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Abstract—Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class

classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in

many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of

ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential

computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be

simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes

interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to

be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for

approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of

examples and experiments demonstrates the potential of this methodology.

Index Terms—Pattern recognition, machine learning, design methodology, classifier design and evaluation, receiver operator

characteristic, multiclass analysis, cost sensitive, volume under the ROC.

Ç

1 INTRODUCTION

RECEIVER operator characteristics (ROCs) [1], [2] have

become a standard tool for the design, optimization,

and evaluation of two-class classifiers. In cost-sensitive

problems, the ROC can be used directly to select the best

operating point based on given priors and costs [3].

Similarly, the Neyman-Pearson-type optimization can be

carried out simply by selecting the operating point
corresponding to a specified error [4]. In imprecise

environments, ROC analysis is particularly useful, since it

provides the means for comparing competing models over

a range of operating conditions [3]. The Area under the

ROC (AUC) [5] has become an important performance

measure in this regard, since it is invariant to operating

conditions. Fluctuations in performance due to variations in

class abundances can also be analyzed, since they are
constrained to vary along the ROC [6].

However, the ROC has only been studied primarily in the

two-class case. Extension to the multiclass case is attractive,

since it would confer the benefits of ROC analysis to more

problems in pattern recognition. Recently, a number of

studies in this area have been performed. The three-class

case has been studied in [7] and [8]. In [9], we generalized the

multiclass ROC by using a framework involving weighting of

classifier outputs, which are analogous to the two-class

“classifier threshold.” The limitation of the extension was

exposed by showing that the computational complexity is

exponential with an increasing number of classes C, restrict-

ing the analysis to problems with low C. In [10], the ROC

convex hull method for comparing classifiers in [11] was

shown to extend theoretically to theC-class case. The Volume

under the ROC hyperSurface (VUS), which is a generalization

of the AUC, has been studied in [12], presenting calculations/

estimations of the performance bounds of the VUS as a

function of an increasing number of classes C. In [13], a

theoretical study of the VUS argued that since the VUS of a

random classifier approaches that of a perfect classifier as C

increases, the VUS may not, in fact, be a very useful

performance measure. In [14], we presented a simplified

VUS measure that extends with C, but these approaches are

all limited to low C. The work in [15] and [16] propose

simplified VUS measures that are efficient for high C

problems. The former averages AUC scores between each

class and all remaining classes, and the latter averages AUC

scores between all class pairs.
The area of multiclass, cost-sensitive, and Neyman-

Pearson optimization is also related to the ROC analysis.
In the cost-sensitive case, the classifier weight/threshold
optimization problem has been posed in an optimization
framework. In [17] and [18], greedy search approaches were
developed to optimize a classifier to given costs/priors but
are prone to local minima. In [9], a naive and greedy
approach was presented, as well as a data-driven approach
involving the construction of two-class ROCs between all
class pairs. Classifier weights are assembled from the
various ROC pairs based on the given class priors and

810 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 5, MAY 2008

. The authors are with the Information and Communication Theory Group,
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands. E-mail: LandgrebeTCW@gmail.com, r.duin@ieee.org.

Manuscript received 5 Feb. 2007; revised 2 June 2007; accepted 8 June 2007;
published online 6 July 2007.
Recommended for acceptance by N.K. Ratha.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0070-0207.
Digital Object Identifier no. 10.1109/TPAMI.2007.70740.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



costs. An evolutionary approach was proposed in [19],
attempting to find a global solution to the optimization
problem. Other related approaches have been proposed in
[20] and [21]. In [22], the theoretical extension of the
Neyman-Pearson optimization to a multiclass optimization
was discussed, allowing for the specification of any element
in the confusion matrix. In [23], we presented an algorithm
that allows multiple elements in the confusion matrix to be
specified, but a solution is not always guaranteed.

Even though recent research has tackled several areas

involved with a multiclass ROC analysis, an efficient

approach to constructing the ROC hypersurface that scales

to large numbers of classes does not exist. This is desirable,

since it would provide a unified tool to perform the various

ROC tasks. In this paper, we present such an approach based

primarily on observations of many pattern recognition

problems. These have shown that it is often the case that

many ROC dimensions are independent of each other, which

is based on a perturbation analysis. Exploitation of this allows

for the decomposition of the ROC problem into a number of

independent (or approximately independent) groups of

classes that can be optimized independently. These groups

are often much smaller than the original problem, reducing

the computational requirements drastically. An algorithm is

presented, which identifies a potential decomposition, invol-

ving perturbing the various classifier weights and inspecting

sensitivities in the confusion matrix. The approach also takes

a practical stance for problems that cannot be decomposed

sufficiently. The perturbation analysis provides information

on the most interacting dimensions, guiding the best

compromise between ROC construction accuracy and com-

putational burden.
This paper is constructed as follows: In Section 2, a

multiclass analysis framework is formalized, as well as the
construction of the multiclass ROC. Next, Section 3 discusses
the potential and consequences of ROC decomposition,
showing how a perturbation analysis can be used to study
interactions between ROC dimensions. A case study shows
just how effective a decomposition can be at reducing
unnecessary complexity. The topic of approximate decom-
position as a function of class overlap is studied in Section 4
via a controlled experiment, showing results on cost-sensitive
experiments and VUS estimations as a function of class
overlap. Section 5 presents the perturbation analysis algo-
rithm that inspects sensitivity to perturbations via the
confusion matrix in an efficient manner. A number of
experiments are presented in Section 6, which investigate
cost-sensitive optimizations by using the decomposition in a
number of synthetic and real scenarios. Finally, conclusions
are presented in Section 7.

2 NOTATION AND MULTICLASS ROC ANALYSIS

2.1 Multiclass Analysis Framework

The output pðxÞ of a multiclass classifier consists of

C values, corresponding to classes !1; !2; . . .!C , with

d-dimensional measurement vector x. The prior probability

corresponding to class !i is denoted P ð!iÞ, with class-

conditional density distribution pðxj!iÞ. The posterior

distribution pð!ijxÞ can then be written according to Bayes

rule as pð!ijxÞ ¼ pðxj!iÞP ð!iÞ
pðxj!1ÞP ð!1Þþpðxj!2ÞP ð!2Þþ...þpðxj!CÞP ð!CÞ . New

objects are assigned by the classifier to the class with the

highest output as follows:

argmax
C

i¼1
pð!ijxÞ: ð1Þ

In the case of class overlap, erroneous classifications occur
occasionally. The multiclass classifier is evaluated via a
ðC � CÞ-dimensional confusion rate matrix � showing the
respective classification errors between classes (off diagonal)
and correct classifications (diagonal elements), as defined in
Table 1. The interaction between classes !i and !j is denoted
�i;j. Diagonal elements are superfluous, since they
are equivalent to the complement of the sum of the
off-diagonal elements in the respective row, that is,
�i;i ¼ 1�

PC
j¼1 �i;j, i 6¼ j. In the practical case, where dis-

tributions are unknown, and only representative examples
per class are available, pð!ijxÞ is approximated or replaced
by other types of “confidence-like” measures such as
distances to decision boundaries/support vectors [24]. In
this case, a confusion matrix CM is generated via an
application of a representative independent test set. These
CM outputs are normalized by the absolute number of
objects Ni per class !i, N ¼ ½N1; N2; . . .NC �T , resulting in the
confusion rate matrix �, with �i;j ¼ cmi;j

NðiÞ . In this paper, we
consider both theoretical cases with known distributions
and practical problems where only examples are available.

In order to compute each confusion element �i;j in the
ideal case, the following integration is performed:

�i;j ¼ pð!iÞ
Z
pðxj!iÞIjðxÞdx: ð2Þ

The indicator function IjðxÞ specifies the relevant domain

IjðxÞ ¼
1 if pð!jjxÞ > pð!kjxÞ 8k; k 6¼ j
0 otherwise:

�
ð3Þ

Equation (2) allows any confusion matrix output to be
computed, which is generalized for both diagonal and off-
diagonal elements.

2.2 Multiclass ROC

The confusion matrix only defines the performance at a
single operating point, which is valid for a single prior
probability situation, and a single position of the classifier
thresholds/weights. The classifier thresholds/weights can be
manipulated by weighting the classifier output pðxÞ by

LANDGREBE AND DUIN: EFFICIENT MULTICLASS ROC APPROXIMATION BY DECOMPOSITION VIA CONFUSION MATRIX PERTURBATION... 811

TABLE 1
The Multiclass Confusion Rate Matrix � Defined



� ¼ ½�1; �2; . . .�C �, �i � 0 8i. Equation (1) can then be
generalized as (4). Since the class assignment decisions are
relative, this implies that there are C � 1 degrees of
freedom, and one weight can be held constant:1

argmax
C

i¼1
�ipð!ijxÞ: ð4Þ

The full operating characteristic or multiclass ROC can be
generated by considering all possible values of �. The new
� resulting from a new classifier weighting can be
calculated by modifying (2), which results to the following:

�i;jð�Þ ¼ �ipð!iÞ
Z
pðxj!iÞIjðxj�Þdx: ð5Þ

The indicator function Ijðxj�Þ is as in (3), except that each
posterior is multiplied by the corresponding class weight,
that is,

Ijðxj�Þ ¼
1 if �jpð!jjxÞ > �kpð!kjxÞ 8k
k ¼ 1; 2; . . .C; k 6¼ j
0 otherwise:

8<
: ð6Þ

In the two-class case, the ROC is monotonically increasing,
so efficient generation of thresholds is typically achieved by
using ordering of data samples [2]. This is not the general
case, so the approach taken here is to generate a
combinatorial ðC � 1Þ-dimensional grid of weightings/
thresholds, which considers all possible combinations of
interclass weightings. A total of r different arbitrary
weightings are used, and thus, the � matrix is rC�1 � C in
size, which clearly demonstrates the exponential computa-
tional complexity of the generalized ROC analysis OðrC�1Þ.
The resolution must be fine enough, and the scale of each
weight that is adequately chosen to ensure the operating
characteristic is well sampled. In this paper, r is typically
between 80 and 100, a logarithmic scale is used across the
range f10�3; 103g, and one arbitrary weight is set to 1. For

example, this leads to 1� 1018 weightings in the 10-class

case, with r ¼ 100. Fig. 1 is an example of a three-class

problem (univariate Gaussians with unit variances, with

means at �0.75, 0.00, and 0.75, respectively), showing the

distribution (Fig. 1a), three ROC dimensions (Fig. 1b), with

r ¼ 100, and linear resampling.

3 THE POTENTIAL AND CONSEQUENCES OF

DECOMPOSITION

The exponential computational requirements (as a function

ofC) rule out the practical construction of the multiclass ROC

for high C problems. However, it may still be possible to

generate an equivalent2 representation in a more efficient

manner if a problem lends itself to this. In some cases, an

approximate representation may also be useful if the

resulting operating characteristic is suitably accurate for the

given problem.
Consider the problem in Fig. 2, which depicts a four-class

problem between!1,!2,!3, and!4, with known distributions

(Gaussian distributions with unit variances, and means �,

given as follows: �!1
¼ �8, �!2

¼ �5, �!3
¼ 5, and �!4

¼ 8).
The normalized confusion matrix for the equal prior case

and � ¼ ½1 1 1 1� is given as follows:

�i;j �i;1 �i;2 �i;3 �i;4

�1;j 0:9332 0:0668 0:0000 0:0000
�2;j 0:0668 0:9332 0:0000 0:0000
�3;j 0:0000 0:0000 0:9332 0:0668
�4;j 0:0000 0:0000 0:0668 0:9332:

ð7Þ

In this problem, the multiclass ROC consists of 42 � 4 ¼
12 dimensions. However, the confusion matrix (and, of

course, the distribution, which is typically unknown in

practical scenarios) suggests that all possible ROC dimen-

sions do not interact. For example, the output �1;3 has a zero

value, suggesting no interaction with !1.
Theoretically, the multiclass ROC requires an analysis of

all possible interactions, that is, the impact of the variation

812 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 5, MAY 2008

Fig. 1. Example with three Gaussian classes. (a) The distributions. (b) ROC dimensions 1� �1;1, 1� �2;2, and 1� �3;3.

1. It is important to note that there are several manifestations of multiclass
classifiers such as one-versus-all classifiers and error-correcting codes, each
having architectural parameters that can be tuned. In this paper, we consider
only the final classifier, that is, all parameters have been set, and define the
operating characteristic by the surface resulting from all combinations of
classifier weightings only. Any variation of classifier internals would result
in a new classifier and, thus, a new operating characteristic.

2. “Equivalent” in this sense implies that any analysis/measurements
based on the new ROC would return equivalent results to the theoretical case.



of classifier weight �k, 1 � k � C, on the output �i;j, 1 � i,
j � C. However, the example in Fig. 2 makes it apparent

that in some cases, varying some weights will have no or

little impact on some outputs of �. Thus, if we perturb �k by

��k, it is of interest to understand the resulting variation

(sensitivity) in �i;j, denoted ��i;jð��kÞ. If ��i;jð��kÞ ¼ 0,

then �i;j is independent of �k. If ��i;jð��kÞ ¼ 0 8i, this

implies that weight �k is independent of !j; that is !j is

separable from !k.
For classes that are completely separable, for example,

!j, it holds that

��i;jð��kÞ ¼ 0 8i; k: ð8Þ

What this implies is that no �k 8k perturbations affect

outputs corresponding to !j, and thus, !j can be excluded

from the ROC calculation,3 thus reducing the computational

requirements from OðrC�1Þ to OðrC�2Þ.
Another type of conceivable decomposition situation is

illustrated in Fig. 2, in which groups of classes interact

independently of other classes/groups. For example, !k and

!l are interdependent but independent of !j 8j, j 6¼ k, l. In

this case, ��i;kð��lÞ > 0 8i, and ��i;lð��kÞ > 0 8i, but

��i;kð��mÞ ¼ 0 8i, m, m 6¼ k, l, and ��i;lð��mÞ ¼ 0 8i, m,

m 6¼ k, l. The implication of this is that any variations in

classifier weights/thresholds �m 8m, m 6¼ k, l will have no

impact on outputs �i;k 8iand �i;l 8i; that is, all operating points

involving different �m values do not affect ROC dimensions

corresponding to the independent groups. This, in turn,

implies that the ROC could be decomposed into its constitu-

ent groups. Thus, in this example, the original four-class ROC

required an Oðr3Þ calculation, which can now be broken

down into twoOðrÞ calculations (note that in this example, the

two groups ½!1; !2� and ½!3; !4� are not theoretically indepen-

dent because pðxj!iÞ > 0, �1 < x <1 8i, but pðxj!iÞ be-

comes negligibly small, allowing for the decomposition). To

illustrate the group independence, in Fig. 3, it can be seen that

a perturbation of �1 impacts �2;1 and �1;2, but no significant

impact can be seen with respect to �3;4 and �4;3.
This type of analysis could be applied to any trained

classifier (given a representative test set) in an attempt to

decompose the ROC as far as possible, with the objective of

obtaining a tractable calculation.

3.1 Case Study on a 10-Class Problem

Consider, for example, the Digits-Zernike data set consisting
of 2,000 examples of 10 handwritten digits (from “0” to “9”),
originating in Dutch utility maps (available from [25]). In this
data set, Zernike moments have been extracted from the
original images, resulting in a 47-dimensional representation
of each digit. This constitutes a 10-class problem, with an ROC
complexity ofOðr9Þ. A classifier is trained on half the data by
using a principal component mapping (20 components
retained) followed by a Bayes quadratic classifier, which is
then evaluated on the remainder of the data. The resulting
normalized confusion matrix is graphically shown in Fig. 4a.

It can be seen that most classes appear approximately
separable, except for the seventh and 10th, which corre-
spond to digits “6” and “9” (which is intuitive, since the
representation does not account for orientation). Outputs
�7;10 and �10;7 indicate a large degree of overlap. Perturbing
�7 from 1.0 to 10.0 results in the normalized confusion
matrix shown in Fig. 4b. The result shows that even though
the classifier weighting has varied considerably, the
perturbation has only affected �7;10 and �10;7 significantly.
Similarly, perturbing �10 only impacts !7 and !10 outputs
significantly. If a thorough perturbation analysis is applied
to the problem (using, for example, the algorithm presented
later), it would follow that the ROC would be found
possible to simplify (approximately) via decomposition
from Oðr9Þ to Oð8þ rÞ. This reduces the intractable
calculation by 9 orders of magnitude.

4 APPROXIMATE DECOMPOSITION

In some problems, it may not be possible to decompose the
ROC sufficiently for a tractable calculation due to larger
groups/more interactions. In these situations, it may be
possible to construct an approximate ROC that is similar to
the ideal case. In the severe case, in which there are still
many significant interactions, ROC decomposition may still
be useful in accounting for the most prominent interactions,
resulting in a suboptimal but nevertheless useful solution.
In the cost-sensitive optimization case, the weights obtained
from the decomposed ROC could be treated as a good
starting point for a postprocessing search approach (for
example, see the evolutionary search in [19], the naive and
greedy search in [9], and [18]). This could be performed to
account for the smaller interactions that were ignored.
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Fig. 3. Example with known distribution, with a perturbation of �1 from

1.0 to 0.1.

3. The classifier weight �j can simply be set to an arbitrary nonzero
value, for example, 1, for all operating points.

Fig. 2. Example with known distribution, showing significant interactions.



In this suboptimal scenario, the perturbation analysis
could be used to find the most interacting groups, with the
least interacting classes excluded from a group. Consider the
example in Fig. 5, which illustrates a three-class problem
between normal distributions with unit variance, and means
at �3.0, 0.0, and 6.0, corresponding to classes !1, !2, and !3,
respectively. There is a large degree of interaction between!1

and !2, but only a little between !2 and !3. If the problem is
thus decomposed into groups ½!1; !2� and ½!3�, the ROC is
reduced from anOðr2Þ calculation to anOðrþ 1Þ calculation.

It is of interest to understand the impact of the
simplification in this case. To assess this, we investigate
the difference in performance between the true ROC and
the decomposed version in two different scenarios: the first
is a cost-sensitive optimization scenario, and the second
inspects the impact on the volume under the ROC measure.

4.1 Cost-Sensitive Optimization Validation

Referring to the previous example, in this experiment,
50 different random cost matrices are generated (from a
uniform distribution between 0 and 1), and priors are set
equal (that is, performance is compared for 50 different
operating points). The ðC � CÞ-dimensional cost matrix S

consists of profits on the diagonal and of costs off diagonal,
denoted si;j for the cost incurred for a misclassification
between !i and !j. In the example, C ¼ 3. The experiment is
compared (using the same cost matrices) for several different
degrees of interaction between !2 and !3 by varying the
mean of!3, denoted �3, between 1.0 and 9.0. Thus, the degree

of overlap is varied from an extreme to an insignificant
degree, allowing for an analysis of the decomposition
consequences for higher and lower degrees of interaction.
In Fig. 6a, the difference between the loss (9) obtained via the
true ROC Lgt is compared to the decomposed ROC loss Ld as
a function of �3. The plot shows the median

Ld�Lgt
Lgt

and the
upper and lower quartiles (the distribution is heavily
skewed). It can be seen that for a high degree of interaction
(low �3 values), the decomposed ROC performance is
generally worse than in the case of lower interaction; that
is, the loss has not been reduced as far as possible. For low
interaction, there is little difference between the true ROC
and decomposed ROC performance, showing that decom-
position has little impact on performance:

L ¼
XC
i¼1

P ð!iÞ
XC

j¼1;i6¼j
�i;jsij

 !
�
XC
i¼1

P ð!iÞ�i;isii: ð9Þ

4.2 Volume under the ROC Validation

The cost-sensitive experiments validated the decomposition

assumption for low degrees of interaction over 50 different

operating points. Another type of ROC analysis that is

important is the VUS, which extends the popular two-class

AUC measure [5] to the multiclass case. The VUS measure

allows for an evaluation that encompasses all operating

points. The simplified VUS measure proposed in [14] is used

for this study, which considers only ROC dimensions

corresponding to diagonal elements of the ROC. These

performances are equivalent to the complement of a summa-

tion of off-diagonal errors in the corresponding confusion

matrix row, that is, �i;i ¼ 1�
PC

j¼1 �i;j. The upper bound is 1.0,

and the lower bound was conjectured to be 1
C! . The VUS

measure can be formalized as V US ¼
R

. . .
R R

�C;Cd�C�1;C�1

d�C�2;C�2 . . . d�1;1. This formulation results in a measure that

extends withC (at the expense of the simplification) and does

not suffer with the limitation, as highlighted in [13]. It is also

simple to extend the simplified VUS measure to the

decomposed case. Separable groups imply that VUS scores

could be computed per group and multiplied.4 In the three-

class example with one separable class, the VUS can be

approximated as the VUS between the ½!1; !2� group (AUC in
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Fig. 5. A three-class problem with a low degree of interaction between !2

and !3.

Fig. 4. Normalized confusion matrix for the digits data set example, with unit weighting in (a) and (b) a perturbation of �7.

4. The generalization and proof of this is the topic of further research.



this case) multiplied by the VUS for !3, which is 1. Thus, the

VUS is simply the AUC between !1 and !2.
The decomposition is compared to the ideal case in terms

of VUS as a function of the degree of interaction in Fig. 6b.
In these experiments, the full three-class ROC surface has
been generated for each �3 (following the same procedure
as in the cost-sensitive case), as well as the decomposed
case, consisting of a single two-class ROC (between !1 and
!2), and an independent dimension (corresponding to !3).
The VUS is then computed for the ideal case V USgt, as per
[14], by using 80 steps and linear resampling. This is
compared to the decomposition VUS approximation V USd,
in which the two-class VUS is multiplied by 1.0 to account
for the separable dimension. Fig. 6b shows

V USd�V USgt
V USgt

as a
function of the separability of !3, which indicates the
accuracy of the VUS estimation. Note that this VUS is a
performance measure; that is, good classifiers result in
higher scores. As in the previous experiments, the results
clearly show that for higher degrees of interaction, the
decomposition results in a poorer estimation. When the
interaction is small, the performance difference becomes
negligible, and the VUS estimate approaches the true value.

5 CONFUSION MATRIX PERTURBATION ANALYSIS

The previous sections showed that perturbing the weights
and analyzing the subsequent confusion matrix dynamics
are useful for identifying independent ROC dimensions and
independent groups of dimensions. This implies that the
ROC can be decomposed into a number of approximately
independent groups. In this section, an algorithm is
presented as a general and efficient approach for recovering
this decomposition, with a computational complexity that is
linear with C. The algorithm should also be capable of
ignoring smaller interactions, since it was shown that this
has little impact on performance. This may be important to
maintain a reasonable computational complexity.

The decomposition algorithm basically involves inspec-
tion of the resulting confusion rate matrices �, as each
classifier weight is independently perturbed. As a starting
point, the algorithm considers a “default” unoptimized

classifier (which is often trained by using population or

balanced priors), that is, a single operating point. It is

important that the default classifier is not, at an extreme, an

operating point, that is, where one or more classes have no

discriminability, by ensuring that �i > 0 8i.

5.1 Algorithm

At the first step of the decomposition, each weight �i is

perturbed independently of other weights�j 8j; j 6¼ i, with�j
weights held constant at fixed values cj, 1 � j � c, j 6¼ i, cj 6¼
0 (for example, cj ¼ 1 8j). The weight�i is successively varied

across the range f10�1 ; 10�2g, ranging from very small to large

values. In practice, a log10 scale is used between the extrema

�1 ¼ �3 and �2 ¼ 3, with r steps (the same scale as used to

generate the multiclass ROC). Each of the r perturbations

result in a new �, denoted �i, as formulated in (10), with

dimensionality C � C � r. The weight perturbation proce-

dure is repeated for each weight, resulting in C of these

� structures

�i ¼ �j;kð�ið�ÞÞ 8j; k: ð10Þ

The perturbation matrix �ið�Þ is constructed as follows (the

subscript i specifies the column at which we can apply the

perturbation):

�ið�Þ ¼

c1 c2 . . . ci�1 �1 ciþ1 . . . cC
c1 c2 . . . ci�1 �2 ciþ1 . . . cC

..

.

c1 c2 . . . ci�1 �r ciþ1 . . . cC

2
6664

3
7775: ð11Þ

The logarithmic perturbation vector � ¼ ½�1; �2; . . . ; �r� is

calculated, given the number of steps r, across the range

f10�1 ; 10�2g as follows:

� ¼ 10�1 ; 10ð�1þ�2��1

r�1 Þ; 10ð�1þ2
�2��1

r�1 Þ; . . . 10ð�1þðr�2Þ�2��1

r�1 Þ; 10�2

h i
:

ð12Þ

The � data cubes contain information pertaining to

dependencies between ROC dimensions and a particular

weight. The dependencies are revealed by simplifying the

ðC � C � rÞ-dimensional �i matrices into C � C matrices,
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Fig. 6. (a) compares the cost-sensitive optimization performance between the ideal and decomposed ROC techniques, as the degree of interaction

between !3 and other classes is varied. The median, and upper and lower quartiles are shown for each �3 value. (b) compares the VUS performance

as a function of !3, with
V USd�V USgt

V USgt
representing the difference between the ideal and the decomposed calculation.



denoted �s
i . These depict the sensitivity range of each �i

output. Each element of �s
i corresponding to the jth row

and kth column can be derived from �i as follows:

�s
iðj;kÞ ¼ ��iðj;kÞ

¼ maxð�iðj;k;lÞÞ �minð�iðj;k;lÞÞ8l; 1 � l � r:
ð13Þ

The ðC � CÞ-dimensional �s
i matrix can then be written as

�s
i ¼

��ið1;1Þ ��ið1;2Þ . . . ��ið1;CÞ
��ið2;1Þ ��ið2;2Þ . . . ��ið2;CÞ

..

.

��iðC;1Þ ��iðC;2Þ . . . ��iðC;CÞ

2
6664

3
7775: ð14Þ

This representation now summarizes the degree of interac-

tion that occurred due to the perturbation analysis for each

ROC dimension. It is important to note that these

“sensitivities” are the key to an algorithm that can recover

the decomposition, independent of the default classifier

operating point (provided that it is not extreme). For

example, a particular operating point may result in some

finite � output on, say, �i;j. A different operating point may

result in a different �i;j output. If this output is (approxi-

mately) independent of a certain weight �k, even though the

�i;j values differ in both cases, the sensitivity, as measured

by �s, would be negligible, irrespective of the operating

point. A heavily interacting ROC dimension would result in

large sensitivities, independent of operating point.

The next step of the algorithm involves simplifying the

�s
i matrices into ð1� CÞ-dimensional vectors, denoted �v

i .

These vectors simply consider the most interacting ROC

dimension per class with respect to �i. This simplification is

justified because if any ROC dimensions interact with �i, we

cannot simplify the ROC. These maximal sensitivity vectors

are defined as follows by calculating the largest interaction

per class:

�v
i ¼

�
max �s

iðk;1Þ;max �s
iðk;2Þ; . . . max �s

iðk;CÞ
�
8k: ð15Þ

The �v vectors can then be used to decompose the problem

directly. This is achieved by comparing each �v
i 8i. To

simplify this analysis, the �v vectors can be binarized, with

all “sensitive” entries set to 1, and the insensitive ones to 0.

This is also the point at which interactions considered to be

insignificant can be eliminated by introducing a sensitivity

threshold ts. The binarized sensitivity vectors, denoted �vb
i ,

for !i can be written as follows for each element k of �v
i ,

denoted �v
iðkÞ, 1 � k � C:

�vb
iðkÞ ¼

1 if �v
iðkÞ > ts

0 otherwise:

�
ð16Þ

Choosing an appropriate ts is achieved by inspecting �v
i .

Interacting classes typically result in large values, whereas

values corresponding to approximately independent groups

are much smaller. Thus, ts should be set just larger than the

smallest “insignificant” interaction, as justified by the study

in Section 4. Importantly, ts can also be used to limit the

computational burden by restricting the maximum group

size. In this case, ts is chosen to obtain at most M groups. In

this scenario, the decomposition may not result in optimal

performance but may nevertheless be a reasonable approx-

imation, since the most interacting classes are accounted for.
The decomposition is now complete. Common values of 1

in the columns of the �vb vectors indicate which classes
interact with which weights. A 0 in the �vb

i columns indicates
which classes are independent of which weights. Addition-
ally, if only a single element in any �vb

i is 1, this indicates that
the corresponding class is independent and can be removed
from the ROC calculation. In this case, a fixed nonzero
weighting could be used for all operating points.

5.2 Illustration of Algorithm

The algorithm is presented via a running example for clarity,
consisting of four Gaussian-distributed classes (!1,!2,!3, and
!4), with means occurring at �1 ¼ �8, �2 ¼ 0, �3 ¼ �6, and
�4 ¼ 5 and with 0.5 variances (plotted in Fig. 7a).

It can be seen that classes !1 and !3 interact together
significantly, approximately independently of the near-
separable !2 and !4. For reference purposes, the normalized
confusion matrix � for an equal prior is shown in Fig. 7b,
illustrating interclass errors and intraclass performances for a
fixed operating point (this is referred to as the default
confusion matrix).

Fig. 8 presents some � slices for the example, shown for
three different weightings (the four columns correspond to
�1, �2, �3, and �4, respectively). It can be seen that varying �1

or �3 affects both !1 and !3 outputs significantly in each case,
whereas !2 and !4 perturbations have little effect on any
outputs, suggesting independence. The � matrices thus
provide a mechanism for assessing the dependence between
a particular weight and the various ROC dimensions.

Next, the � matrices are simplified into ðC � CÞ-
dimensional sensitivity matrices �s, as depicted in Fig. 9.
These show clearly that there is an interaction between ROC
dimensions �1;1, �1;3, �3;1, and �3;3.

The most interacting ROC dimensions per class are then
identified, resulting in the following �v vectors:

�v
1 ¼ ½0:8554 0:0000 0:8554 0:0000�;

�v
2 ¼ ½0:0000 0:0058 0:0003 0:0055�;

�v
3 ¼ ½0:8554 0:0003 0:8558 0:0000�;

�v
4 ¼ ½0:0000 0:0055 0:0000 0:0055�:

ð17Þ

These are then binarized via (16), resulting in �vb , by using
ts ¼ 0:01, resulting in

�vb
1 ¼ ½1 0 1 0�;

�vb
2 ¼ ½0 0 0 0�;

�vb
3 ¼ ½1 0 1 0�;

�vb
4 ¼ ½0 0 0 0�:

ð18Þ

The decomposition groupings for the example are thus
½!1; !3�, ½!2�, and ½!4�, reducing the Oðr3Þ calculation to
Oð2þ rÞ.

5.3 The Necessity of Sensitivity Analysis

At first glance, it could be reasoned that a confusion matrix
at any operating point is useful in identifying dependent
and independent ROC dimensions. Theoretically, this is
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true (�i;j ¼ 0 if !i is independent of !j, irrespective of the

operating point), but from a practical standpoint, it is of

interest to get some measure of how sensitive various

dependencies are to variations in operating point. To

emphasize this rather subtle point, consider the three-class

problem in Fig. 10 between !1, !2, and !3. The first class

consists of a bimodal Gaussian distribution with means at

0.0 and 7.5, modal weightings of 0.95 and 0.05, respectively,

and variances of 0.5. The second and third classes are

unimodal Gaussians with variances of 0.5 and means at

�3.0 and 8.0, respectively. Two different operating points

are investigated, consisting of a near-balanced weighting in

Fig. 10a and a more imbalanced setting in Fig. 10b.

The following � results correspond to the operating

points depicted in Fig. 10:

�i;j �i;1 �i;2 �i;3

�1;j 0:9273 0:0227 0:0500
�2;j 0:0142 0:9858 0:0000
�3;j 0:0000 0:0000 1:0000;

ð19Þ

�i;j �i;1 �i;2 �i;3

�1;j 0:9508 0:0018 0:0474
�2;j 0:1016 0:8984 0:0000
�3;j 0:0119 0:0000 0:9881:

ð20Þ

Inspection of the first � may lead to the (false)

conclusion that the problem is approximately separable,

since all off-diagonal elements are relatively small. How-

ever, the second � makes it apparent that there is a large

interaction between !1 and !2. Thus, it can be reasoned

that in attempting to find significantly interacting ROC
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Fig. 8. Slices of � for the four-class example for a number of different �

weightings shown above each plot.

Fig. 9. Sensitivity matrices �s for the four-class example, resulting from

a sensitivity analysis of the � structures.

Fig. 7. Probability density functions for the four-class example with

known distributions in (a) and with default � for the example in

(b) ð� ¼ ½1 1 1 1�Þ.

Fig. 10. Comparing two operating points for a three-class problem, with close to a balanced weighting in (a) and a more imbalanced weighting in (b).



dimensions, it is important to inspect some sensitivity to
variations in operating point. Perturbation analysis can
identify these “weakly” interacting dimensions, indepen-
dent of the default operating point.

6 EXPERIMENTS

6.1 Overview

The efficacy of the ROC decomposition approach is demon-
strated via a number of experiments in cost-sensitive
scenarios involving large numbers of classes. Two experi-
mental sets are presented: The first consists of synthetic
examples that demonstrate performance in ideal circum-
stances, and the second consists of realistic examples that are
not necessarily ideal.

The experimental protocol is explained as follows. Each

data set is analyzed separately, and a competitive classifier

is chosen based on the minimization of the equal error rate

�eq ¼ 1
C

PC
i¼1

PC
j¼1 �i;j, i 6¼ j. Each classifier is evaluated via a

10-fold cross-validation procedure, with 80 percent of data

used for training, and the remainder for testing. The

multiclass decomposition algorithm (called Decomp) is

applied to each test set, with a decomposition threshold ts
(applied via (16)) chosen to suit the problem or to keep the

maximum decomposition size smaller than 5 (this con-

strains the computational complexity to Oðr3Þ). Subsequent

to the decomposition analysis, the decomposed multiclass

ROC is generated, with r ¼ 80. The experiments involve

computing the overall loss (9) for 50 different randomly

generated cost matrices and balanced priors, effectively

evaluating performance at 50 different operating points.

Since the experiments involve problems with high C, it is

not possible to compute the optimal classifier weightings

(as done in the three-class case in Section 4).
The evaluation approach taken is to compare the loss

obtained via the Decomp approach with three other (non-
ROC-based) cost-sensitive optimization approaches. The
optimization is with respect to a single operating point,
and thus, the algorithms cannot be used for other ROC
tasks (such as computing the VUS) but are nevertheless
useful as a benchmark in this application. The first
approach, denoted Simple, uses an extremely basic but
fast method for choosing the classifier weights. Each
weight is optimized by considering the overall cost per
class multiplied by priors. Thus, for !i, the correspond-
ing weight is �i ¼ pð!iÞ

PC
j¼1 sij. Both intraclass costs

and interactions are ignored, but the approach is
nevertheless fast and occasionally yields good perfor-
mance. The other two approaches benchmarked against
are two search-based algorithms, called the Naive and
Greedy algorithms, respectively [9], the first of which is a
slight modification of the algorithm in [17]. These
algorithms attempt to optimize classifier weights accord-
ing to given priors and costs using a search paradigm.
The Naive algorithm optimizes each classifier weight
independently of others, ignoring possible interactions
between weights. The Greedy algorithm attempts to
account for some interaction by tuning successive
classifier weights randomly, dependent on previously

optimized weights. The algorithm is repeated three

times in experiments with random initializations, in an

attempt to avoid local minima. Note that other cost-

sensitive optimization algorithms are possible, as dis-

cussed in Section 1, which is currently an active area of

research. The final algorithm that is implemented

involves a postprocessing step applied to the ROC

decomposition algorithm, attempting to overcome the

independence assumption of the decomposition. This

postprocessing step involves a “constrained” Greedy

algorithm, in which the output of the decomposition is

used as an initialization. The algorithm is “constrained”

in the way that relative weightings in groups (identified

by the decomposition) are unaltered, but classifier

weights between groups or independent classes may

be varied. This final algorithm is called the DecompG

algorithm, with three iterations of the postprocessing

used in experiments.

6.2 Synthetic Experiments

Three experiments have been constructed in order to compare

the performance of the various algorithms in an ideal

scenario. Each experiment consists of a number of identical

independent two-class and three-class clusters, in which data

has been drawn from a unit-variance Gaussian distribution in

two dimensions, with a repeating of these clusters by varying

the means only. The means of the two-class clusters are a

distance of 3.0 apart. The means of the three-class clusters areffiffiffi
29
4

p
apart between the first and second classes,

ffiffiffi
8
p

between the

first and third, and
ffiffiffi
37
4

p
between the second and third. The first

experiment is an eight-class problem with one two-class

cluster and two three-class clusters. The second experiment is

a 16-class problem, repeating the same structure as the eight-

class case, staggered in feature space, as shown in Fig. 11.

Finally, the third experiment consists of a 40-class problem,

with five repetitions of the eight-class structure. In each

experiment, a Bayesian quadratic classifier is used. To

illustrate a typical experiment, a cost-sensitive example is
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Fig. 11. Scatter plot for the 16-class synthetic data set. The solid line is

the decision boundary of the default classifier, and the dashed line is that

of the operating point provided by the Decomp algorithm for a particular

cost.



presented for the 16-class case. The following cost matrix is

passed to Decomp algorithm:

The default unoptimized classifier results in a loss of

0.3079 in this example, with the solid line in Fig. 11

representing the respective decision boundary. The Decomp

algorithm attempts to minimize this by finding a new set of

classifier weights, resulting in a loss of 0.1993, which is better

than the default case. The following classifier weights result:

�� ¼ ½1:000 0:323; 0:005; 1:216; 0:651; 0:377; 0:377; 5:356;

0:515; 0:476; 0:761; 0:019; 0:218; 0:276; 0:037; 1:124�:
ð21Þ

The dashed line in Fig. 11 depicts the decision boundary
resulting from the Decomp algorithm, deviating significantly
from the default case.

In Table 2, the results of the synthetic experiments are

shown. The table shows the number of times (out of the

50 cost-sensitive experiments) that the decomposition algo-

rithm is better (Won) or worse (Lost) than other approaches.

Significance is tested via analysis of variance (ANOVA), with

the number in parentheses stating the number of experiments

that are significantly better/worse based on a 95 percent

confidence; that is, for each new cost situation, the difference

between the Decomp and other algorithm performance is

compared for each fold. The variability across algorithms and

folds is incorporated into the ANOVA test. The approaches

compared are the Simple approach and the two search-based

algorithms, Naive and Greedy. The number of wins/losses is

computed by comparing the mean performance for each

experiment over the 10 cross-validation folds. A decomposi-

tion threshold ts of 0.08 was used for all three data sets. The

following computation reduction due to decomposition

resulted for the 8-class, 16-class, and 40-class cases, respec-

tively (denoted Synth8C, Synth16C, and Synth40C):

. Synth8C: Oðr7Þ reduces to 2Oðr2Þ þOðrÞ,

. Synth16C: Oðr15Þ reduces to 4Oðr2Þ þ 2OðrÞ, and

. Synth40C: Oðr39Þ reduces to 10Oðr2Þ þ 5OðrÞ.
It can be seen that for all three data sets, the Decomp

algorithm is consistently better than the Simple case, which is

significant for all experiments. This shows that the Decomp

algorithm was able to improve classification performance for

all conditions. Similarly, the Decomp algorithm is consistently

better than the Naive approach, which is expected, since the

latter approach ignores interactions that are present between

the various clusters. In the Greedy case, it can be seen that it

occasionally competes in the eight-class case, showing that it

is better able to account for interactions than the Naive

algorithm. However, in the other two data sets with larger

numbers of classes, the Decomp algorithm dominates. The

Decomp algorithm scales easily with the number of classes,

whereas the Greedy algorithm becomes more susceptible to

local minima. These results demonstrate the efficacy of the

decomposition approach up to large numbers of classes in

ideal circumstances.

6.3 Experiments with Real Data Sets

The experiments undertaken consider a number of data sets

with varying numbers of classes, as described in Table 3.
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TABLE 2
Results of Synthetic Experiments, Comparing Results Obtained
Using the Decomposition Algorithm to the Simple Case and to

the Naive and Greedy Algorithms

Each comparison shows the number of experiments (out of 50) that the
Decomp algorithm was superior (won) and inferior (lost). The number
exceeding the 95 percent statistical confidence is shown in parentheses.

TABLE 3
Important Data Set Statistics Showing the Data Set Source, the Number of Objects, Classes, and Dimensions ðdÞ

The classifier chosen is also shown, followed by the equal error rate �eq (with standard deviation), the decomposition threshold used, and the
resulting computational reduction due to decomposition.



Competing classifiers were chosen by minimization of the

equal error rate �eq over 10-folds. In the table, “fisher” is a

Fisher projection, with the weighted pairwise Fisher map-

ping [26], denoted “nlfisher.” Classifiers are denoted “ldc,”

“qdc,” and “mogc,” which are Bayes linear, quadratic, and

mixture of Gaussians classifiers, respectively, with the latter

followed by the number of mixtures used per class. The table

also shows the resulting computational reduction due to

decomposition for one fold (this is usually quite stable over

folds but varies occasionally).
In many of the experiments, an ideal decomposition with

a low enough computational complexity did not result, so

an approximate decomposition was forced by using the

decomposition threshold. This often resulted in poor

performance because some significant interactions were

ignored. The DecompG algorithm discussed earlier attempts

to cope with these limitations.

Comparing the Decomp and Naive results, it can again be

seen that the former algorithm is usually superior, but in the

Nist data set, it is outperformed. An oversimplified

decomposition is attributed to this, but this limitation is

again overcome by the DecompG algorithm. Considering the

Greedy results, the Decomp algorithm is often beaten, but the

DecompG algorithm appears superior in most cases. In the

Nist case, the DecompG and Greedy algorithms result in very

similar performances. The postprocessing step is thus

important to refine the results when an oversimplified

decomposition is used.

6.4 Summary

The experimental results (see Tables 4 and 5) show that in

some data sets, a very efficient decomposition can be created,

resulting in good performance. In these cases, there are only a

few (significantly) interacting ROC dimensions. In other data

sets, there are fewer independent groups/large groups, and

thus, for computational reasons, the decomposition must be

oversimplified. In these cases, the DecompG algorithm is

important, helping to overcome these limitations.

A final result is presented in Fig. 12 in order to give some

indication of how much improvement, on the average, the

DecompG algorithm gives over the default case (that is, no

optimization performed). A useful measure to consider here

is the Mean Subjective Utility (MSU) score [30]. The MSU

score scales the resulting loss L obtained between 0 and 1

(higher scores are better) based on the given priors and costs.

This is more meaningful than L in assessing the absolute

improvement, since L scales according to costs and prior

probabilities. In Fig. 12, the default MSU scores are subtracted

from the DecompG algorithm scores for each data set. The

median of each cost-sensitive experiment (over the 10 folds) is

considered, resulting in 50 MSU scores. The figure shows the

median of these scores, together with the respective upper

and lower quartiles. It can be seen that in some cases, the new

operating points improve performance by over 8 percent,

which illustrates how beneficial the optimization can be.

7 CONCLUSIONS

This paper has considered the construction of multiclass
ROC curves, pointing out that even though this is
theoretically possible, the exponential computational com-
plexity with an increasing number of classes C is severely
restrictive. It was argued, however, that many practical
problems can be simplified because not all of the C2 � C
ROC dimensions interact (significantly). In fact, in some
cases, there are only a few interacting dimensions, with the
consequence that the ROC can be decomposed into a
number of lower dimensional groups. This reduces the

820 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 5, MAY 2008

TABLE 4
Results of Real Experiments for the Decomp Algorithm,

Following the Same Format as in Table 2

TABLE 5
Results of Real Experiments for the DecompG Algorithm,

Following the Same Format as in Table 2
Fig. 12. Plot showing the median improvement (in percent) in
performance that the DecompG cost-sensitive algorithm gives over the
default case across the various data sets.



computational complexity drastically. The consideration of
approximate decomposition was discussed, showing that if
there is only a small degree of interaction between two
decomposed groups, the interaction can be ignored, since it
does not have a significant impact on performance. This
was shown on an example for both cost-sensitive optimiza-
tion experiments and via a simplified VUS study. Approx-
imate decomposition allows for a more efficient ROC
construction, which is required for many real problems.

An algorithm has been proposed, which identifies

independent classifier weights and groups of weights, given

a trained classifier at an arbitrary operating point and a

representative test set. The algorithm inspects the sensitivity

of each ROC dimension to variations of each classifier weight

and has a computational complexity that is linear with

increasing C. A number of cost-sensitive optimization

experiments were conducted, involving synthetic experi-

ments in ideal circumstances and realistic ones with no

restrictions. The synthetic experiments showed the efficacy of

the proposed methodology in problems of up to 40 classes,

outperforming the unoptimized classifier significantly in all

experiments and outperforming two search-based techni-

ques. Experiments with real data sets showed that the

decomposition approach is generally significantly better

than the unoptimized case. In many cases, it was found that

the search-based approaches competed or dominated, which

is attributed to oversimplified decomposition (required for

computational reasons). A modified algorithm was also

implemented, which uses a search approach as a postproces-

sing step. This proved to perform better, helping to overcome

the limitation of the oversimplification.
The theoretical arguments and experiments make a strong

case for this type of methodology for general multiclass
problems in pattern recognition, scaling with large numbers
of classes. This may form the basis for important future
works, generalizing the various useful tools used in two-class
ROC analysis to multiclass problems.
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