1 incorrect votes is β;

2. The probability of all L votes being correct is δ;

3. The probability of all other combinations is zero.

For L = 3, the 2-table expression of the pattern of failure is shown in Table 9.

Table 9: The Pattern of Failure

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0
1 δ = 1− 3β 0
0 0 β

D1 ↓ 1 0
1 0 β
0 β 0

The worst scenario is when the correct votes are “wasted”, i.e., grouped in combinations of
exactly l out of L correct (one short for the majority to be correct). The “excess” of correct
votes needed to make up the individual p are also wasted by all the votes being correct together,
while half of them plus one will suffice.

The probability of a correct majority vote (Pmaj) is δ. As there are

(

L
l

)

ways of having

l correct out of L classifiers, each with probability β, then

Pmaj = δ = 1−

(

L
l

)

β. (15)

If Di gives a correct vote then either all the remaining classifiers are correct (probability δ)
or exactly l − 1 are correct out of the L − 1 remaining classifiers. For the second case there

are

(

L− 1
l − 1

)

ways of getting this, each with probability β. To get the overall accuracy p for

classifier Di we sum the probabilities of the two cases

p = δ +

(

L− 1
l − 1

)

β. (16)

Combining (15) and (16) gives

Pmaj =
pL− l

l + 1
. (17)

For values of individual accuracy p > 0.5, the pattern of failure is always possible.
As with the pattern of success, the pattern of failure is symmetrical with respect to all

classifiers, by definition. Hence all pairs of individual classifiers have the same 2-way tables,
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and therefore the same Q. The 2-way table in the case of L classifiers for the pattern of failure

is shown below

Di →
Dj ↓ 1 0

1
1−

(

L
l

)

β +

(

L− 2
l − 2

)

β

(

L− 2
l − 1

)

β

0
(

L− 2
l − 1

)

β

(

L− 2
l

)

β

Using (2) and (16) with these four probabilities, we obtain

Q =
2p− 1

p
. (18)

4 Analysis

4.1 Best case (the pattern of success)

Using (12), Table 10 shows the individual accuracy required for a pool of L = 3, 5, 7, 9, and 11
classifiers so that Pmaj = 1 is achievable. Interestingly, the largest individual accuracy needed
to achieve Pmaj = 1, is p = 2/3 ≈ 0.6667 for any number of classifiers L. Beyond this value
of p, the highest possible Pmaj is 1, and there are “wasted” correct votes. Compare this result
with the majority vote for independent classifiers in Table 1. Substituting the upper limits,
the first entry (p = 0.6, L = 3) will be 0.9 and all the remaining will be 1’s. Therefore it is
theoretically possible to achieve a dramatic improvement over the individual accuracy and also
over the independent vote accuracy, if we drop the independence requirement.

Table 10: Minimum individual accuracy p needed by a pool of L = 3, 5, 7, 9, and 11 classifiers so
that Pmaj = 1 is achievable.

L 3 5 7 9 11
p 0.6667 0.6000 0.5714 0.5556 0.5455

The dependence Q for the pattern of success (13), for any p > 2/3, will be -1. Eliminating
p from (10) and (13), and solving for Pmaj, we obtain
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Figure 3: Upper limits: The majority vote accuracy Pmaj and the individual accuracy p for the
pattern of success as functions of Q

Pmaj =
L

(l + 1)

(1−Q)

(2−Q)
. (19)

The derivative of Pmaj with respect to Q is ∂Pmaj/∂Q = − 1
(l+1)(2−Q)2

, i.e., for the pattern
of success, Pmaj is a monotone decreasing function of the pairwise dependence Q. This result
supports the intuition that negatively correlated classifiers are a better team than unrelated or
positively related ones.

A family of curves for L = 3, 5 and 7, showing Pmaj as functions of Q are plotted in Figure
3. Also plotted is p as a function of Q to illustrate the improvement over the single classifier.

4.2 Worst case (the pattern of failure)

When combining classifiers we always hope that the resultant Pmaj will exceed the individual
accuracy p. This is not guaranteed, however, as we showed in the synthetic example in Section
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II. An analysis of (17) shows that for the pattern of failure, Pmaj is a monotone decreasing
function of L. Therefore, to find the smallest possible value of Pmaj for a given p we take the
limit in (17)

lim
L→∞

Pmaj = 2p− 1. (20)

Table 11 is a counterpart of Table 1, showing the smallest theoretically possible values of
Pmaj.

Table 11: Tabulated values of the minimal possible majority vote accuracy of L classifiers with
individual accuracy p

L = 3 L = 5 L = 7 L = 9

p = 0.6 0.4000 0.3333 0.3000 0.2800
p = 0.7 0.5500 0.5000 0.4750 0.4600
p = 0.8 0.7000 0.6667 0.6500 0.6400
p = 0.9 0.8500 0.8333 0.8250 0.8200

The dependence Q for the pattern of failure (18), for any p > 0.5, is positive. Eliminating
p from (17) and (18), and solving for Pmaj, we obtain

Pmaj =
L

(l − 1)

1

(2−Q)
−

l

(L− l)
. (21)

Pmaj is a monotone increasing function of Q for the pattern of failure. A family of curves
for L = 3, 5 and 7, showing Pmaj and p as functions of Q for the pattern of failure are plotted
in Figure 4. Again, p(Q) is plotted for illustration of the decline in the performance in the
pattern of failure.

The monotone increasing behavior of Pmaj with respect to Q sounds counter-intuitive. The
claim that diverse classifiers fare better than identical ones is not true for this case. Apparently
there is some “bad” diversity which leads to deterioration of the performance. When this
diversity is gradually “removed”, the team accuracy reaches the individual p. For any Q ∈ [0, 1)
we can find a pattern of failure where Pmaj < p by enforcing this “bad” diversity. Consider for
example three classifiers and three objects from Z. Assume that each of the classifiers correctly
recognizes one of the three objects and fails on the other two. If they all recognize the same
object, there will be no diversity, and one of the three objects will be recognizes correctly. If
the classifiers are diverse in a way that each classifier recognizes a different object, then the
majority vote will be 0, worse than the single classifier. This example explains why increasing Q
(reducing diversity) will increase Pmaj. Most of the cases in real-life problems will fall between
the two extreme patterns. Then the question is: Is it good to combine the classifiers or is it
better to take the single best? And which diversity do we increase when we minimize Q or ρ
for that matter, the “good” one or the “bad” one?
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4.3 General remarks

We can draw a parallel between the limits derived here and the abstraction called Oracle in
classifier combination. Oracle assigns the correct class label to x if at least one classifier in the
pool outputs the correct label. Therefore the probability of correct classification by the Oracle
is

POracle = 1− P (all wrong). (22)

In the pattern of success, P (all wrong) is γ, hence POracle = 1− γ = Pmaj , i.e., the Oracle
cannot offer any further improvement. In the pattern of failure, POracle = 1, i.e., the Oracle is
guaranteed to outperform any pattern of failure distribution.

It is impossible to tell which case we will face in practice. The most likely situation is to have
reasonably accurate and positively dependent classifiers. This leads to a small improvement over
the individual rate, usually not surpassing the majority vote over independent classifiers. As we
show here, the limits for improvement (and also for deteriorating!) are substantially different
from the individual rate. This could be used for designing a new strategy for generating the
pool of classifiers D. As shown in Table 10, a small number of not very accurate classifiers can
achieve (in theory) Pmaj = 1. Laying out such a strategy is not straightforward.

5 Conclusions

We derive an upper and a lower limit of the majority vote accuracy for individual classifiers, each
one of accuracy p. The problem is explained using a synthetic example of three classifiers and
finding all possible combinations of correct/incorrect votes on hypothetical data sets of 10 and
50 samples for p = 0.6. The results showed that the pairwise dependence plays an important
although not clear-cut role for the final Pmaj. We explored the problem by defining two extreme
cases: the pattern of success and the pattern of failure. Each of these is a specific probability
distribution over all possible combinations of correct/incorrect votes of the L classifier outputs
from the pool D. The pattern of success is when the correct votes are used in the most efficient
way, whereas the pattern of failure is when most correct votes are “wasted”. The equations
connecting Pmaj, p, L and Q (the pairwise dependence) have been derived for both cases and
analyzed. We found that Pmaj is a decreasing function of Q for the pattern of success and an
increasing function for the pattern of failure, supporting the intuition that negatively related
classifiers should be used.

The practical messages from this study can be summarized as follows
1. Independence of the classifiers in the team is not the best possible situation: the pattern

of success is better. Both are unlikely to happen. If we should strive for independence, then it
would be even better to look for dependent classifiers with a specific pattern of dependency.

2. Diversity is not always beneficial. As the pattern of failure shows, sometimes diversity
may work toward deterioration of the performance.

3. There is no realistic framework for benchmarking classifier ensembles with either syn-
thetic or real data. Some experimental setups might produce highly related classifiers while

18



others might be different, depending heavily on the design choices. Hence, enumerative ex-
amples such as the ones presented in this paper, though artificial, seem to be useful at this
stage. It has been recognized that a benchmark framework for classifier combination is urgently
needed.
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