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Abstract: The Pseudo Fisher Linear Discriminant (PFLD) based on a pseudo-inverse technique shows a peaking behaviour of the
generalisation error for training sample sizes that are about the feature size: with an increase in the training sample size, the generalisation
error first decreases, reaching a minimum, then increases, reaching a maximum at the point where the training sample size is equal to
the data dimensionality, and afterwards begins again to decrease. A number of ways exist to solve this problem. In this paper, it is shown
that noise injection by adding redundant features to the data is similar to other regularisation techniques, and helps to improve the
generalisation error of this classifier for critical training sample sizes.
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1. INTRODUCTION

The main problem in estimating classifiers by small training
sets is that they require the inverse of the covariance matrix,
which is impossible to perform when the number of training
objects N is less than the data dimensionality p. One of
the ways in which to overcome the small sample size
problem is to modify the standard classifiers in one way or
another. However, even modified classifiers, such as the
Pseudo-Fisher Linear Discriminant (PFLD) [1], may become
very unstable, and have a peaking effect of the generalisation
error when the training sample size is comparable with the
data dimensionality [2–4].

In the past, the following ways have been studied to solve
this problem:

1. Removing features (decreasing p) by some feature selec-
tion method.

2. Adding objects (increasing N), either by using larger
training sets, or if this is not possible, by generating
additional objects (noise injection [5]).

3. Removing objects (decreasing N) brings the classifier out
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of the instable region. This method has been studied by
us [2,3], and is also effectively used in the Support Vector
Classifier [6].

In this paper we will show by some examples that the
fourth way can also be effective:

4. Adding redundant features (increasing p) [7]. Like the
third method, this brings the classifier out of the instable
region, but now by enlarging the dimensionality by noise.

We will concentrate on the injection of noise by adding
redundant features to the data and its effect on the perform-
ance of the PFLD. The data used in our simulation study
are presented in Section 2. The PFLD is discussed in Section
3. The use and performance of noise injection in the data
feature space is considered in Section 4. The effect of adding
redundant features on the PFLD, and its similarity to other
regularisation techniques, are discussed in Section 5. Con-
clusions can be found in Section 6.

2. THE DATA

Two artificial data sets and one real data set are used for
our experimental investigations. These data sets have a high
dimension, because we are interested in critical situations
where the PFLD has a bad performance.

The first set is a 30-dimensional correlated Gaussian data
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set constituted by two classes with equal covariance matrices.
Each class consists of 500 vectors. The mean of the first
class is zero for all features. The mean of the second class
is equal to 3 for the first two features, and equal to 0 for
all other features. The common covariance matrix is a
diagonal matrix with a variance of 40 for the second feature
and a unit variance for all other features. The intrinsic class
overlap (Bayes error) is 0.064. This data set is rotated using

a 30 3 30 rotation matrix which is F1 −1
1 1G for the first two

features and the identity matrix for all other features. We
call these data further ‘Gaussian correlated data’. Its first
two features are presented in Fig. 1.

The second data set consists of two 30-dimensional Gaus-
sian distributed data classes with unequal covariance matr-
ices. Each data class contains 500 vectors. The first data
class is distributed spherically with unit covariance matrix
and with zero mean. The mean of the second class is equal
to 4.5 for the first feature and equal to 0 for all other
features. The covariance matrix of the second class is a
diagonal matrix with a variance of 3 for the first two features
and a unit variance for all other features. We call these data
further ‘Gaussian spherical data with unequal covariance
matrices’. Its first two features are presented in Fig. 2.

The last data set consists of real data collected through
spot counting in interphase cell nuclei (see, for instance,
Netten et al [8] and Hoekstra et al [9]). Spot counting is
a technique to detect numerical chromosome abnormalities.
By counting the number of coloured chromosomes (‘spots’),
it is possible to detect whether the cell has an aberration
that indicates a serious disease. A FISH (Fluorescence In
Situ Hybridization) specimen of cell nuclei was scanned
using a fluorescence microscope system, resulting in com-
puter images of the single cell nuclei. From these single cell

Fig. 1. Scatter plot of a two-dimensional projection of the 30-
dimensional Gaussian correlated data.

Fig. 2. Scatter plot of a two-dimensional projection of the 30-
dimensional Gaussian spherical data with unequal covariance matr-
ices.

images, 16 3 16 pixel regions of interest were selected.
These regions contain either background spots (noise), single
spots or touching spots. From these regions, we constructed
two classes of data: the noisy background and single spots,
omitting the regions with touching spots. The samples of
size 16 3 16 were considered as a feature vector of size 256.
The first class of data (the noisy background) consists of
575 256-dimensional vectors, and the second class (single
spots) – of 571 256-dimensional vectors. We call these data
‘cell data’ in the experiments.

Training data sets with 3–200 (with 3–300 for cell data)
samples per class are chosen randomly from the total set.
The remaining data are used for testing. These and all other
experiments are repeated 10 times for independent training
sample sets. In all figures, the averaged results over 10
repetitions are presented.

3. PSEUDO FISHER LINEAR
DISCRIMINANT

The most popular and commonly used linear classifier is the
Fisher Linear Discriminant (FLD) [10,11]

gF(x) = [x −
1
2
(X(1) + X(2))]′ S−1 (X(1) − X(2)) (1)

where S is the standard maximum likelihood estimation of
the p 3 p common covariance matrix S, x is a p-variate
vector to be classified and X(i) is the sample mean vector
of the ith class, i = 1,2.

Notice that Eq. (1) is the mean squared error solution
for the linear coefficients (w, w0) in

gF(x) = w O x + w0 = L (2)
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with x P X and with L being the corresponding desired
outcomes, 1 for class 1 and 21 for class 2. When the
number of data features p exceeds the total number of
training vectors N, the estimate matrix S becomes singular
and the direct inverse becomes impossible [12]. The expected
probability of misclassification rises dramatically [13].

The modification of the FLD, which allows us to avoid
the inverse of an ill-conditioned covariance matrix, is the
so-called Pseudo Fisher Linear Discriminant [1]. In the PFLD
a direct solution of Eq. (2) is obtained by (using aug-
mented vectors):

gPF (x) = (w,w0) O (x,1) = (x,1)(X,I)−1 L (3)

where (x,1) is the augmented vector to be classified and
(X,I) is the augmented training set. The inverse (X,I)21 is
the Moore–Penrose Pseudo Inverse, which gives the mini-
mum norm solution. Before the inversion, the data are
shifted such that they have zero mean. This method is
closely related to singular value decomposition.

For values N $ p the PFLD, maximising the distance to
all given samples, is equivalent to the FLD (1). For values
N , p, however, the Pseudo Fisher rule finds a linear sub-
space, which covers all the data samples. On this plane the
PFLD estimates the data means and the covariance matrix,
and builds a linear discriminant perpendicular to this sub-
space in all other directions for which no samples are given.

The behaviour of the PFLD as a function of the sample
size is studied elsewhere [2,4]. For one sample per class this
method is equivalent to the Nearest Mean and to the
Nearest Neighbour methods. If the total sample size is equal
to or larger than the dimensionality, N $ p, the method is
equivalent to the FLD. In between, the generalisation error
shows a minimum and a maximum at the point N = p (see
Fig. 3). This can be understood from the observation that
the PFLD succeeds in finding hyperplanes with equal dis-
tances to all training samples until N = p. In Raudys and
Duin [14], an asymptotic expression for the generalisation
error of the PFLD is derived, which explains theoretically
the behaviour of the PFLD.

4. PERFORMANCE OF NOISE
INJECTION BY ADDING REDUNDANT
FEATURES

To improve the generalisation error of the PFLD for critical
values of the training sample size (N = p), a number of
techniques could be used (see the Introduction). One of
the ways to solve this problem involves generating more
training objects by noise injection into the training data.
Usually, spherical Gaussian distributed noise is generated
around each training object. However, this method requires
us to know quite precisely the optimal variance of the noise
in order to get good results. The optimal value of the noise
variance depends upon many factors such as the training
sample size, the data dimensionality and the data distribution
[5]. It could vary dramatically for different data. As a rule
it is computationally expensive to find the optimal value of
the noise variance.

Fig. 3. Generalisation error of the Pseudo Fisher Linear Discriminant
(PFLD), the Nearest Mean Classifier (NMC) and the Nearest Neigh-
bour Classifier (NNC) versus the training sample size for 30-dimen-
sional Gaussian correlated data.

To demonstrate the influence of the noise variance l2

on the generalisation error of the PFLD, we considered the
30-dimensional Gaussian correlated data. The averaged
results for some values of l2 are presented in Fig. 4. We
can see that the performance of the PFLD strongly depends
upon the variance of the noise.

Considering the small sample size properties (a learning

Fig. 4. Generalisation error of the PFLD with and without noise
injection to the training objects with different values of the noise
variance l2 = L versus the training sample size for 30-dimensional
Gaussian correlated data.
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curve) of the PFLD, one can reach another solution:
decrease the number of training objects in order to avoid
the critical training sample size problem. It could be also
performed by noise injection into the data feature space,
instead of adding noise to the training objects. In this case,
the data dimensionality is enlarged by adding Gaussian
distributed features N(0, l2). When increasing the data
dimensionality p, the training sample size N relatively
decreases, leaving a critical area N = p, where the PFLD has
a high high generalisation error. For values N , p the PFLD
performs much better than for the critical sizes of the
training set.

Let us now investigate the effectiveness of noise injection
by adding redundant features for the three examples of the
data described in Section 2. To study the influence of the
injection of ‘noisy’ features to the data, for each considered
data, r additional redundant ‘noisy’ features were generated
having Gaussian distributions with zero mean and unit
variance N(0, 1) for both classes. This enlarges the data
dimensionality from p to p 1 r. The generalisation error of
the PFLD for 30-dimensional Gaussian correlated data and
30-dimensional Gaussian spherical data with unequal covari-
ance matrices without noise injection in the feature space
and with 20, 70 and 170 additional redundant ‘noisy’ features
is presented in Figs 5 and 6, respectively. The generalisation
error of the PFLD obtained on the cell data without noise
injection in the feature space and on the cell data with 44,
100, 144 and 200 redundant features is presented in Fig. 7.

For all data the PFLD shows a critical behaviour with a
high maximum of the generalisation error around the critical
training sample size N = p. Figures 5–7 demonstrate nicely
that noise injection into the data feature space helps to
avoid the peaking effect of the generalisation error of the

Fig. 5. Generalisation error of the PFLD versus the training sample
size for Gaussian correlated data without noise injection in the
feature space (p = 30) and with 20, 70 and 170 additional redundant
features (p = 50, 100, 200).

Fig. 6. Generalisation error of the PFLD versus the training sample
size for Gaussian spherical data with unequal covariance matrices
without noise injection in the feature space (p = 30) and with 20,
70 and 170 additional redundant ‘noisy’ features (p = 50, 100, 200).

Fig. 7. Generalisation error of the PFLD versus the training sample
size for 256-dimensional cell data without noise injection (p = 256)
and with 44, 100, 144 and 200 additional redundant ‘noisy’ features
(p = 300, 356, 400, 456).

PFLD for a given number of training objects. We can see
that the redoubling of the data dimensionality by adding
‘noisy’ features has already doubled the performance of the
classifier at the point N = p. For cell data, it was enough to
add 44–100 ‘noisy’ features for the same improvement. When
the number of added ‘noisy’ features was 4–5 times larger
than the original dimensionality of the data, the peak of
the generalisation error was smoothed almost completely:
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the generalisation error was reduced in a whole region
around the critical training sample size. However, for very
small training sample sets, adding redundant features was
useless. The reason could be following. Adding noise with
a quite large variance (l2 = 1) to a highly dimensional
feature space with only a few objects makes the training
data set too ‘noisy’ to represent the entire data set correctly.
In this case, it becomes difficult or even impossible to
build a good discriminant function. All the data considered
demonstrate nicely that the more noise that is added to the
data by adding redundant features, the larger the generalis-
ation error obtained in the case of very small training
sample sizes. A smaller noise variance should probably be
used to get better results for small training set sizes. For
critical training data sizes, adding redundant features helps
to avoid the peaking effect of the generalisation error of
the PFLD.

One can notice that the improvement obtained in the
generalisation error depends upon the number r of redundant
features used. It is also reasonable to suppose that the
generalisation error depends upon the noise variance in
redundant features. A mathematical attempt to understand
this relation is made in next section. Figures 5–7 suggest
that the relationship between the number of redundant
features r and the noise variance in redundant features l2

depends upon the training sample size, and may also depend
upon the intrinsic data dimensionality. Obviously, this ques-
tion requires a more careful investigation in future. Never-
theless, our simulation study completely proves the possible
usefulness of noise injection in the data feature space in
order to reduce the generalisation error of the PFLD for
critical training sample sizes.

5. REGULARISATION BY ADDING
REDUNDANT FEATURES IN THE PFLD

In this section we make two attempts to understand how
the addition of redundant features to the data affects the
performance of the PFLD. It is well known that when the
data dimensionality p is larger than the number of training
objects N, the PFLD constructs the linear discriminant in
the linear subspace, in which the training data are located,
and perpendicularly to all other dimensions where no train-
ing data are presented. Therefore, first we try to understand
what happens with the training data set in the linear
subspace found by the PFLD when adding redundant features
to the data. On the other hand, considering that adding
redundant features is actually noise injection in the feature
space, it is logical to suppose that it should be similar to
other regularisation techniques. In Section 5.2 we try to
show this by some mathematical analysis and a simulation
study.

5.1. The Inter-Data Dependency by Redundant
Features

Let {x1, x2, . . ., xN} be the original training data set of N
objects xi, i = 1,N, where each xi = (xi1, xi2, . . ., xip)′ is a p-

dimensional vector, and m = (m1, m2, . . ., mp)9 is the mean
of this training data set. Suppose that r redundant features
yij, j = 1, r, having a normal distribution N(0, l2), are added
to each training vector xi. These features yij constitute an
r-dimensional vector of redundant features yi = (yi1, yi2, . . .,
yir)′ for each training vector xi, resulting in a set of (p 1 r)-
dimensional vectors {z1, z2, . . ., zN} with zi = (xi yi)′, i =
1,N. Now X = (x1 x2 . . . xN), Y = (y1 y2 . . . yN) and Z =
(z1 z2 . . . zN) are data matrices with sizes of p 3 N, r 3 N
and (p 1 r) 3 N.

Adding redundant features provides additional infor-
mation, and transforms the data in multidimensional space.
To see how the data are transformed, we will consider the
covariance matrix G(Z) = Cov(Z9,Z) = E {(Z 2 M)′(Z 2 M)}
of the extended data, and compare it with the covariance
matrix G(X) = Cov(X′,X) = E{(X 2 m)′ (X 2 m)} of the orig-
inal data X. G(X) will be called the data dependency matrix,
as it shows the inter-dependency between the data objects
(multidimensional vectors). They counterbalance the usual
covariance matrix Cov(X,X′), which shows the dependency
between data features.

The inner product (Z 2 M)′(Z 2 M) can be written as
a sum of two inner products

(Z − M)′(Z − M) =

((X − m)′ Y′) SX − m

Y D = (X − m)′(X − m) + Y′Y

Since X and Y are statistically independent, the data depen-
dency matrix of Z can be expressed as follows:

G(Z) = Cov(Z′,Z) = E{(Z − M)′(Z − M)}
= E{(X − m)′(X − m) + Y′Y} = G(X) + G(Y)

Considering that components yij of the matrix Y are statisti-
cally independent variables with normal distribution N(0,
l2), the matrix G(Y) is a diagonal matrix with diagonal
elements having l4x2

r distribution. Therefore, G(Y) =
Cov(Y′,Y) = E(Y′Y) = 2l4rI, where I is the r 3 r identity
matrix. That gives us

G(Z) = G(X) + 2l4rI (4)

Formula (4) shows that the training data set is actually
decorrelated by adding redundant features to the data as
variances of G(Z) become larger. The distance between
training objects increases and tends to be equal.

When the training samples size N is smaller than the
data dimensionality p, the Pseudo Fisher Linear Discriminant
finds the linear subspace of dimensionality N 2 1, which
covers all training samples, estimates the data distribution
parameters there and builds a discriminant function in this
linear subspace. If the original data are enlarged by redun-
dant features, noise is added in the feature space. According
to formula (4), by adding noisy features, the distances
between training objects increase and the data are decorre-
lated. The larger the variance l2, and the more noise in
the feature space that is added, then the more the data
decorrelated. For very large values of l2, however, the
information in the original data is lost. The classifier trained
on such data is thus bad.
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Formula (4) also shows that the speed of the data decorre-
lation depends thus upon two parameters: the number of
redundant features r; and the noise variance l2. When r is
small and l2 is large, the decorrelation of data objects goes
faster than with the large r and the small l2. To illustrate
the dependence of the generalisation error of the PFLD on
the number of redundant features r and the variance of
the noise l2, we considered the 30-dimensional Gaussian
correlated data with the critical training sample size
N = 15 1 15 = p. The averaged results are presented in Figs
8 and 9, and show that adding redundant features to the
data affects the generalisation error of the PFLD. One can
see clearly that the influence of the noise variance l2 on
the generalisation error of the PFLD is stronger than the
influence of the number of redundant features r. Figures 8
and 9 also show that for each value of the noise variance,
an optimal value of the number of redundant features exists,
and vice versa. Obviously, more study is required in this
direction. However, it seems that to get a smaller generalis-
ation error by adding redundant features, it is preferable to
add many redundant features with a small variance than a
few redundant features with a large variance of noise.

5.2. Regularisation by Noise Injection

To understand better why adding redundant features can
improve the performance of the PFLD, let us consider the
sample covariance matrix and its decomposition used in the
PFLD. As mentioned before, in the PFLD the pseudo inverse
of the sample covariance matrix S is used. A sense of the
pseudo-inverse consists in a singular value decomposition of
S: TST′ = D, where T is an orthogonal matrix. Then the
pseudo inverse of matrix S

Fig. 8. Generalisation error of the PFLD versus the noise variance
l2 = L for different numbers of redundant features r for 30-dimen-
sional Gaussian correlated data with a training sample size
N = 15 1 15 = p.

Fig. 9. Generalisation error of the PFLD versus the number of
redundant features r for different values of the noise variance l2 = L
for 30-dimensional Gaussian correlated data with a training sample
size N = 15 1 15 = p.

S−1 = T′D−1T

is used instead of the direct inverse of S.
We now consider what happens with the sample covari-

ance matrix S in the PFLD when one adds redundant
features to the data.

Let us keep the same definitions as above, and let S =
Cov(X,X′) be the p 3 p sample covariance matrix of the
training data set X. Since X and Y are statistically inde-
pendent, that gives the (p 1 r) 3 (p 1 r) covariance matrix
of Z

C = FS 0

0 l2I
G

Let

T = FT1 T2

T′2 T3
G

be the (p 1 r) 3 (p 1 r) orthogonal transformation matrix,
which diagonalises the covariance matrix C: TCT′ = D.
Notice that T1 and T3 are p 3 p and r 3 r symmetrical
matrices, respectively. The matrix T2 is a p 3 r matrix, and
is not symmetrical.

As T is an orthogonal matrix satisfying the condition

TT′ = FT1T′1 + T2T′2 T1T2 + T2T′3
T′2T′1 + T3T′2 T′2T2 + T3T′3

G = I

the following equations should hold:

T1T′1 + T2T′2 = I
T′2T2 + T3T′3 = I

That leads to the expressions
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T2T′2 = I − T1T′1 (5)

T3T′3 = I − T′2T2 (6)

Therefore

D = TCT′ = FT1 T2

T′2 T3
G FS 0

0 l2I
G FT1 T2

T′2 T3
G′

= F T1ST′1 + T2l
2IT′2 T1ST2 + T2l

2IT′3
T′2ST′1 + T′3l2IT′2 T′2ST2 + T3l

2IT′3
G

As D is a diagonal matrix, it should be

D = FT1ST′1 + l2T2T′2 0

0 T′2ST2 + l2T3T′3
G

Substituting Eqs (5) and (6) into the equation above yields

D = FD1 + l2I 0

0 D2 + l2I
G (7)

where D1 = T1(S 2 l2I)T′1 and D2 = T′2(S 2 l2I)T2.
Let us now consider the ridge estimate of the p 3 p

sample covariance matrix S* = S 1 l2I. It is known [5] that
regularisation by the ridge estimate of the covariance matrix
is equivalent to Gaussian noise injection to the training
objects in the FLD. Let T̃ be the p 3 p orthogonal matrix
which diagonalises the sample covariance matrix S. Then
by applying the orthogonal transformation to the ridge
estimate S*, we obtain

D* = T̃S*T̃′ = T̃(S + l2I)T̃′
= T̃ST̃′ + T̃l2IT̃′ = D̃ + l2I

where D̃ = T̃ST̃′. Thus, the ridge estimate of the sample
covariance matrix S is also presented in the diagonal matrix

D* = D̃ + l2I (8)

obtained by singular value decomposition in the PFLD.
Comparing Eqs (7) and (8), one can see that adding

redundant features to the data in the PFLD is similar (but
not equivalent) to the ridge estimate of the sample covari-
ance matrix S. To illustrate the similarity of adding redun-
dant features to regularisation techniques, such as noise
injection to training objects and ridge estimate of the covari-
ance matrix, we considered all the data described in Section
2 with the critical training sample size. A hundred redundant
features with different values of noise variance (but the
same for each redundant feature) were added to each data.
The averaged results for the generalisation error of the PFLD
without regularisation, with Gaussian noise injection to the
training objects, with ridge estimate of the covariance matrix
and when adding redundant features, are presented in Figs
10–12 for 30-dimensional Gaussian correlated data, 30-
dimensional Gaussian spherical data with unequal covariance
matrices and 256-dimensional cell data, respectively. The
results obtained for all data sets are similar. One should take
into account that cell data have the large dimensionality.
Therefore, the optimal values of regularisation parameters
for different types of regularisation differ more for this data
set than for other two data sets. For the same reason, for

Fig. 10. Generalisation error of the PFLD with different types of
regularisation versus the value of the regularisation parameter (the
noise variance l2 = L) for 30-dimensional Gaussian correlated data
with a training sample size N = 15 1 15 = p.

the cell data the generalisation error of the PFLD with
regularisation and when adding redundant features increases
more slowly with an increase in the value of the noise
variance than for other data sets. Nevertheless, in all of the
figures, one can see that the generalisation error of the
PFLD with Gaussian noise injection to the training objects
and the generalisation error of the PFLD with 100 redundant
features added to the data behave similarly. The generalis-
ation error of the PFLD with ridge estimate of the sample
covariance matrix also behaves in a similar way for small
values of the regularisation parameter, and different for large
values. However, the simulation study performed demon-
strates nicely that adding redundant features to the data is
similar to other regularisation techniques.

6. CONCLUSIONS

The PFLD may have a peaking behaviour of the generalis-
ation error for training sample sizes that are about the
feature size. Based on the small sample size properties of
the PFLD, in this paper it has been suggested that injecting
noise into the data feature space improves the generalisation
error of the PFLD for critical training sample sizes. This
approach was studied for two artificial data sets and one
example of real data. Simulation results have shown that
adding redundant ‘noisy’ features to the data allows us to
dramatically reduce the generalisation error of the PFLD in
the region of critical training sample sizes.

Mathematical analysis and simulation studies have shown
that adding noise by redundant features is similar to other
regularisation techniques, such as Gaussian noise injection
to the training data and ridge estimate of the covariance
matrix. It was noticed that there exists an optimal relation-
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Fig. 11. Generalisation error of the PFLD with different types of
regularisation versus the value of the regularisation parameter (the
noise variance l2 = L) for 30-dimensional Gaussian spherical data
with unequal covariance matrices and with a training sample size
N = 15 1 15 = p.

Fig. 12. Generalisation error of the PFLD with different types of
regularisation versus the value of the regularisation parameter (the
noise variance l2 = L) for 256-dimensional cell data with a training
sample size N = 128 1 128 = p.

ship between the number of redundant features and the
noise variance. This optimal relation might depend upon
the size of the training data set and the intrinsic data
dimensionality. However, it still needs more investigation
to find an explicit expression.

Finally, let us note that some non-linear classifiers, (e.g.

the quadratic classifier) may also have a peaking behaviour
of the generalisation error in the region of critical training
sample sizes. Therefore, it could be expected that adding
redundant features could help to improve the performance of
such classifiers constructed on critical training sample sizes.
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