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AbstractÐWe derive a class of computationally inexpensive linear dimension

reduction criteria by introducing a weighted variant of the well-known K-class

Fisher criterion associated with linear discriminant analysis (LDA). It can be seen

that LDA weights contributions of individual class pairs according to the Euclidian

distance of the respective class means. We generalize upon LDA by introducing a

different weighting function.

Index TermsÐLinear dimension reduction, Fisher criterion, linear discriminant

analysis, Bayes error, approximate pairwise accuracy criterion.
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1 INTRODUCTION

REDUCING the feature dimensionality of a statistical pattern
classifier is a common technique to overcome estimation problems,
and problems related to this. The most well-known technique for
linear dimension reduction (LDR) in the K-class problem is linear
discriminant analysis (LDA) (Fisher [5] introduced two-class LDA,
while Rao [13] generalized LDA to multiple classes): A transfor-
mation matrix from an n-dimensional feature space to a
d-dimensional space is determined such that the Fisher criterion
of total scatter versus average within-class scatter is maximized [6].
Campbell has shown that the determination of the LDA transform
is equivalent to finding the maximum-likelihood (ML) parameter
estimates of a Gaussian model, assuming that all class discrimina-
tion information resides in a d-dimensional subspace of the
original n-dimensional feature space and that the within-class
covariances are equal for all classes [2].

However, for a K-class problem with K > 2, the Fisher criterion

is clearly suboptimal. This is seen by a decomposition (Section 2) of

the K-class Fisher criterion into a sum of 1
2K�K ÿ 1� two-class

criteria, where it becomes obvious that large class distances are

overemphasized. The resulting transformation preserves the

distances of already well-separated classes, causing a large overlap

of neighboring classes, which is suboptimal with respect to the

classification rate.
The decomposition, however, allows us to weight the contribu-

tion of individual class pairs to the overall criterion in order to

improve upon LDA. The weighting scheme discussed in this paper

(Section 3) is called the approximate pairwise accuracy criterion

(aPAC) [10]: Here, the weighting is derived from an attempt to

approximate the Bayes error for pairs of classes. While this

approach to linear dimension reduction can be viewed as a

generalization of LDA, the computational simplicity of LDA is

retained: A generalized eigenvalue problem has to be solved and

no complex iterative optimization is required.
Section 4 compares the LDR approach based on our aPAC with

LDA and with a neural network-based approach. Part of the theory

was previously reported in [10] and the experimental results have

already been published in [4]. Conclusions are drawn in Section 5.
Several alternative approaches to multiclass LDR are known. In

some of them, the problem is stated as an ML estimation task, e.g.,

[9], [7], in others the divergence is used as a measure for class

separation [3]. These criteria, however, also are not directly related

to the classification rate. This also holds for the eigenvalue

decomposition based approach by Young and Odell [14]. Proce-

dures that deal with the class overlap problem are usually iterative

and, thereby, much more computationally demanding, e.g., the

Patrick-Fisher approach described in [8], the nonlinear principal

component analysis by neural networks [12], and the general,

nonparametric approach suggested by Buturovic [1].

2 THE FISHER CRITERION AND ITS NONOPTIMALITY

Multiclass LDR is concerned with the search for a linear

transformation that reduces the dimension of a given n-dimen-

sional statistical model, consisting of K classes, to d (d < n)

dimensions, while preserving a maximum amount of discrimina-

tion information in the lower-dimensional model. Since it is,

however, in general, too complex to use the Bayes error directly as

a criterion, one resorts to criteria that are suboptimal but that are

easier to optimize. LDA is such a suboptimal approach. A

transformation matrix L 2 IRd�n is determined which maximizes

JF, the so-called Fisher criterion:

JF�A� � tr
ÿ
ASWAT

�ÿ1ÿ
ASBAT

�� �
: �1�

Here, SB :�PK
i�1 pi�mi ÿ �m��mi ÿ �m�T and SW :�PK

i�1 piSi are

the between-class scatter matrix and the pooled within-class scatter

matrix, respectively; K is the number of classes, mi is the mean

vector of class i, pi is its a priori probability, and the overall mean
�m equals

PK
i�1 pimi. Furthermore, Si is the within-class covariance

matrix of class i. As can be seen from (1), LDA maximizes the ratio

of between-class scatter to average within-class scatter in the

lower-dimensional space. The solution to this optimization

problem is obtained by an eigenvalue decomposition of Sÿ1
W SB

and taking the rows of L to equal the d eigenvectors corresponding

to the d largest eigenvalues [6]. As long as d � K ÿ 1, no

information is lost when the classes are normally distributed.

Any reduction of dimensionality below K ÿ 1 will, however,

disturb the class distances. So, now the question arises: How do we

find a subspace in which a projection of the class means preserves

these distances such that the class separability is maintained as

good as possible?
As a part of our approach to this question, the between-class

scatter matrix, SB, is rewritten as follows (see [10] for a proof):

SB �
XKÿ1

i�1

XK
j�i�1

pipj�mi ÿmj��mi ÿmj�T : �2�

Notice that the decomposition enables us to write the between-

class scatter matrix in terms of class-mean differences and that the

term �mi ÿmj��mi ÿmj�T is actually the between-class scatter
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matrix for the classes i and j in a two-class model. Using this

decomposition in (1), we obtain for the Fisher criterion

JF�A� �
XKÿ1

i�1

XK
j�i�1

pipjtr��ASWAT �ÿ1�ASijA
T ��; �3�

where Sij :� �mi ÿmj��mi ÿmj�T . Hence, we see that the K-class

Fisher criterion can be decomposed in 1
2K�K ÿ 1� two-class Fisher

criteria. In this context, we refer to these criteria as pairwise Fisher

criteria.
Now, to simplify the further discussion, assume the pooled

within-class scatter matrix to equal the n� n-identity matrix In and

assume that the rows of A are scaled to be orthonormal: AAT � Id.

These restrictions do not effect the validity of our final conclusions

(see Section 3.3). We then obtain the following expression for the

Fisher criterion (3):

JF�A� �
XKÿ1

i�1

XK
j�i�1

pipj�
2
ij;

where �2
ij :� tr�ASijA

T � � �Ami ÿAmj�T �Ami ÿAmj� is the

squared distance between the means of class i and class j in the

dimension reduced model. Hence, we see that the LDA solution

to LDR is the linear transformation that maximzes the mean

squared distance between the classes in the lower-dimensional

space. This, however, is clearly different from minimizing the

classification error.
To illustrate that, consider an n-dimensional model that is to be

reduced to one dimension. Assume that one class is located

remotely from the other classes and can be considered an outlier. In

this case, the direction to project on found by optimizing the

Fisher criterion is the one that separates the outlier as much from

the remaining classes as possible. In maximizing the squared

distances, pairs of classes, between which there are large distances,

completely dominate the eigenvalue decomposition. As a conse-

quence, there is a large overlap among the remaining classes,

leading to an overall low and suboptimal classification rate. Hence,

in general, LDR by LDA is not optimal with respect to minimizing

the classification error rate in the lower-dimensional space.

Because outlier classes dominate the eigenvalue decomposition,

the LDR transform obtained tends to over-weight the influence of

classes that are already well-separated.

3 WEIGHTED PAIRWISE FISHER CRITERIA

3.1 Reduction to One Dimension

We now modify the Fisher criterion such that it is more closely

related to the classification error. However, we would like to keep

the general form of (3) because then the optimization can again be

carried out by solving a generalized eigenvalue problem without

having to resort to complex iterative optimization schemes. To do

so, (3) is generalized by introducing a weighting function !:

J!�A� �
XKÿ1

i�1

XK
j�i�1

pipj!��ij�tr
ÿ
ASWAT

�ÿ1ÿ
ASijA

T
�� �
; �4�

where ! : IR�0 ! IR�0 is a weighting function that depends on the

Mahanalobis distance

�ij :�
������������������������������������������������������
�mi ÿmj�TSÿ1

W �mi ÿmj�
q

between the classes i and j in the original model. We call these

criteria weighted pairwise Fisher criteria. This is a reasonable

extension because the Bayes error between two classes also

depends on the Mahanalobis distance.

Finding a solution L that optimizes such a criterion is similar to
optimizing the Fisher criterion and comes down to determining an
eigenvalue decomposition of the matrix

Sÿ1
W

XKÿ1

i�1

XK
j�i�1

pipj!��ij�Sij �5�

and taking the rows of the d� n-matrix L to equal the
d eigenvectors corresponding to the d largest eigenvalues. Clearly,
choosing ! to be the constant function that maps �ij to 1 results in
the ordinary Fisher criterion.

We would like to introduce a weighting function such that the
contribution of each class pair depends on the Bayes error rate
between the classes. Let us again assume that SW � In and, hence,
�ij equals the ordinary Euclidean distance. (The general case is
discussed in Section 3.3.) Then, a mean pairwise accuracy criterion
can be stated as follows:

JA�A� :�
XKÿ1

i�1

XK
j�i�1

pipjAij�A�: �6�

Here, Aij�A� denotes the accuracy (one minus Bayes error) with
respect to the classes i and j in the lower-dimensional model
obtained by the transformation A. Note that this criterion is
different from a maximization of the Bayes accuracy of the K-class
problem.

To illustrate what additional approximations we choose to

introduce to bring the pairwise accuracy criterion into the form of

(4), let us first consider a two-class model which is to be projected

onto one dimension. The model is depicted in Fig. 1a. It consists of

two normally distributed classes i and j having identity covariance

matrices and equal a priori probability. The distance between the

means is denoted by �ij � kmijk � kmi ÿmjk. Furthermore, the

vector v denotes the vector we project the model on in going from

two dimensions to one. This vector equals v � �cos�; sin��, where

� is the angle between v and the axis perpendicular to mij.

The accuracy Aij in the one-dimensional model obtained after

projection onto v can be expressed in terms of � and �ij: Aij�v� �
1
2 � 1

2 erf
�ijj sin�j

2
��
2
p

� �
, which equals one minus the Bayes error of two

normal distributed classes with variance one and distance

�ijj sin�j between the class means. On the other hand, (4) reads

for this particular model

J!�v� �
XKÿ1

i�1

XK
j�i�1

pipj!��ij�tr�vSijv
T � �7�

(with K � 2), where the matrix A has been replaced by the row
vector v since we are reducing the dimension to 1. Note that the two
criteria (7) and (6) are not equal for all values of� (see Figs. 1b and 1c).

We have chosen to approximate (6) by an expression of the form

(7) such that there is equality (up to a additive constant of 1
2) at the

extreme values of �, i.e., where � equals 0; �=2 and �. This results in

the following weighting function: !��ij� � 1
2�2

ij

erf
�ij

2
��
2
p

� �
. To see this,

let v be a vector in the direction of mij, i.e., v � mij

kmijk . Then, we obtain

for the summand in (7),

!��ij�tr�vSijv
T �� �

1

2�2
ij

erf
�ij

2
���
2
p

� �
mT

ij

kmijkmijm
T
ij

mij

kmijk �
1

2
erf

�ij

2
���
2
p

� �
;
�8�

which is exactly the value of the accuracy for� � �
2 , up to an additive

constant of 1
2. The constant, however, does not influence the

optimization. If v is perpendicular to mij (i.e., � � 0; �), then
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tr�vTSijv� is zero and again the Bayes accuracy, up to a constant 1
2,

results.

In Fig. 1, we illustrate the kind of approximation that is

obtained by expression (7) for two values of �ij; the graphs of

Aij�v� (solid curves) and the approximation with a constant of 1
2

added (dashed curves) are plotted against the variable �. We see

that the approximation underestimates the accuracy, except in the

extrema of the accuracy, where it exactly equals the accuracy.

3.2 Reduction to Multiple Dimensions

Unfortunately, (7) only provides an approximation of the mean

pairwise accuracy if we reduce the dimension to one since v is a

vector. In the general case of reducing to d dimensions with d � 1,

we apply a procedure similar to LDA: Determine an eigenvalue

decomposition of (5) and take the rows of the LDR transformation

L to equal the d eigenvectors corresponding to the d largest

eigenvalues. This matrix L maximizes (4). To see that this

procedure delivers the equivalent approximation to the pairwise

accuracy as the technique described in Section 3.1 did for the

reduction to one dimension, consider the following argument.
Because we still assume that SW � In, L is built up of

eigenvectors of
P P

pipj!��ij� Sij (N.B., we leave out the limits

of the sums when the formulas are in the text), which is a

symmetric matrix, hence there are orthogonal eigenvectors, which

we denote by e1 to ed. Using this, we can write out (4), with L �
�e1; . . . ; ed�T substituted for A, as follows:

J!�L� �
Xd
m�1

XKÿ1

i�1

XK
j�i�1

pipj!��ij�tr�eTmSijem�: �9�

Notice that every term
PP

pipj!��ij�tr�eTmSijem� in (9) is similar to

(7). We see that maximizing J! means that we determine those d

orthogonal directions for which the sum of the accuracies in these

directions is maximal. Furthermore, assuming that the eigenvector

em corresponds to the mth largest eigenvalue, we see that e1 is the

direction in which the approximate mean pairwise accuracy is

maximal. The eigenvector e2 is, in fact, also an eigenvector that

maximizes this accuracy, however, now under the restriction that its

direction is perpendicular to e1. The same holds for e3, which should

be perpendicular to e1 and e2, etc. Hence, the mth eigenvector em
determines the direction that attains the maximal approximate

mean pairwise accuracy in the �nÿm� 1�-dimensional space that is

perpendicular to the space spanned by the eigenvectors e1 to emÿ1.

Our criterion (4), with !��ij� � 1
2�2

ij

erf
�ij

2
��
2
p

� �
, approximates the

mean accuracy among pairs of classes, hence, we call it an

approximate pairwise accuracy criterion (aPAC).

3.3 General Within-Class Scatter Matrix

In this section, we generalize our findings to a model, where the

within-class scatter matrix SW no longer equals the identity matrix.

Applying the linear transform S
ÿ1

2

W to the original statistical

model, we obtain a new statistical model in which the within-class

scatter matrix equals the identity matrix. Hence, in this model,

distances �ij come down to the ordinary Euclidean distance
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Fig. 1. (a) A two-class model in which v, determined by the angle �, is the vector to project on. (b) and (c) Illustration of the Bayes accuracy, Aij�v� � 1
2� 1

2 erf
�ij j sin�j

2
��
2
p

� �
,

(solid line) and the approximation (dashed line) versus angle � for the two-class model of (a) for two different values of �ij: (b) �ij � 1, (c) �ij � 9:



between class means. For a model in which the within-class scatter

matrix equals In, we already argued that J!, as defined in (9), is a

good LDR criterion. Now, let L0 be a d� n-matrix that maximizes

J!. This LDR transform can also be used for reducing the

dimension of the original statistical model: We simply use L0Sÿ
1
2

W

as the LDR transformation, i.e., the original feature vectors are first

transformed to the new statistical model by means of S
ÿ1

2

W and

afterward reduced in dimension by L0.
We now show that L0Sÿ

1
2

W maximizes the weighted pairwise

Fisher criterion in the original model. This in turn shows that

we can determine and maximize this criterion directly for the

original model without explicitly transforming the original

model to a new model in which the within-class scatter matrix

is In. To prove the former statement, let em be an eigenvector

of
PP

pipj!��ij�Sÿ
1
2

WSijS
ÿ1

2

W , which is the generalized between-

class scatter matrix after applying S
ÿ1

2

W . Hence, L0, which

maximizes the weighted pairwise Fisher criterion in this model,

is built up of these eigenvectors em. Now, let �m be the

eigenvalue associated with em and notice that the distances �ij

between pairs of class-means are equal for every pair �i; j� in

both models. Regarding the foregoing, we can write the

following identities:

Sÿ1
W

XX
pipj!��ij�Sij

� �
S
ÿ1

2

W em

� S
ÿ1

2

W S
ÿ1

2

W

XX
pipj!��ij�SijSÿ

1
2

W em

� S
ÿ1

2

W

XX
pipj!��ij�Sÿ

1
2

W SijS
ÿ1

2

W em � S
ÿ1

2

W �mem � �mS
ÿ1

2

W em:

This shows that, if em is an eigenvector of
PP

pipj!��ij�Sÿ
1
2

WSij S
ÿ1

2

W

with associated eigenvalue �m, then S
ÿ1

2

W em is an eigenvector of Sÿ1
WPP

pipj!��ij�Sij with the same associated eigenvalue �m. This in

turn shows that L0Sÿ
1
2

W � �S
ÿ1

2

W e1; . . . ;S
ÿ1

2

W ed�T maximizes the

weighted pairwise Fisher criterion in the original model because it

is built up of the d eigenvector associated with the d largest

eigenvalues.
We conclude that an LDR transformation of the form L0Sÿ

1
2

W can
be found directly in the original model by maximizing J! as
defined in (4), which is done by means of a simple eigenvalue
decomposition, as in LDA.

4 EXPERIMENTAL RESULTS

In order to test the LDR transformation obtained by means of the
aPAC we performed two experiments, one on artificial data and
one on real data. See, also, [4] for a more extensive description of
the experiments.

In the artificial problem, we assume known class means and

equal class covariance matrices In. A set of 30 class means is

generated from a 30-dimensional normal distribution with covar-

iance matrix 4In. Prior probabilities are assumed to be equal for all

classes, i.e., 1
30 . Linearly reduced subspaces with dimensions 1 to

29, for which the Fisher criterion and the aPAC are maximal and

which are obtained by projecting the original space with the

transformation L, are computed. The linear separability of these

subspaces is estimated by a Monte Carlo procedure. Classification

errors averaged over 10 experiments are shown in Fig. 2a for

standard LDA and for the aPAC criterion.

For comparison purposes, Fig. 2a also includes results obtained

by an �n; d; n� autoassociative neural network (denoted NN-PCA).

It has linear neurons in the hidden layer, which thereby constructs

the linear subspace, and a sigmoidal transfer function at the

output, see [12]. As can be seen in Fig. 2a, the neural network

procedure performs similiarly as the aPAC approach for low-

dimensionalities. For larger dimensionalities, however, it performs

significantly worse in our implementation (we used Matlab's

Neural Network Toolbox). Moreover, it needs significantly more

computational effort.

For the real data set, we used the Landsat data set as used in the

Statlog project [11]. This is a 6-class problem with 36 features. It

consists of a total of 6,435 objects, of which 4,435 are in the training

set and the remaining 2,000 are in the test set. The three methods

are used again for finding subspaces of one to five dimensions, this

time including the prewhitening step as means and variances are

unknown. For each subspace, a linear classifier assuming normal

densities is computed on the training data used for obtaining the

mapping. Resulting test errors, shown in Fig. 2b, confirm the

results of the artificial problem: The nonlinear criteria improve

standard LDA with the aPAC being superior to the neural

network.
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Fig. 2. (a) Classification error rate as a function of subspace dimensionality for

artificial problem with 30 classes and 30 features. (b) Classification error rate as a

function of subspace dimensionality for Landsat data set.



5 CONCLUSIONS

In this paper, we proposed a new class of computationally

inexpensive LDR criteria which generalize the well-known Fisher

criterion used in LDA. Noting that the K-class Fisher criterion can

be decomposed into 1
2K�K ÿ 1� two-class Fisher criteria, the

generalization is obtained by introducing a weighting of the

contributions of individual class pairs to the overall criterion.

An important property of the criteria we presented here is that

they can be designed to confine the influence of outlier classes on

the final LDR transformation. This makes them more robust than

LDA. However, it cannot be guaranteed that the new criteria

always lead to improved classification rate because of the various

approximations we had to introduce to arrive at a solution which is

computationally simple.

An interesting subclass of these criteria are the approximate

pairwise accuracy criteria (aPAC). These aPAC take into account

classification errors occurring between pairs of classes, unlike the

Fisher criterion that is merely based on measures of spread. In the

article, we investigated one particular aPAC and compared its

performance to that of LDA in two experiments, one on artificial

data and one on real-world data. The experiments clearly showed

the improvement that is possible when utilizing aPAC instead of

the Fisher criterion.
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