
Linear Dimensionality Reduction via a
Heteroscedastic Extension of LDA:

The Chernoff Criterion
Marco Loog and Robert P.W. Duin, Member, IEEE

Abstract—We propose an eigenvector-based heteroscedastic linear dimension reduction (LDR) technique for multiclass data. The

technique is based on a heteroscedastic two-class technique which utilizes the so-called Chernoff criterion, and successfully extends

the well-known linear discriminant analysis (LDA). The latter, which is based on the Fisher criterion, is incapable of dealing with

heteroscedastic data in a proper way. For the two-class case, the between-class scatter is generalized so to capture differences in

(co)variances. It is shown that the classical notion of between-class scatter can be associated with Euclidean distances between class

means. From this viewpoint, the between-class scatter is generalized by employing the Chernoff distance measure, leading to our

proposed heteroscedastic measure. Finally, using the results from the two-class case, a multiclass extension of the Chernoff criterion

is proposed. This criterion combines separation information present in the class mean as well as the class covariance matrices.

Extensive experiments and a comparison with similar dimension reduction techniques are presented.

Index Terms—Linear dimension reduction, linear discriminant analysis, Fisher criterion, Chernoff distance, Chernoff criterion.
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1 INTRODUCTION

LINEARLY reducing the dimensionality of the features
space, i.e., feature extraction, is a common technique in

statistical pattern recognition typically used to lower the size
of statistical models and overcome estimation problems,
often resulting in an improved classifier accuracy in this
lower-dimensional space.Linear discriminant analysis (LDA) is
probably themost well-known approach to supervised linear
dimension reduction (LDR). This classical technique was
developed by Fisher [9] for the two-class case and extended
by Rao [21] to handle the multiclass case.

In LDA, a transformation matrix from an n-dimensional
feature space to a d-dimensional space is determined such that
the Fisher criterion of between-class scatter over within-class
scatter is maximized (cf. [8], [10], [12], [18]). An attractive
feature of LDA is the fast and easy way to determine this
optimal linear transformation, only requiring simple matrix
arithmetics. A limitation of LDA is that it merely tries to
separate class means as good as possible and it does not take
the discriminatory information that is present in the
difference of the covariance matrices into account. It is
incapable of dealing explicitly with heteroscedastic data, i.e.,
data in which classes do not have equal covariance matrices.
This limitation becomes very apparent in the two-class case,
in which a reduction to only a single dimension is possible

(cf. [10]), while theK-class case allows only for a reduction to
at mostK � 1 dimensions.

When linearly reducing the dimensionality, the
K � 1 dimensions do not necessarily contain all the
relevant data for the classification task and even if
K � 1 dimensions do so, it is not clear that LDA will
discern them. Taking the heteroscedasticity of the data
into account, we develop an LDR technique that extends
and improves upon classical LDA. This extension is
obtained via the use of directed distance matrices
(DDMs) [15], which can be considered generalizations
of the between-class scatter matrix. The between-class
scatter matrix, as used in LDA, merely takes into
account the discriminatory information that is present
in the pairwise differences of class means and can be
associated with the squared Euclidean distance between
pairs of class means.

The specific heteroscedastic extension of the Fisher
criterion, studied more closely in Sections 2 and 3, is based
on the Chernoff distance [4], [5]. This measure of affinity of
two densities considers mean differences as well as
covariance differences—as opposed to the Euclidean dis-
tance—and is used to extend LDA. Section 2 discusses the
LDA extension for two-class data as proposed in an earlier
article [16]. In Section 3, we come to our heteroscedastic
multiclass measure, which extends LDA, by comparing the
K classes in a pairwise fashion and using the two-class
measure as a building block. While doing so, we retain the
attractive feature of quickly and easily determining a
dimension reducing transformation, as with LDA. Further-
more, we are able to reduce the data to any dimension d
smaller than n and not only to, at most, K � 1 dimensions.

In Section 4.2 of [10], Fukunaga discusses several ways of
extending the linear classifiers to unequal covariance
matrices and nonnormal distributions. The criteria derived
can also be used for the purpose of dimensionality reduction.
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However, besides the fact that they aremerely derived for the

two-class case and not readily extendible to the multiclass

case, the criteria essentially give a single LDR vector that

takes the difference between the class means into account. In

addition, some of the approaches need an iterative optimiza-

tion procedure.
Several alternative approaches to heteroscedastic LDR

(HLDR) are known of which we mention the following

ones. See also [8], [10], and [18], and references therein.
Under the assumption that all classes are normally

distributed, [23] gives a computationally demanding ap-

proach to solving the LDR problem by minimizing the

actual Bayes error in the linearly reduced space. This is

done using simulated annealing in combination with an

exact integration over the lower-dimensional feature space.
Straightforward extensions of the Fisher criterion were

proposed in [7] and [20], the former of which is based on the

Kullback divergence. As opposed to our criterion, their

iterative optimization procedures are clearly more complex

than optimizing the Fisher criterion. A broad overview of

feature extraction techniques based on probabilistic separ-

ability and interclass distance measures—some of them

related to the previous mentioned techniques—can be

found in [8]. Again, mostly, time-consuming iterative

procedures should be employed to optimize these criteria.
Different extensions of Fisher’s LDA are given by

Hastie et al., see [11]. We mention penalized discriminant

analysis (PDA), which can also be used for the purpose of

LDR. By means of regularization, PDA is able to deal with

data in which one has many highly correlated features and

LDA would suffer from overfitting. However, PDA does

not explicitly use the discriminatory information present

in the covariance terms as the Chernoff criterion does. We

note that the regularizations suggested for PDA are

readily applicable within our approach.
Another multiclass HLDR procedure, which is based on

a maximum-likelihood formulation of LDA, is studied in

[13]. Here, LDA is generalized by dropping the assumption

that all classes have equal within-class covariance matrices

and iteratively maximizing the likelihood for this model.
Of the computationally intensive methods, we finally

mention the nonparametric approaches presented in [3] and

[14]. These techniques work directly on the data and try to

maintain as much of the separation information as possible

in the lower-dimensional space. The amount of separability

in the subspace is measured using a certain nearest-

neighbor procedure, which accounts for a large part of the

computational complexity. Comparable to these approaches

is the one given in [8] based on Parzen estimates.
Two fast LDR methods based on the singular value

decomposition (svd) were introduced in [24] and [2],

respectively. The first one by Tubbs et al. presents an

HLDR method while the latter is Mahalanobis distance-

based and basically homoscedastic. We describe both

methods in some more details in Section 4, where we also

compare our noniterative method to theirs and to LDA on

12 real-world data sets from the UCI Repository [19].
Section 5 completes the paper with a discussion and the

conclusions.

2 THE CHERNOFF CRITERION: TWO-CLASS CASE

2.1 The Fisher Criterion

LDR is concerned with the search for a linear transformation
that reduces thedimension of a givenn-dimensional statistical
model to d (d < n) dimensions, while maximally preserving
the discriminatory information for the several classes within
the model. Due to the complexity of utilizing the Bayes error
as the criterion to optimize, one resorts to suboptimal criteria.
LDA is such a suboptimal approach. It determines a linear
mapping L, a d� n-matrix, that maximizes the so-called
Fisher criterion JF [10], [12], [15], [21]:

JFðAÞ ¼ trððASWAtÞ�1ðASBA
tÞÞ: ð1Þ

Here, SB :¼
PK

i¼1 piðmi � �mmÞðmi � �mmÞt and SW :¼
PK

i¼1 piSi

are the between-class and the average within-class scatter
matrix, respectively; K is the number of classes, mi is the
mean vector of class i, pi is its a priori probability, and the
estimated overall mean �mm equals

PK
i¼1 pimi. Furthermore, Si

is the within-class covariance matrix of class i, and A is a
d� n-matrix. From (1), we see that LDA maximizes the ratio
of between-class scatter to average within-class scatter in the
lower-dimensional space. Optimizing (1) comes down to
determining an eigenvalue decomposition of S�1

W SB, and
taking the rows of L to equal the d eigenvectors correspond-
ing to the d largest eigenvalues [8], [10].

This section focuses on the two-class case, in which case
we have SB ¼ p1 p2ðm1 �m2Þðm1 �m2Þt [10], [15], [16],
SW ¼ p1S1 þ p2S2, and p1 ¼ 1� p2. Note that, in this case,
the rank of SB is 1—assuming unequal class means and, so,
we can only reduce the dimension to 1. According to the
Fisher criterion, there is no discriminatory information in
the features, apart from this single dimension.

2.2 Directed Distance Matrices

For now, assume that the data is linearly transformed such
that thewithin-class covariancematrixSW equals the identity
matrix, then JFðAÞ equals trððAAtÞ�1ðAp1 p2 ðm1 �m2Þ
ðm1 �m2ÞtAtÞÞ, which is maximized by taking the eigenvec-
tor v associated with the largest eigenvalue � of the matrix
SE :¼ ðm1 �m2Þðm1 �m2Þt. (Note that SB ¼ p1 p2 SE) This
matrix has only one nonzero eigenvalue which equals
� ¼ trððm1 �m2Þðm1 �m2ÞtÞ ¼ ðm1 �m2Þtðm1 �m2Þ,with
associated eigenvector v ¼ m1 �m2. Note that the eigenva-
lue equals the squared Euclidean distance, denoted by @E ,
between the two-class means.

The matrix SE :¼ ðm1 �m2Þðm1 �m2Þt not only gives us
the distance between two distributions, but it also provides
the direction, by means of the eigenvectors, in which this
specific distance can be found. As a matter of a fact, if both
classes are normally distributed and have equal covariance
matrices, there is only distance between them in the
direction v and this distance equals �. All other eigenvectors
have eigenvalue 0, indicating that there is no distance
between the two classes in these directions. Indeed, reducing
the dimension using one of these latter eigenvectors results in
a complete overlap of the classes: There is no discriminatory
information in these directions, the distance equals 0.

The idea behind directed distance matrices (DDMs) is to
give a generalization of SE and, hence, SB [15]. If there is
discriminatory information present because of the hetero-
scedasticity of the data, then this should become apparent in
the DDM. This extra distance due to the heteroscedasticity is,

LOOG AND DUIN: LINEAR DIMENSIONALITY REDUCTION VIA A HETEROSCEDASTIC EXTENSION OF LDA: THE CHERNOFF CRITERION 733



in general, in different directions than the vector v which
separates the means and, so, DDMs have more than one
nonzero eigenvalue.

The specific DDM we propose is based on the Chernoff
distance @C between two probability density functions d1
and d2

@C :¼ � log

Z
d�1 ðxÞ d1��

2 ðxÞdx;

where � 2 ð0; 1Þ is a constant.1

For two normally distributed densities, it equals2 [4], [5]

@C ¼ðm1 �m2Þtð�S1 þ ð1� �ÞS2Þ�1ðm1 �m2Þ

þ 1

�ð1� �Þ log
jð�S1 þ ð1� �ÞS2Þj

jS1j�jS2j1��
:

ð2Þ

Like @E , we can obtain @C as the trace of a positive

semidefinite matrix SC (cf. [15]):

SC :¼S�1
2ðm1 �m2Þðm1 �m2ÞtS�1

2

þ 1

�ð1� �Þ ðlogS� � logS1 � ð1� �Þ logS2Þ;
ð3Þ

where S :¼ �S1 þ ð1� �ÞS2, S
�1

2 is the inverted square root

and logS is the logarithm3 of S.
To see that the trace of SC equals @C , write out trSC :

trSC ¼ trðS�1
2ðm1 �m2Þðm1 �m2ÞtS�1

2Þ

þ tr
1

�ð1� �Þ ðlogS� � logS1 � ð1� �Þ logS2Þ
� �

¼ trððm1 �m2ÞtS�1ðm1 �m2ÞÞ

þ 1

�ð1� �Þ ðtrðlogSÞ � � trðlogS1Þ

� ð1� �Þ trðlogS2ÞÞ
¼ ðm1 �m2ÞtS�1ðm1 �m2Þ

þ 1

�ð1� �Þ ðlog jSj � � log jS1j � ð1� �Þ log jS2jÞ:

Finally, recalling that S :¼ �S1 þ ð1� �ÞS2 and combining
the three logarithms into a single one, we see that the
resulting expression equals (2).

We want the final criterion to be an extension of Fisher’s,
so if the data is homoscedastic, i.e., S1 ¼ S2, we want SC to
equal SE . This suggests setting � equal to p1, from which it
directly follows that 1� � equals p2. The link with
homoscedastic LDA is clear from the foregoing.

To exemplify the behavior of the matrix SC in the
heteroscedastic case we consider the other extreme case in
which the means are taken to be equal, i.e., m1 ¼ m2. In
addition, assume thatS1 andS2 are diagonal, diagða1; . . . ; anÞ

and diagðb1; . . . ; bnÞ, respectively, but not necessarily equal.
Because � ¼ p1, and �S1 þ ð1� �ÞS2 ¼ I (by assumption),
we have

SC ¼ 1

p1 p2
diag log

1

ap11 b
p2
1

; . . . ; log
1

ap1n b
p2
n

� �
: ð4Þ

On the diagonal of SC are the Chernoff distances of the
two densities if the the dimension is reduced to one in
the associated direction, e.g., linearly transforming the
data by the n-vector ð0; . . . ; 0; 1; 0; . . . ; 0Þ, where only the
dth entry is 1 and all the others equal 0, would give us
a Chernoff distance of 1

p1 p2
log 1

a
p1
d
b
p2
d

in the one-dimen-
sional space. Hence, determining a LDR transformation
by an eigenvalue decomposition of the DDM SC , means
that we determine a transform which preserves as much
of the Chernoff distance in the lower dimensional space
as possible.

In view of the two cases above, we argue that our
suggested DDM gives eligible results. In addition, we argue
that this even holds if we do not have equality of means or
covariance matrices because, also in this case, we obtain a
solution that is based on the Chernoff distance, which is a
certain weighted combination of both extreme cases above.
In conclusion, the DDM SC captures differences in covar-
iance matrices and indeed gives an extension of the
homoscedastic DDM SE .

2.3 The Two-Class Chernoff Criterion

IfSW ¼ I,JFðAÞequals trððAAtÞ�1ðp1 p2 ASEA
tÞÞ.Therefore,

in this case, regarding the discussion in the foregoing section,

we simply substitute SC for SE , to obtain a heteroscedastic

generalization of the Fisher criterion. In case SW 6¼ I, we first

transform thedata byS
�1

2

W , sowe dohaveSW ¼ I. In this space,

the criterion is determined—which for LDA equals

trððAAtÞ�1ðp1 p2 AS
�1

2

WSES
�1

2

WAtÞÞ

and then transformed back to the original space using S
1
2

W .
For the Fisher criterion this would finally result in

trððAS
1
2

WS
1
2

WAtÞ�1ðp1 p2 ASEA
tÞÞ;

which equals (1), as if it was determined directly in the
original space. Using SC instead of SE , this procedure leads
to the following heteroscedastic extension.

Definition. The heteroscedastic two-class Chernoff criterion JC
is defined as

JCðAÞ :¼ trððASWAtÞ�1ðp1 p2 Aðm1 �m2Þ
� ðm1 �m2ÞtAt

�AS
1
2

W ðp1 logðS
�1

2

WS1S
�1

2

W Þ

þ p2 logðS
�1

2

WS2S
�1

2

W ÞÞS
1
2

WAtÞÞ:

ð5Þ

3 THE MULTICLASS EXTENSION

In the previous section, we derived the Chernoff criterion
for two-class data (see also [16]). In this section, we turn to
the multiclass case. Based on a certain decomposition of the
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1. In [6], the Chernoff distance is defined as the minimum of @C over all
� 2 ð0; 1Þ.

2. Although the Chernoff distance actually equals �ð1��Þ
2 @C in this case,

this constant factor is of no essential influence on the rest of our discussion.
3. We define the function f , e.g., some power or the logarithm, of a

symmetric positive definite matrix A, by means of its eigenvalue
decomposition RVR�1, with eigenvalue matrix V ¼ diagðv1; . . . ; vnÞ. We
let fðAÞ equal R diagðfðv1Þ; . . . ; fðvnÞÞR�1 ¼ RðfðVÞÞR�1. Although, gen-
erally, A is nonsingular, determining fðAÞ might cause numerical
problems, if the matrix is close to singular. Alleviation of this computational
problem is possible by using the svd instead of an eigenvalue decomposi-
tion, or by properly regularizing A.



between-class scatter matrix, we construct a measure for
HLDR using the two-class criterion as a building block.

3.1 Decomposing the Between-Class Scatter Matrix

The decomposition of the between-class scatter matrix SB

we use to generalize the Chernoff criterion to the multiclass
case is as follows:

SB ¼
XK�1

i¼1

XK
j¼iþ1

pi pjðmi �mjÞðmi �mjÞt

¼
XK�1

i¼1

XK
j¼iþ1

pi pj SEij;

ð6Þ

whereSEij :¼ ðmi �mjÞðmi �mjÞt. (See [15] foraproofof (6)
above.) This decomposition shows how the scatter matrix
captures the divergence of the class mean mi from all other
classmeansmj. For every pair ofmeans the difference vector
mi �mj is determined and the sum of their outer products
forms the between-class scatter.

Based on (6), JF can be decomposed as

JFðAÞ ¼
XK�1

i¼1

XK
j¼iþ1

pi pj trððASWAtÞ�1ðASEijA
tÞÞ: ð7Þ

The foregoing expression allows a decomposition of the
Fisher criterion into a sum of pairwise Fisher criteria. It
consists of sums of Fisher criteria taken all class pairs into
account separately (cf. [15]). Based on this pairwise
decomposed Fisher criterion, we can now generalize the
two-class Chernoff criterion to the multiclass case.

3.2 Weighted Two-Class Chernoff Criteria:
The Heteroscedasticization of Fisher

Initially, as inSection2, thewithin-class scatterSW is assumed
to equal the identity matrix. In this case, the Fisher criterion
equals trððAAtÞ�1ðASBA

tÞÞ, which can be optimized via an
eigenvalue decomposition of the matrix SB. Decomposition
(6) shows thatSB is aweighted sumof pairwiseDDMs and as
such can be considered a DDM itself: Its eigenvectors giving
the direction in which there is distance, their eigenvalues
giving the actual distance. Indeed, carrying out an LDA and
assuming the within-class scatter matrix to be the identity,
LDRisperformedbytakingthoseeigenvectorsofSB forwhich
the associated eigenvalues are largest.

In light of Sections 2.2 and 2.3, and (7), foregoing
considerations lead us to the Chernoff-based, multiclass
extension of the two-class Chernoff criterion.

JCðAÞ :¼
XK�1

i¼1

XK
j¼iþ1

pi pj trððAAtÞ�1ðASCijA
tÞÞ: ð8Þ

In this, SCij is the DDM capturing the Chernoff distance
between class i and j, which is immediately determined by
means of (3).

SCij :¼S
�1

2
ij ðmi �mjÞðmi �mjÞtS

�1
2

ij

þ 1

�i �j
ðlogSij � �i logSi � �j logSjÞ:

ð9Þ

Here, �i :¼ pi=ðpi þ pjÞ, and �j :¼ pj=ðpi þ pjÞ are relative
priors, i.e., only taking the two classes into account that define

the particular pairwise term. Furthermore, Sij is the average
pairwisewithin-class scatter matrix, defined as �i Si þ �j Sj.

Along the same line of reasoning as in Section 2.3, the final
multiclass Chernoff criterion—in which the within-class
scatter is not necessarily the identitymatrix—can be obtained
by first transforming the data such that the within-class
scatter matrix is the identity, then determine the criterion JC
and, finally, do the inverse transformation, leading to

Definition. For a d� n-matrix A, the multiclass measure of
spread JC, the Chernoff criterion, is defined as

JCðAÞ : ¼
XK�1

i¼1

XK
j¼iþ1

pi pj tr
�
ðASWAtÞ�1

�AS
1
2

W

�
ðS�1

2

WSijS
�1

2

W Þ�
1
2S

�1
2

W ðmi �mjÞ

� ðmi �mjÞtS
�1

2

W ðS�1
2

WSijS
�1

2

W Þ�
1
2

þ 1

�i �j
ððlogS�1

2

WSijS
�1

2

W Þ

� �i logðS
�1

2

WSiS
�1

2

W Þ

� �j logðS
�1

2

WSjS
�1

2

W ÞÞ
�
S

1
2

WAt
�
;

ð10Þ

where �i :¼ pi=ðpi þ pjÞ, �j :¼ pj=ðpi þ pjÞ, and Sij :¼
�i Si þ �j Sj.

The Chernoff criterion is maximized in a manner similar
to optimizing the Fisher criterion: First, determine an
eigenvalue decomposition of the n� n-matrix

XK�1

i¼1

XK
j¼iþ1

pi pj S
�1
W � S

1
2

W

�
ðS�1

2

WSijS
�1

2

W Þ�
1
2

� S
�1

2

W ðmi �mjÞðmi �mjÞt

� S
�1

2

W ðS�1
2

WSijS
�1

2

W Þ�
1
2

þ 1

�i �j
ðlogðS�1

2

WSijS
�1

2

W Þ

� �i logðS
�1

2

WSiS
�1

2

W Þ

� �j logðS
�1

2

WSjS
�1

2

W ÞÞ
�
S

1
2

W;

ð11Þ

then take the rows of the transformation matrix L to equal
the d eigenvectors associated with the d largest eigenva-
lues [8], [10].

Note that, in the two-class case, S
�1

2

WSijS
�1

2

W ¼ I, hence, the
foregoing weighted two-class Chernoff criterion boils down
to the original two-class Chernoff criterion (5). Note also
that, if all covariance matrices Si are equal, the Chernoff
criterion equals the Fisher criterion, i.e., JC ¼ JF.

4 EXPERIMENTAL RESULTS

This section compares the performance of the HLDR
transformations obtained by means of the Chernoff criter-
ion—based on an eigendecomposition of the matrix in
(11)—with transformations obtained by the traditional Fisher
criterion. Inaddition, theperformancesof theHLDRmethods
from [24] and [2], are also compared to the performance of the
Chernoff criterion. For some other comparative studies,
between several LDR techniques on several data sets, see,
for example, [1] and [2].
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The method in [24] determines a heteroscedastic dimen-
sion reducing transform by constructing an n� ðnþ 1ÞðK �
1Þ-matrixT thatequalsðm2 �m1; . . . ;mK �m1;S2 � S1; . . . ;
SK � S1), then performing an svd onT ¼ QSVt and, finally,
choosing the column vectors from Q associated with the
largest d singular values as the LDR transformation. As with
our HLDR approach, this approach also allows for LDR to
dimensions larger thanK � 1 (ifK � 1 < n) and up to n.

Similar to the foregoing method is the Mahalanobis

distance-based method from [2], which determines an svd

QSVt of the n� 1
2nðn� 1Þ-matrix

U ¼ ððS1 þ S2Þ�1ðm1 �m2Þ; ðS1 þ S3Þ�1

ðm1 �m3Þ; . . . ; ðSK�1 þ SKÞ�1ðmK�1 �mKÞÞ:

Again, the column vectors from Q associated with the

largest d singular values are chosen as the LDR transforma-

tion. This technique can also be viewed as an extension to

Fisher’s LDA and allows for a reduction of dimensionality

up to d ¼ 1
2KðK � 1Þ (if 1

2KðK � 1Þ � n, see [2]).
Tests were performed on 12 real-world data sets, labeled

(a) to (l), taken from the UCI Repository of machine learning

databases [19] (see Table 1). Instances with missing values

were taken out of the data sets prior to the experiments.
The comparison is based on two different classifiers [8],

[10], [12]:

. the linear classifier assuming all classes to benormally
distributed with equal covariance matrix and

. the quadratic classifier assuming the underlying
distributions to be normal with covariance matrices
that are not necessarily equal.

These two classifiers are chosen because they stay close to
the assumption that most of the relevant information is in
the first and second order central moments, i.e., the means
and the (co)variances. The first classifier merely takes
means and average within-class covariances into account
based upon which linear decision boundaries are con-
structed. The second can cope with all classes having
different means and covariance matrices and allows the
decision boundaries to be quadratic.

4.1 The Experimental Setup

For every of the 12 data sets and for every possible d to

reduce the dimension to, the experiment described below is

conducted a hundred times.

1. The data set is randomly split into a test and a train
set. The test set contains (approximately) 10 percent
of the data, while the train set contains the
remaining 90 percent.

2. A PCA is performed on the train set after which all
principal components with an eigenvalue smaller
than one millionth of the total variance, i.e., the trace
of the total covariance matrix, are discarded. In this
way, problems related to (near) singular covariance
matrices are avoided and all four transformations
can be properly determined. See Table 1 for the data
dimensionalities before and after PCA. Note that for
most data sets all principal components are retained.

3. Using the transformed train data, we determine the
four LDR transformations (or less, if a reduction to
d dimensions is not possible with a certain transfor-
mation, i.e., the Fisher-based and the Mahalanobis
distance-based transformations) and reduce the di-
mensionality of the train data to d.

4. In the d-dimensional reduced feature space, we
determine the linear and the quadratic classifier using
the train data and, subsequently, classify the test data
after transforming its instances in the sameway as the
train instances. The classification error is estimated on
the test data.

4.2 Analysis of Results

The per data set-performances of the several LDR techniques

are compared. To this end, per classifier, data set and

dimension d, the mean estimated classification error over

the hundred runs is determined. This gives a final estimate of

the classification error for the respective settings. For every

LDR transform, only the optimal dimensionality to reduce

the data to and the corresponding mean classification error

(MCE) is reported. (Our method, as well as the other

methods, give no direct means to determine an optimal
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TABLE 1

The 12 data sets taken from [19] used in the experiments. Information is provided on initial dimensionality n, dimensionality after principal component
analysis PC, number of classes K, and number of total instances N.



dimensionality to reduce to. However, the observed optimal
MCEs give an indication of the attainable performance and
can be used to compare the several approaches.) These
numbers are presented in Table 2 and Table 3. The overall
optimalMCEover all transforms is typeset in bold anda “*” is
added in superscript. In bold are the transforms that also
give, in comparison to the optimal transformation, statisti-
cally indiscernible classification errors. For this, results are
compared using a signed rank test in which the desired level
of significance is set to 0.01 (see [22]). If it is possible to attain
an MCE not significantly different—again based on a signed
rank test—from the optimal one in a lower-dimensional
space, this is indicated by the second integer in parentheses
on the right of the /. Tables 2 and 3 also give the MCE
obtained when not performing an LDR.

We start with two general observations: First, the
quadratic classifier performs, in general, better for most data
sets. The two exceptions are data sets (g) and (l). This may
indicate that in most data sets, there is indeed separation
information present in the second ordermoments of the class
distributions. Second, we see that LDR indeed can improve
the accuracy of the classifier in most cases. Note, although,
that this is not always the case (take, for example, data set (i)
and the quadratic classifier) and if it does hold the
improvements are sometimes not very convincing.However,
even if the error rate does not drop considerably, the feature
dimensionality often does and we can attain similar error
rates in feature spaces having much lower dimensionality
than the initial space. Very often even a reduction to a single
dimension is possible.
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TABLE 2

ObservedMCEand optimal dimensionality (d) for the 12 data dets (a) to (l), Using the linear classifier and the four different LDR techniques indicated by
“Fisher,” “Chernoff, ” “Tubbs” [24], and “Mahalanobis” [2]. Optimal observedMCE per data set is typeset in bold and a superscript * is added. In bold are
the MCEs for transforms that also give, in comparison to the optimal transformation, indiscernible MCEs based on a signed rank test with significance
level 0.01.AnMCE ina lower-dimensional space indiscernible from theoptimal one, is indicatedby thesecond integer in parentheseson the right of the /.
The estimated MCE using no LDR is below “Full.”

TABLE 3

ObservedMCEand optimal dimensionality (d) for the 12 data sets (a) to (l), using the quadratic classifier and the four different LDR techniques indicated
by “Fisher,” “Chernoff,” “Tubbs” [24], and “Mahalanobis” [2].Optimal observedMCEperdata set is typeset in bold andasuperscript * is added. Inboldare
the MCEs for transforms that also give, in comparison to the optimal transformation, indiscernible MCEs based on a signed rank test with significance
level 0.01.AnMCE ina lower-dimensional space indiscernible from theoptimal one, is indicatedby thesecond integer in parentheseson the right of the /.
The estimated MCE using no LDR is below “Full.”



In case of using the linear classifier (see Table 2), we see
that in nine of the 12 data sets the Chernoff criterion was
ranked among the best. In six cases, it provides the overall
optimal LDR (indicated by the “*”s). The second best is LDR
based on the Fisher criterion: In eight of the 12 cases, it is
ranked among the best, and in five cases, it provides the
optimal result. Both criteria produce in two cases an MCE
that is significantly less in comparison to the other three
MCEs: For the Fisher criterion these are data sets (j) and (k),
for the Chernoff criterion (b) and (d). However, the
performance improvement of Chernoff on data set (b) is,
although significant in comparison to the other three, not
very large. The same holds for the Fisher criterion on data
set (j). The technique of Tubbs et al. provides the single
optimal MCE on data set (f). The Mahalanobis distance-
based approach is on none of the data sets the sole optimal
technique. Note also that the Fisher criterion gives generally
lower-dimensional data set representations as best solution.

For the classification results by a quadratic classifier
(Table 3), the observations are different. The Mahalanobis
distance-based technique performs relatively much better
now. It ranks in eight of the 12 times among the best and
provides in four cases the overall optimal results. In addition,
for data set (j), it is significantly better compared to the three
other transforms. However, again the Chernoff criterion
scores best: In 11 of the 12 data sets, it ranks between the best
performing LDR techniques, in eight of these cases it
produces the optimal transform, and in two cases it provides
the single optimal representation significantly better than the
other three representations.Using thequadratic classifier, the
results for the Fisher criterion get relatively worse.

Specifically comparing Chernoff to Fisher, the experi-
ments show that, especially when using a quadratic
classifier, Chernoff can improve significantly upon Fisher
(in four out of 12 data sets). When using the linear classifier,
Fisher can improve significantly upon Chernoff, which we
see in two of the 12 instances. However, Chernoff now gives
a significant improvement in three cases. In general, the
Chernoff approach compares favorable to Fisher’s LDA,
giving only inferior results in very few cases.

5 DISCUSSION AND CONCLUSIONS

The linear dimension reduction (LDR) criterion presented
in this paper extends the well-known Fisher criterion, as
used in linear discriminant analysis (LDA), in a way that it
can also deal with the heteroscedasticity of the data, i.e., it
takes into account differences in within-class covariance
matrices and the discriminatory information therein. After
establishing the link between the squared Euclidean
distance between classes and the Fisher criterion, the two-
class heteroscedastic Chernoff criterion is defined by means
of the Chernoff distance between two classes using the
notion of directed distance matrices. Subsequently, the
multiclass Chernoff criterion is constructed via a certain
decomposition of the multiclass Fisher criterion in multiple
two-class Fisher criteria. Substituting these two-class Fisher
criteria by the two-class Chernoff criterion finally leads to
our multiclass Chernoff criterion. Using the latter criterion,
we can compute a LDR transform in a simple and efficient

way comparable to LDA. It merely uses standard matrix
arithmetics, avoiding complex or iterative procedures.

Using 12 data sets from the UCI Repository (Table 1), we
compared our technique to Fisher’s LDA and to two singular

value decomposition-based methods for dimensionality
reduction. One of these, the technique from [24], can also
deal with heteroscedastic data. The other approach, which is

Mahalanobis distance-based, is primarily homoscedastic and
more directly related to the Fisher criterion (see [2]).

The experiments showed the clear improvements possible
when using the Chernoff criterion instead of Fisher’s. The

improvements are slightly better in caseswhere the quadratic
classifier isused.Thismaybedue to the fact that thequadratic
classifier takes secondorder information intoaccount, asdoes

the Chernoff criterion. In general, and not only compared to
LDA, theChernoff criteriongivesbetter results in caseswhere
the quadratic classifier is used. For the latter, Chernoff ranks

among the best transforms in 11 of the 12 cases, while for the
linear classifier this is nine out of 12.

The performance of the Chernoff-based technique is in
both the linear and the quadratic case better than any of the

three other tested LDR techniques. It significantly outper-
forms all other three transformations in only four of the
24 instances (using the linear classifier on data set (b) and (d),

and using the quadratic classifier on data sets (d) and (i)).
However, with respect to accuracy, the experiments indicate
that doing Chernoff criterion-based LDR gives results better

than,orat least comparable to, resultsobtainedwithanyof the
other three transforms. With respect to obtaining a lower-
dimensional representation, there are few instances in which

the Fisher or Mahalanobis-based transforms provide better
representations, but also for these, the Chernoff criterion, in
most cases, produces good results.

Themain reason for theChernoff criterion toworkwell for
dimensionality reduction is that it, in a certainway, quantifies
the amount of discrimination information in the several
subspaces.TheChernoffdistance isdeterminedassuming the
classes to be normally distributed; however, what is
important is that it generally expresses discrimination
information in terms of simple first and second order
moments. In addition, there are only few parameters to be
estimated in order to derive the criterion and obtain its
associated eigenvectors and, therefore, it also allows for good
generalization.

An improvement of the method may be possible by using
some form of penalization [11], by weighting the relative
contributions of the pairwise term [17] confining the
influence of otherwise dominant terms on the final criterion,
or by reweighting all eigenvalues of the individual terms [15].
All these techniques rely on a certain formof regularization of
the covariance terms in (10). However, success is, of course,
not necessarily guaranteed.

In conclusion, the multiclass Chernoff criterion provides
a good alternative to the well-known Fisher criterion and
extends its use to linear dimension reduction for hetero-
scedastic data. Although the number of data sets used for
the tests is merely 12, these experiments clearly show the
improvements possible when utilizing the Chernoff criter-
ion, also in comparison with two other dimensionality
reduction schemes.
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