
Abstract Feature selection methods are often used to

determine a small set of informative features that

guarantee good classification results. Such procedures

usually consist of two components: a separability cri-

terion and a selection strategy. The most basic choices

for the latter are individual ranking, forward search and

backward search. Many intermediate methods such as

floating search are also available. The forward as well as

backward selection may cause lossy evaluation of the

criterion and/or overtraining of the final classifier in

case of high-dimensional spaces and small sample size

problems. Backward selection may also become com-

putationally prohibitive. Individual ranking, on the

other hand, suffers as it neglects dependencies between

features. A new strategy based on a pairwise evaluation

has recently been proposed by Bo and Jonassen

(Genome Biol 3, 2002) and Pezkalska et al. (Interna-

tional Conference on Computer Recognition Systems,

Poland, pp 271–278, 2005). Since it considers interac-

tions between features, but always restricted to two-

dimensional spaces, it may circumvent the small sample

size problem. In this paper, we evaluate this idea in a

more general framework for the selection of features as

well as prototypes. Our finding is that such a pairwise

selection may improve over traditional procedures and

we present some artificial and real-world examples to

support this claim. Additionally, we have also discov-

ered that the set of problems for which the pairwise

selection may be effective is small.

Keywords Feature selection � Prototype selection �
Pairwise feature evaluation � Pattern classification

1 Introduction

The construction of a proper vector space is essential in

order to represent the data well and to design a suc-

cessful statistical learning procedure. Concerning both

computational efficiency and performance of a recog-

nition system, one is usually interested in a space of

low dimensionality. Since an initial space may be large,

some reduction techniques are necessary for the opti-

mization of an informative feature set, either by

selecting or by merging features. An ideal technique is

capable of reducing the dimensionality effectively,

while preserving the separability between classes in the

data. As some information is unavoidably lost in such a

process, it is desirable to formulate a method that

significantly reduces the dimensionality, but still pre-

serves the separability. In this paper, we focus on

selection approaches in the context of classification.

Feature selection methods rely on a quantitative

criterion that measures their performance. This
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criterion is used in some optimization process to

determine a subset of informative features. Depending

on how the suitability of features is judged, selection

methods are divided into filters and wrappers [17, 19].

Filters evaluate the relevance of features based on a

feature capacity to discriminate between classes.

Wrappers employ a predetermined classification algo-

rithm to judge the quality of a feature set. Advantages

of filter and wrapper approaches are problem depen-

dent. Filters rely on global data characteristics and are

usually quite fast. Wrappers train a classifier appro-

priate for the given problem. As a result, they may find

better features, but may also suffer more easily from

overtraining.

Both approaches involve a combinatorial search

over a constructed representation space of possible

feature subsets. Usually, greedy procedures such as

forward or backward eliminations are employed due to

their simplicity and computational attractiveness. More

complex procedures such as floating searches and ge-

netic algorithms can also be applied [10, 14, 19, 20, 27],

as well as other hybrid methods [8, 31].

Concerning the evaluation of a criterion, selection

techniques are either univariate or multivariate. Uni-

variate approaches are simple and fast. Multivariate

approaches evaluate the relevance of features in a

group, taking the interdependencies into account.

When features are correlated, these techniques are

able to construct good feature subsets, while univariate

techniques may fail.

Unfortunately, there are two disadvantages of mul-

tivariate approaches. First, they evaluate features in a

multi-dimensional space, not only demanding a con-

siderable computational effort, but also resulting in a

loss of accuracy in the case of a limited training set.

Due to overfitting, feature subsets that do not ensure a

good discrimination may still be judged as informative

by a chosen criterion. The larger the number of se-

lected features, the more pronounced this problem

becomes. Second, large sets of features may have sev-

eral groups of nested features that cannot be deter-

mined in a greedy forward selection. It was shown in [7,

27] that only the exhaustive search technique should be

applied in order to reach the optimal subset of features.

Although feature evaluation procedures involving the

branch and bound algorithm for the optimization of a

criterion may avoid the evaluation of all combinations,

the most commonly used criterion functions do not

satisfy the necessary conditions for this approach.

An attempt to preserve the advantages of univariate

approaches without selecting highly correlated features

has recently been proposed in [13, 32]. However, these

heuristic algorithms still cannot find pairwise depen-

dencies that might be present in the data. The main

focus of these works is the computational issue.

Therefore, before evaluating the correlations between

features, initial univariate ranking is performed first, by

which pairwise dependencies are missed.

As an alternative, the pairwise feature evaluation

procedure was studied in [3] for the selection of genes

in micro-array data and also by us in [24]. Since pairs of

features are considered, second order dependen-

cies are taken into account. On the other hand, since

multi-dimensional spaces are now restricted to two-

dimensional spaces, this method does not suffer from

overfitting as other multivariate approaches do.

Figure 1 illustrates four types of feature subsets

equally good for a classification problem when judged

in pairs. The feature pairs (a) and (b) can only be found

by a pairwise procedure based either on a linear cri-

terion for the pair (a) or a quadratic criterion for the

pair (b), while feature pairs (c) and (d) can be found by

an individual ranking using either a linear criterion for

the pair (c) or a quadratic criterion for the pair (d).

Note that a single feature in the subplots (c) and (d) is

sufficient for a good discrimination.

The problem of prototype selection can be seen

similar to the problem of feature selection when pro-

totypes are used to build representation spaces. Recent
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Fig. 1 Examples of feature subsets which make equally good
pairs for a classification problem. The relevance of pairs (a) and
(b) can only be found by a pairwise procedure (with a linear and
quadratic criterion, respectively). Feature pairs (c) and (d) can
be found by an individual ranking (with a linear and quadratic
criterion, respectively); it may not be necessary to find both
features
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research efforts [ 21, 23, 25, 26,] show that proximity

representations, defined by a set of proximities com-

puted to the given prototypes, are a good alternative to

feature-based representations. Moreover, decision

functions are not restricted to the nearest neighbor

rule, as many other classifiers can be applied. A chosen

m-element prototype set constructs a new m-dimen-

sional representation space, in which each object is

represented by its dissimilarities (proximities) to that

set. Hence, every dimension is described by a dissimi-

larity to a particular prototype. As a result, one may

follow a traditional feature-based approach and intro-

duce a discrimination function there. For this reason

we include some examples of prototype selection used

to build proximity representations.

In this paper, the pairwise selection strategy is

evaluated for both features and prototypes. In Sect. 2,

basic feature selection methods are briefly described

and the pairwise method is introduced. Since the idea

seems very intuitive, we could easily construct an

artificial example. On the other hand, we also tried to

find real-world data examples. However, these exam-

ples were not easily found and we analyzed the causes.

Our results are presented in Sects. 3 and 4. Section 5

discusses our findings.

2 Feature selection for classification

In a classification problem, feature selection techniques

try to determine a small subset of features which are

sufficient for a good discrimination. Usually, a type of a

combinatorial search, in a forward manner (an incre-

mental addition of features starting from a single one),

a backward manner (an incremental removal of fea-

tures starting from the entire set) or a floating manner

is employed to find this feature subset. The optimiza-

tion relies on a specified criterion (also used in the final

classification), which is often related to a class sepa-

rability and the way the relevance of a feature to be

either added or removed is evaluated.

In a probabilistic framework, one assumes that real-

world objects are represented as vectors x in a suitable

vector space X ; e.g. X ¼ R
m: The classification task

relies on finding an unknown functional dependency w,

a classifier, between x and the labels y 2 Y: Vectors x

are assumed to be iid, drawn independently from a

fixed, but unknown probability distribution p(x). The

function w is given as a fixed conditional density p(y|x),

which is also unknown. In practice, w is often param-

eterized by some a: It is found to be optimal according

to some loss function Q, measuring the discrepancy

between the true and estimated values. The classifica-

tion problem is then formulated as minimization of the

true error EðwÞ ¼
R
X�Y Hðy;wðx; aÞÞpðx; yÞdxdy; given

a finite iid sample, i.e. the training set {(xi,yi)}i=1
N .

Let s 2 f0; 1gm;m ¼ dimðXÞ; denote a binary vector

that will act as a feature selector. In a feature selection

task one wants to find a transformation of the original

data x 7!ðx � sÞ; where x � s denotes the Hadamard

(element-wise) product of two vectors, and a set of

parameters a of the function w such that the functional

Uðs; aÞ ¼
Z

X�Y

Hðy;wððx � sÞ; aÞÞpðx; yÞdxdy ð1Þ

is minimal. As a result, x � s refers to a subset of

feature values. Here, we assume that jjsjj1 ¼
P

i si ¼ n;

where n > m. Since the joint probability p(x,y) = p(x)

p(y|x) is unknown, one often minimizes the empirical

error, given the finite training set:

Uempðs; aÞ ¼
1

N

XN

i¼1

Hðyi;wððxi � sÞ; aÞÞ ð2Þ

or its regularized version Uregðs; aÞ ¼ Uempðs; aÞþ cðaÞ;
where c is some penalty functional [28].

2.1 Selection methodologies

Three incremental wrapper-based selection methods

are considered in this paper. These are individual,

forward and pairwise strategies. We assume that an

initial set F of m features F = {f1,f2,...,fm} is given. The

set F is a set of indices for the vector x. Let ~F; ~F � F;

denote a subset of selected features. Starting from an

empty set, ~F ¼ ;; a single feature or a pair of features is

chosen in each step according to the criterion based on

the functional (2) and added to the set ~F: This step is

repeated until ~F consists of n predefined features.

In any case, one needs to go through the set F by

fixing the values of s and approximating Uðs; aÞ by

Uempðs�; a�Þ ¼ argmin
s;a

Uempðs; aÞ; ð3Þ

where s� denotes a subset Feval of the initial features to

be evaluated by some criterion function and a�

represents the parameters of the given w. For every

particular subset of features Feval we will use the

following criterion function:

JðFevalÞ ¼ expð�Uempðs�; a�ÞÞ: ð4Þ
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It returns a particular value of goodness for currently

evaluated features as specified by s*. The better the

classification (the smaller the value of the loss function

Femp), the larger the value of J.

2.1.1 Individual (univariate) selection

In this approach, the informativeness of each feature is

evaluated individually according to the criterion J. In

each step, a single best feature is chosen. This can

formally be written as:

~F :¼ ~F [ ffg; where f ¼ argmax
fi2F

JðfiÞ; ~F \ ffg ¼ ;

F :¼ F nffg
ð5Þ

In this procedure features are ranked from the most to

the least relevant according to the values of J. In the

end, the most indicative features can be finally selected.

2.1.2 Forward selection

Forward feature selection starts with the single most

informative feature and continues to add next most

informative features in a greedy fashion. The relevance

of a feature is evaluated in the context of the already

selected features by determining the criterion J in a

feature space of growing dimensionality. Hence,

Feval ¼ ~F [ ffgi for some feature fi. This step can be

summarized as follows:

~F :¼ ~F[ffg; where f ¼ argmax
fi2F

Jð~F [ffgiÞ; ~F\ffg¼;:

F :¼F nffg ð6Þ

2.1.3 Pairwise selection

The relevance of features is judged by evaluating all

different pairs of features. Hence, Feval ¼ fi [ fif g: In

each step, the best unselected feature pair is detected

and added to the final subset ~F:

~F :¼ ~F [ff [ f 0g;
where ff [ f 0g ¼ argmax

ffi;fjg2F

Jðffi [ fjgÞ; e~F \ff [ f 0g ¼ ;:

F :¼ F nff [ f 0g ð7Þ

Other variants of the pairwise approach are also pos-

sible. For example, one may first rank features

according to the pairwise procedure as described

above, and then add a pair to the subset ~F such that not

only this pair is good, but also joint performances with

the already selected features are maximum. To speed

up the selection process [3], one may also rank features

on the basis of a univariate criterion. This serves as an

order list to select the first feature in a pair. The other

feature is added such that the joint criterion is maxi-

mized. In this paper, we will use the variant summa-

rized in Eq. 7.

2.2 Class discrimination performance

To select our features, one needs to find the minimum

of the functional (2), indicating how well a single fea-

ture or a pair of features contributes to the separation

of the classes. Assume c classes, x1,..., xc, whose labels

were before encoded by y. Here, we will restrict our-

selves to the linear (NLC) and quadratic (NQC) clas-

sifiers assuming normal distributions of the classes:

pðx�jxiÞ ¼
1

ð2pÞ
n
2jRij

1
2

exp � 1

2
ðx� � liÞ

TR�1
i ðx� � liÞ

� �

;

ð8Þ

where x� ¼ x � s� is considered as an n-dimensional

vector of feature values as selected by s* (the remain-

ing zero values are neglected), while li and Si are the

mean vector and the covariance matrix for the class xi

[10, 12, 16]. Here, |Si| denotes the determinant of Si.

From the Bayes rule

wiðx�Þ ¼ pðxijx�Þ ¼
pðx�jxiÞpðxiÞPc
j¼1 pðx�jxjÞpðxjÞ

; ð9Þ

and the fact that the above denominator is

independent of a particular xi, we have

wiðx�Þ � ~wiðx�Þ ¼ pðx�jxiÞpðxiÞ: ð10Þ

The minimum of Q(�,�), chosen as the indicator

function, is achieved in the classification when the

vector x is assigned to the class xi which is more

probable than any other xj, i.e.

~wiðx�Þ ¼ ln pðx�jxiÞ þ ln pðxiÞ[~wjðx�Þ; 8j 6¼ i ð11Þ

Taking into account (8), we get the NQC

~wiðx�Þ ¼ x�TWix
� þ wT

i x� þ wi0 ð12Þ

where
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Wi ¼
1

2
R�1

i

wi ¼ R�1
i li

wi0 ¼ �
1

2
lT

i R�1
i li �

1

2
ln jRij þ ln pðxiÞ

In case when the class mean vectors cluster, i.e.

ðjli � ljj ! 0; 8i 6¼ jÞ; for example as depicted in

Fig. 1d, the quadratic function (12) still takes into ac-

count the discriminatory information that is present in

differences between the class covariance matrices.

Thus, subsets of features that are not well separated by

the use of mean vectors, may give a better accuracy

when their correlations are judged.

In our experiments we also assumed equal covari-

ance matrices Ri ¼ R; 8i: In such a case, the quadratic

function (12) becomes linear, which is the NLC:

~wiðx�Þ � ~wiðx�Þ ¼ wT
i x� þ wi0 ð13Þ

where

wi ¼ R�1li

wi0 ¼ �
1

2
lT

i R�1li þ ln pðxiÞ

2.3 Regularization of singular covariances

In case the estimated covariance matrices are singular

(which may happen in high-dimensional spaces), they

can be regularized to ensure that the inverse operation

is possible. This is done by using a regularized version

instead, Rk;h ¼ ð1� k� hÞ � Rþ k � diagðdiagðRÞÞþ
h
n � traceðRÞ � I; where I is the identity matrix. Note that

k 2[0,1] and h 2[0,1] are related to variances, so they

can be determined more easily. h takes care that none

of the variances becomes zero. In practice, these

parameters are set to 0.01 or less.

3 Feature selection experiments

The potential benefits and limitations of the pairwise

feature selection are illustrated by several artificial and

real-world examples. First, a brief description of the data

sets is given, then the experimental results are presented.

3.1 Data sets

3.1.1 Artificial example

We have generated artificial data that has a set of

informative features among a number of noisy ones.

Two features are assumed to be informative if con-

sidered in a pair; see Fig. 1a. The correlation between

features is chosen such that an individual selection

strategy is not capable of finding this meaningful subset

of features.

Assume that s samples and m features are given such

that only q features, generated in correlated pairs, are

informative. The samples for each correlated feature

pair are drawn from a Gaussian distribution with the

following class means l1 ¼ ½0 0�T and l2 ¼
ffiffi
2
p

2 ½r 0�T for

some parameter r > 0. The covariance matrix, identi-

cal for both classes, is given as R1 ¼ R2 ¼
vþ 1 v� 1
v� 1 vþ 1

� �

for some value of v. The remaining

(m – q) features are uninformative, i.e. the two classes

are drawn from a spherical Gaussian distribution

Nð0; vffiffi
2
p IÞ; where I is an identity matrix. Here, we set

k = 100, m = 300 and q = 20. In order to have a class

overlap, we set r = 3 and v ¼
ffiffiffiffiffi
40
p

: Since we want to

simulate a small sample size problem, we chose

k = 100 samples for the training set, while the test set

(s – k) consists of 10,000 examples.

3.1.2 Waveform

The Waveform data [4] is a three-class problem. It is

based on a sampling of triangle shaped waves and has

21 features. There are 5,000 objects in total, approxi-

mately equally distributed over three classes. In order

to simulate a small sample size problem, we randomly

selected 35 samples for the training set and used the

remaining samples as an independent test set.

3.1.3 Colon

The Colon data set [1] is a microarray gene expression

data set measured on high-density oligonucleotide

Affymetrix arrays. The data set is composed of 40

normal (healthy) samples and 22 tumor samples in a

1,908-dimensional feature space described by genes.

3.1.4 Texture

To create this set we took two images, scanned with

150 dpi, from the Brodatz album [5]. These are tex-

tures of the reptile skin and cork. Figure 2 presents

1.7¢¢ · 1.7¢¢ parts of the two images.

The linear resolution was reduced by a factor of 8 to

obtain texture elements of a manageable size. The

resulting images had a size of 170 · 136 pixels. They

were normalized to have equal means and contrasts.

As a result, the distributions of pixel intensities have
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equal means and standard deviations for these two

images. Figure 3 shows enlarged parts of these images

of the size 32 · 32 pixels. Thousand windows of 8 · 8

pixels are selected from each image at random,

resulting in a two-class dataset of 2,000 objects and 64

features (pixel intensities). As these features have the

same means and identical standard deviations (over

the means as well as over the classes), there is no linear

separability between these two classes, for none of the

feature nor for any combination of them.

3.2 Results

3.2.1 Experimental setup

Individual, forward and pairwise feature selection

techniques are evaluated here [11]. The NLC is used as

an output performance measure in the criterion J, for

each of the selection techniques. The NLC is trained

on a training set with a growing number of features and

tested on an independent test set. As a result, the

averaged classification error can be estimated as a

function of the number of chosen features. This pro-

cedure is repeated 50 times for the Artificial, Wave-

form and Texture data sets with randomly generated

training and tests sets. The final results are averaged.

For the Artificial, Waveform and Texture data sets,

a significantly large independent test set can be gen-

erated. However, the Colon data contains just a small

number of objects in a very high-dimensional vector

space. So, there is no large independent test set avail-

able. Therefore, we performed tenfold cross-validation

to estimate the classification error as suggested by

Kohavi [18].

3.2.2 Results

Figure 4 shows the behavior of three different feature

selection methods for the Artificial data as judged by

the average classification error. Although the standard

deviations are omitted for visual clarity, the differences

between the methods are statistically significant. The

pairwise selection procedure performs significantly

better than the individual selection. This holds since

pairs of features are constructed to yield strong cor-

relations, that may only be captured in a pairwise

manner. On the other hand, a forward selection does

not achieve a good performance since features are

added one by one. By missing the notion of pairwise

dependencies, the forward procedure cannot find the

existing correlations between features. Due to noise, it

starts even with different features than the pairwise

procedure does.

The averaged classification error for the Waveform

data set is depicted in Fig. 5. This is one more artificial

example, where the pairwise selection behaves much

better than the forward selection as well as the indi-

vidual ranking. From beginning the pairwise approach

shows a significant improvement, while other methods

fail. For a larger feature size, the forward procedure

cannot estimate the criterion values appropriately,

leading to overtraining, as a result. Nevertheless, the

pairwise procedure still shows a continuous improve-

ment up to eight features. A further extension of the

feature size also leads to overtraining.

Figure 6 illustrates an averaged cross-validation er-

ror of the Colon data set. Individual ranking performs

well and the results are not significantly improved by

more complex selection techniques. The experiment is

consistent with the work of Bo et al. [3], where the

performance of the individual search was comparable

to the result of the pairwise search applied to the same

data set evaluated in a leave-one-out cross-validation

approach. This is again the effect of the curse of

dimensionality due to the small number of samples as

compared to a huge number of features. As just a

Fig. 2 Texture data set. Examples of images of the reptile skin
and cork

Fig. 3 Normalized Texture data set. The distributions of the
pixel intensities have equal means and standard deviations for
the two images
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single run of the tenfold cross-validation was used due

to computation time constraints, error differences may

not be significant.

Figure 7 depicts an averaged classification error of

the three feature selection procedures for the Texture

dataset. This is one more example of a real-world

dataset where one may profit from the use of the

pairwise selection procedure. As explained in the

dataset description quadratic discrimination is needed

here. Feature pairs are related as shown in Fig. 1b in a

symbolic way. The classification error for the pairwise

procedure is significantly lower than for other methods

and shows a continuous improvement up to 50 fea-

tures.

The differences in the performance of classifiers for

various feature subsets are significant for all the data

(as the standard deviations are very small), except for

the Colon case.

4 Prototype selection experiments

Dissimilarity (or proximity) representations rely on

pairwise object comparisons and are an alternative to

feature-based descriptions. They are especially

advantageous when discriminative features are diffi-

cult to obtain or when objects contain an inherent,

identifiable structure such that suitable, e.g. edit-type,

distances can be used for their comparisons. Such

representations are universal, since all types of

information, statistical, structural, hierarchical, rela-

tional, logical, or heterogeneous can be encoded by

various proximity measures, and combined, if neces-

sary [23]. Moreover, there already exists a plethora of

practically designed, both metric and non-metric,

measures used for all type of matching purposes; see

e.g. [2, 6, 9, 23, 29].

More precisely, assume a representation set R of n

prototypes, R = {p1,p2,...,pn} and a dissimilarity mea-

sure d, computed or derived from the objects

directly, or their initial representations. d has to be

nonnegative and obey the reflexivity condition, d(x,x)

= 0, but it may be non-metric. An object x is rep-

resented as a vector of dissimilarities computed

between x and the prototypes from R, i.e. D(x,R) =

[d(x,p1),d(x,p2),...,d(x,pn)]T. Given a set T of N

objects, such a representation becomes an N · n

dissimilarity matrix D(T,R).
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Fig. 5 Three-class Waveform data. Average classification error
of the NLC as a function of j~Fj found by three selection
procedures. The estimation is based on 50 repetitions
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Fig. 4 Two-class Artificial data. Average classification error of
the NQC as a function of j~Fj found by three selection
procedures. The estimation is based on 50 repetitions
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Fig. 6 Two-class Colon data. Tenfold cross-validation error of
the NLC as a function of j~Fj found by the three selection
procedures
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This dissimilarity representation D(T,R) is ad-

dressed as a data-dependent mapping Dð�;RÞ : X ! R
n

from an initial representation X to the so-called dis-

similarity space [23, 25], equipped with the traditional

inner product and the Euclidean norm. In such a space,

each dimension denotes a dissimilarity to a given pro-

totype pi 2R, i.e. D(�,pi). Since dissimilarities are

nonnegative, all the data examples are projected as

vectors to a nonnegative orthotope of the dissimilarity

space. In practice, this means that any traditional

classifier used in vector spaces can be applied here as

well. More details can be found in [25, 23].

Given a complete representation D(T,T), our task

now is to select a small set R out of T to guarantee a

good tradeoff between the recognition accuracy and

the computational complexity, when classifiers are

built on D(T,R). As such, the feature selection tech-

niques discussed in the previous section become now

prototype selection methods.

4.1 Data sets

Four dissimilarity data sets are used in our study. They

are described below.

4.1.1 NIST38

The NIST38 digits data set [30] describes a set of

scanned digits, originally provided as 128 · 128 binary

images. There are ten classes in total, each represented

by 200 examples. The images are first smoothed with a

Gaussian kernel with r = 8 pixels and then the pixel-

based Euclidean distances between such blurred ima-

ges are derived [25, 26]. Smoothing is done to make the

resulting distance measure somewhat robust (invari-

ant) against tilting or shifting of the single digits. In our

experiments only the digits 3 and 8 are used. Each class

is represented by 500 examples.

4.1.2 Digit38

The data describe the NIST digits [30]. First a simi-

larity measure, based on deformable template match-

ing as defined in [15], is derived. Let S = (sij) denote

the similarities. The off-diagonal symmetric dissimi-

larities D = (dij) are computed as: dij = (sii + sjj – sij –

sji)
1/2 for i „ j, since the data are slightly asymmetric.

The resulting measure is significantly non-metric.

Here, only the digits 3 and 8 are used, represented by

200 examples per class.

4.1.3 Polygon

The Polygon data consists of randomly generated

polygons: convex quadrilaterals (four-sided polygons)

and both convex and non-convex heptagons (seven-

sided polygons) [23, 26]. The polygons are first scaled

appropriately and then the non-metric modified

Hausdorff distances are derived. The modified

Hausdorff distance is defined between two sets

(here, polygon corners) A and B as dMH(A,B) =

max {davr
. (A,B),davr

. (B,A)}, where d.avrðA;BÞ ¼
1
jAj
P

a2A minb2B dða; bÞ is a directed distance and d(a,b)

is the Euclidean metric [9]. Our investigations rely on

1,000 examples, equally distributed over two classes.

4.1.4 RoadSign

The data set consists of gray level images of circular

road signs scaled to 32 · 32 pixel raster. There are 300

road sign images (highly multi-modal) and 300 non-

road sign images acquired under general illumination

[22]. Some image examples are presented in Fig. 12.

The latter images are identified by a sign detector

using a circular template based on local edge orienta-

tions. Since a circular template was used to detect the

boards, this a priori knowledge was used to remove the

pixels in the background. The resulting data set con-

tains 793 of original 1,024 dimensions (pixels). Nor-

malized cross-correlation, considered as similarity, is

computed between the images. Let sij denote the sim-

ilarities. Then, the final dissimilarities are derived as

dij = (1 – sij)
1/2.
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Fig. 7 Two-class Texture data. Average classification error of
the NQC as a function of j~Fj found by three selection
procedures. The estimation is based on 50 repetitions
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4.2 Results

4.2.1 Experimental setup

In our prototype selection experiments, all dissimilarity

data are linearly scaled to [0,1]. Such a scaling does not

affect the NLC and the NQC, as they are scaling

independent. We also assumed uniform prior proba-

bilities. Each data set is randomly split into a training

set T and a test set S. In all cases, T consists of 50

examples per class. This is done in order to investigate

small sample size problems. The remaining test sets

have the following cardinalities: 900, 300, 900 and 500

for the NIST38, Digit38, Polygon and RoadSign data,

respectively. An incrementally growing prototype set R

is selected out of T by inspecting the dissimilarity

matrix D(T,T). Four procedures are used for the

selection of a prototype set. These are random selec-

tion, individual ranking, forward search and the pair-

wise strategy. The prototypes R are chosen as features
~F in the corresponding dissimilarity spaces. The clas-

sification accuracy of the NQC is used to define the

separability criterion J, since the final classifier is cho-

sen to be quadratic, as well.

The final NQC is regularized here, since in small

sample size problems the covariance matrices are

nearly singular. The regularization parameters are

fixed as k = 0.001 and h = 0.001. As a result, the final

performance of the RNQC (regularized NQC) may be

somewhat worse than of the NQC when regularization

is unnecessary for a very small number of prototypes.

Having found a prototype set R, the NQC is trained on

D(T,R) and tested on D(S,R). This is repeated 30 times

and the average classification error is plotted as a

function of a number of prototypes.

In two cases, for the Digit38 and Polygon data, we

also include wrappers based on the NLC. These are

clear examples where the linear classifier performs

better than the quadratic one.

4.2.2 Results

Similar phenomena as in the previous section can be

observed in Figs. 8, 9, 10, 11, 12, 13, 14. Again the

forward selection is overtrained for a large number of

prototypes. The pairwise approach selects prototypes

pi and pj which are characterized by correlated vectors

of distances D(�, pi) and D(�,pj) in a two-dimensional

space such that the (linear or quadratic) separability is

maximum. We can observe this phenomenon in

Fig. 15, in which the best two prototypes (determined

by all selection methods) construct two-dimensional

dissimilarity spaces. The feature pair defined by the

pairwise selection clearly discriminates between two

classes, which is less possible in other approaches.

Concerning the selection process, the pairwise strategy

does not suffer from overtraining. However, it may still

be sensitive to the performance of a classifier, which is

ultimately constructed in a high-dimensional space.

5 10 15 20 25 30 35 40
0.055
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Prototypes

A
ve

ra
g

e 
C

la
ss

if
ic

at
io

n
 E

rr
o

r

Random
Individual
Pairwise
Forward

Fig. 8 NIST38 data. Average classification errors of the RNQC
as a function of |R| found by the four selection procedures. The
separability criterion J relies on the classification performance of
the NQC. The standard deviations of the average errors are less
than 0.005, except for the random selection of two features, and
they are less than 0.0036 on average. The estimation is based on
30 repetitions. The y-axis has a logarithmic scale
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Fig. 9 Digit38 data. Average classification errors of the RNQC
as a function of |R| found by the four selection procedures. The
separability criterion J relies on the classification performance of
the NQC. The standard deviations of the average errors are less
than 0.0095, except for the forward selection of 40 features, and
they are less than 0.005 on average. The estimation is based on 30
repetitions. The y-axis has a logarithmic scale
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As observed in the plots, the univariate procedure

often fails, especially for a small number of prototypes.

This is simply due to its inability to find informative

features in data, as they cannot be captured by just

having a bulk of good single features, even if they are

relevant. The random selection is often bad for small

prototype sets, however, its potential grows with a

growing number of prototypes. It may outperform the

other selection approaches provided that the prototype

set is sufficiently large [21, 23]. Having a sufficiently

large size, randomly chosen prototypes tend to de-

scribe data characteristic well. As they are likely less

correlated than the sets chosen by systematic selection

procedures, they may also suffer little from overtrain-

ing in case of large sets. This effect can be clearly ob-

served for the Digit38 data, Figs. 9 and 10, and for the

Polygon data, Fig. 11.

In all presented cases the pairwise selection per-

forms better than the individual ranking and better or

similar than the forward selection. The differences are

statistically significant for individual selection and

small prototype sets, as well as, for forward selection

and large prototype sets, as can be judged from the

standard deviations of the averaged errors reported in

figures.

An interesting example is the RoadSign data, for

which the pairwise and forward selection strategies

yield similar results up to 16 prototypes, and then the

forward selection makes the NQC overtrain. On the

other hand, also pairwise and random strategies are not

significantly different for ten or more prototypes,

yielding ultimately the same performance of the NQC.

A possible explanation of this fact is that in this real-

world example, the information about class separabil-

ity is spread in different ways over many dissimilarity

vectors D(�,pi) such that in pairs they provide a good

separability. Basically, many prototypes do have a

discrimination power which is complementary to other

prototypes, so when added to the current prototype set,

they still contribute.

5 Discussion and conclusions

The purpose of our study is to evaluate the idea of

pairwise feature selection in the classification context.

It may be applied to the selection of prototypes as well.

In general, it is beneficial to perform such a selection

not by evaluating individual features, but their com-

binations. The reason is that good combinations may

exist for features that are individually not informative.

The results of this phenomenon can be observed in all

our experiments. There are two reasons for restricting

the search of a good feature set to pairwise evaluations.

First, if feature combinations have to be evaluated in

a multi-dimensional setting, with a dimensionality

eventually as large as the final feature set (in forward

selection procedures), or even much higher (in back-

ward selection procedures), then the criterion has to be
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Fig. 10 Digit38 data. Average classification errors of the NLC as
a function of |R| found by the four selection procedures. The
separability criterion J relies on the classification performance of
the NLC. The standard deviations of the average errors are less
than 0.0045, except for the random selection for two features,
and they are less than 0.0035 on average. The estimation is based
on 30 repetitions. The y-axis has a logarithmic scale
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Fig. 11 Polygon data. Average classification errors of the RNQC
as a function of |R| found by the four selection procedures. The
separability criterion J relies on the classification performance of
the NQC. The standard deviations of the average errors are less
than 0.01, except for the random selection for two features, and
they are less than 0.006 on average. The estimation is based on 30
repetitions. The y-axis has a logarithmic scale
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computed in a high-dimensional space. This may result

in overtraining and a selection of suboptimal feature

sets due to noise. Pairwise searches evaluate the cri-

terion just in two dimensions, resulting in more reliable

selections. It is clearly visible in Figs. 4, 5, 6, 7, 8, 9, 10,

11, 13 and 14 that in the case of high-dimensional

representation spaces, the forward selection performs

worse than the pairwise selection. One of the reasons

may be the selection of bad features due to over-

training of a high-dimensional criterion. Additional

explanation is also given below. Still, all selection

procedures may suffer from classifier overtraining, e.g.

in Figs. 4, 5, 6, 8, 9, 10, 11, 13 and 14.

The second reason for a good performance of the

pairwise selection is its ability to select sets of unre-

lated good pairs for which combinations between pairs

are still bad. The Artificial example in Fig. 4 shows this

clearly, as it is constructed to support this claim. The

Texture problem, Fig. 7, shows that this phenomenon

may be observed in real world data for the quadratic

classifier. Also in other examples this may be the case

where the pairwise procedures perform better than the

best combination, found by the forward selection. For

higher dimensionalities, however, also the above dis-

cussed explanation may hold.

We have to admit that, in general, it appeared to be

very difficult to find good examples strongly in favor of

pairwise selection. The above arguments definitely

hold, since the corresponding artificial problems may

be generated [7]. However, real world examples that

behave as such appeared to be rare. In particular, we

doubt whether there are many real world examples

with unrelated nested feature sets in which such a

single one will be found by the forward selection pro-

cedure. This procedure starts with the best overall

individual features and then searches for good combi-

nations with this one and with the following ones that

are selected. Other sets of well performing features will

not be found only if they all show just a marginally

increased performance in combination with the ini-

tially selected feature set. That this happens appears to

be unlikely. Note that the existence of such nested set

of features was one of the arguments for constructing

the floating search procedures [27].

Fig. 12 RoadSigns data set.
Examples of images of the
road signs and non-signs
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Fig. 13 Polygon data. Average classification errors of the NLC
as a function of |R| found by the four selection procedures. The
separability criterion J relies on the classification performance of
the NLC. The standard deviations of the average errors are less
than 0.008, except for the random selection for two and four
features, and they are less than 0.005 on average. The estimation
is based on 30 repetitions. The y-axis has a logarithmic scale
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Fig. 14 RoadSign data. Average classification errors of the
RNQC as a function of |R| found by the four selection
procedures. The separability criterion J relies on is the
classification performance of the NLC. The standard deviations
of the average errors are less than 0.0085 except for the random
selection for two features and they are less than 0.007 on
average. The estimation is based on 30 repetitions. The y-axis has
a logarithmic scale
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In case of very large feature sets (thousands of fea-

tures), a complete pairwise selection procedure is

prohibitive, as it demands the evaluation of all feature

pairs. Bo et al. [3] experimented with a full search of

all feature pairs between just the individually best

performing features and all others. Such pairs, how-

ever, will be found anyway, as a good performing

feature has at least a similar performance with any

other feature. A better way may be based on an indi-

vidual selection in combination with an uncorrelation

criterion as proposed by [13].

Finally, we conclude that the pairwise selection of

features and prototypes is a good, additional tool in the

feature selection toolbox. It is especially worthwhile

for problems with large, but not very large sets of ini-

tial features. In a limited set of problems it may show a

better performance than procedures based on the for-

ward selection.
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