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�

���
generalized closure of

�
� s 	 union of

�
and

	
����	

intersection of
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and
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set difference of

�
and
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set symmetric difference,
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I
o f ~ h neighborhood systemo�� f ~ h neighborhood basisf�I � o h neighborhood (pretopological) spacef�I � o � h pretopological space defined by the neighborhood basisf�I � � h neighborhood (pretopological) space defined by the generalized closuref�I � _ih generalized metric space with a dissimilarity _	�� f ~ h � - ball in a generalized metric space

f�I � _�h , 	�� f ~ h 698�� x I 4 _ f � � ~ h¡ ¢�£?¤ -algebra collection of subsets ¥ of the set
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` x ¥ , (2)

� x ¥§¦ f ` ��� h¨x ¥
and (3)
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� «
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� » º �
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��½
conjugate transpose of a complex matrix
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adjoint of an operator
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in a Hilbert space� J
adjoint of an operator
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determinant of a matrix
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"gf D � 1 h dissimilarity representation; a dissimilarity matrix between the training
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convex set

I
is convex if for all ~ � � x I and

L x ÿ k � j�� , L ~áà f j ýåL h � x I
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hyperprism figure generated by a flat region in � � , moving parallel to itself along
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Abbreviations
iff if and only if
df degrees of freedom
cnd conditionally negative definite
cpd conditionally positive definite
nd negative definite
nsd negative semidefinite
pd positive definite
pdf probability density function
psd positive semidefinite
wrt with respect to
k-CDD

)
-Centres Data Description

k-NN
)
-Nearest Neighbor rule

NN Nearest Neighbors
k-NNDD

)
-Nearest Neighbor Data Description

AL Average Linkage
CCA Curvilinear Component Analysis
CH Compactness Hypothesis
CL Complete Linkage
CNN Condensed Nearest Neighbor
CS Classical Scaling
DR Dissimilarity representation
GNMC Generalized Nearest Mean Classifier
GMDD Generalized Mean Data Description
ID Intrinsic dimensionality
LC Linear Classifier
LLE Locally Linear Embedding
LP Linear Programming
LPDD Linear Programming Dissimilarity data Description
MDS Multidimensional Scaling
MST Minimum Spanning Tree
NLC Normal density based Linear Classifier
NMC Nearest Mean Classifier
NQC Normal density based Quadratic Classifier
NN Nearest Neighbor rule
PCA Principal Component Analysis
PR Pattern Recognition
RKHS Reproducing Kernel Hilbert Space
RKKS Reproducing Kernel Kreı̆n Space
RNLC Reqularized Normal density based Linear Classifier
RNQC Reqularized Normal density based Quadratic Classifier
QC Quadratic Classifier
QP Quadratic Programming
SL Single Linkage
SRQC Strongly Reqularized Quadratic Classifier
SV Support Vector
SVM Support Vector Machine
SVDD Support Vector Data Description
SO Support Object



Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I –
I took the one less traveled by
And that has made all the difference.

”THE ROAD LESS TRAVELED”, ROBERT FROST





1. Introduction
Every beginning
is only a sequel, after all,
and the book of events
is always open halfway through.

”LOVE AT FIRST SIGHT”, WISŁAWA SZYMBORSKA

Human perception and inference skills allow us to recognize what the common characteristics of
a collection of objects are. It might be, however, difficult to formalize such observations. Imagine,
for instance, a set of fish shape contours [127], as presented in Fig. 1.1. Is it possible to define
a simple rule that divides them into two or three groups? If we look at the contours, we will find
out that some of them are rather long and without characteristic fins (shape C, H and I), whereas
others have distinctive tails as well as fins, say a group of fin-type fish. Judging shapes F and K in
the context of all fish shapes presented here, they could be found similar to other fin-type fish: A,
B, D, E, G and J. yet by visual inspection, they do not really appear alike, as they seem to be thinner
and somewhat larger. If the examples of C, H and I had been absent, the differences between F
and K and other fin-type fish would have been more pronounced. Furthermore, shape A could be
considered similar to F and K, but also different due to the position and shape of its tail and fins.

A B C D E F G H I J K

Fig. 1.1: Fish contours.

This simple example shows that without any extra knowledge or a clear context, one cannot claim
that the identification of two groups is better than the identification of three groups. This decision
relies on a free interpretation of what makes objects similar to be considered as a group.

For the purpose of an automatic grouping or identification, it is difficult to determine proper features,
i.e. mathematically encoded particular properties of the shapes, that would precisely discriminate
between different fish, yet emphasize the similarity between resembling examples. An alternative
is to compare the shapes by matching them as well as possible and determining the remaining
differences. Such a match is found with respect to a specified measure of dissimilarity. This measure
should take on small values for objects that are alike and large values for distinct objects.

There are many ways of comparing two objects, hence there are many dissimilarity measures. In
general, a suitability of a measure depends on the problem at hand and should rely on some addi-
tional knowledge one has about this problem. Example measures are presented in Fig. 1.2, where
two fish shapes are compared. Here, the dissimilarity between two similar fish, A and B, is much
smaller than between two different fish, B and H. Which to choose depends on expert knowledge or
problem characteristics. If there is no clear preference for one measure over the other, a number of
measures can be studied and combined. This may be beneficial, especially when different measures
focus on different aspects of the patterns.
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Fig. 1.2: Various dissimilarity measures can be constructed for matching two fish shapes. (b) Area difference:
the area of non-overlapping parts is computed. To avoid scale dependency, the measured difference can be
expressed relative to the sum of the areas of the shapes. (c) Measure by covers: one shape is covered by
identical balls (such that the ball centers belong to it), taking care that the other shape is covered as well. The
shapes are exchanged and the radius of the minimal ball is the sought distance. In both cases above, B is
covered such that either A or H are also covered. (d) Measure between skeletons: two shape skeletons are
compared by summing up the differences between corresponding parts, weighting missing correspondences
more heavily.

1.1 Learning from examples
The question how to extract essential knowledge and represent it in a formal way such that a ma-
chine could ’learn’ a concept of a category, identify objects or classify them, intrigued and provoked
many researches. The growing interest inherently led to the establishment of the areas of pattern
recognition (PR), machine learning (ML) and artificial intelligence (AI). Researchers in these dis-
ciplines try to find ways to mimic the human capacity of using knowledge in an intelligent way.
In particular, they try to provide mathematical foundations and develop models and methods that
automate the recognition processes by learning from a set of examples. This attempt is inspired by
the human ability to recognize e.g. what a tree is, given just a few examples of trees. The idea is that
a few examples of objects (and possible relations between them) might be sufficient for extracting
suitable knowledge to characterize their class.

After years of research, some practical problems can be now successfully treated in industrial pro-
cess tasks such as an automatic recognition of damaged products on a conveyor belt, or to fasten
the data-handling procedures, like an automatic identification of a person by his/her fingerprint. Yet
even after many years of research, the algorithms developed so far are still far from reaching human
recognition performance. Although the designed models become more and more complex, yet it
seems that to make a step further, one needs to analyze their basic underlying assumptions. An
understanding of the recognition process is needed; not only of the learning approaches (inductive
or deductive principles), but mainly of the basic notions of class, measurement process and the
representation of objects derived from these. The formalized representation of objects (usually in
mathematical terms) and the definition of class determine how the act of learning should be mod-
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Table 1.1: Basic differences between statistical and structural Pattern Recognition. Distances are a common
factor used for discrimination in both approaches.

Properties Statistical Structural
Foundation Well–developed theory of vector spaces Intuitively appealing: human cognition or

perception
Approach Quantitative Qualitative: structural and syntactic
Descriptors Numerical features: vectors of a fixed length Morphological primitives of a variable size
Characterization The element position in a vector The encoding process of primitives
Noise Easily encoded Needs regular structures
Learning Vector-based methods Based on graphs, decisions trees and grammars
Dissimilarity Usually a metric distance, often Euclidean Defined in the matching process
Discrimination Relies on distances or inner products in Grammars recognize the membership of valid

a feature space objects; distances often used
Class overlap Due to improper features and probabilistic Due to improper primitives leading to

models ambiguity in the description

eled. While many researchers are concerned with various algorithmic procedures, we would like
to focus on the issue of representation. This work is devoted to particular representations, namely
dissimilarity representations. Below and in the subsequent sections, we will give some insight into
the nature of basic problems in pattern recognition and machine learning, the motivation for the use
of dissimilarity representations and the contribution of this dissertation.

While dealing with entities to be compared, we will always refer to them as to objects, elements or
instances, regardless of whether they are real or abstract. For instance, images, textures or shapes
are called objects, in the same way as apples or chairs. An appropriate representation of objects is
based on some data. These are usually obtained by some measurement devices and encoded in a
numerical way or given by a set of observations or dependencies, presented in some structural form,
e.g. a relational graph. It is assumed that objects can, in general, be grouped together. One hopes
to identify a number of groups (clusters) whose existence would support the understanding of not
only the data, but also the problem itself. Such a process often serves the purpose of ordering the
information and finding suitable or efficient descriptions of the data.

The challenge of automatic object recognition is to develop computer methods which learn to iden-
tify whether an object belongs to a specific class or which learn to distinguish between a number of
classes. Typically, the system is first presented with a set of labeled objects, the training set, in some
convenient representation. Learning consists of finding the class descriptions such that the system
can correctly classify novel examples. In practice, the entire system is trained such that the given
examples are (mostly) assigned to the correct class. The underlying assumption is that the training
examples are representative and sufficient for the problem at hand. This implies that the system can
extrapolate well to previously unseen examples, that is it can generalize well.

There are two principal directions in PR, statistical and structural [49, 210, 280]. The basic dif-
ferences are summarized in Table 1.1. Both use features to describe objects, yet they are defined
differently. In general, features are functions of the (possibly preprocessed) measurements per-
formed on objects, e.g. particular groups of bits in a binary image summarizing it in a discriminative
way. The statistical, i.e. decision-theoretical approach, is (usually) metric and quantitative, while the
structural approach is qualitative [49, 280]. This means that in the statistical approach, features are
encoded as purely numerical variables. Together these constitute a feature space, usually Euclidean,
in which each object is represented as a vector. Learning is then inherently restricted to the mathe-
matical methods that one can apply in such a space. On the contrary, the structural approach tries
to describe the structure of the objects that in some intuitive way corresponds to human perception
of them [113, 115]. The features become primitives, fundamental structural elements, like strokes,
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corners or other morphological elements. Next, the primitives are encoded as syntactic units from
which objects are constructed. The strength of the statistical approach relies on the well-developed
concepts and learning techniques, while in the structural approach, it is much easier to encode ex-
isting knowledge on the objects. See chapter 4 for a more elaborate discussion.

Although our research is grounded in the statistical PR, we recognize the necessity of combining
numerical and structural information. Dissimilarity measures as the common factor used for dis-
crimination, Table 1.1, seem to be the natural bridge between these two types.

1.2 Motivation for the use of dissimilarity representations
The notion of similarity plays a pivotal role in class formation, since it might be seen as a natural
connection between observations on objects and a judgment on their common nature shared prop-
erties. In essence, similar objects can be grouped together to form a class, consequently a class is
a set of similar objects. There does not exist, however, some general object similarity that can be
universally measured or applied. A comparison of two objects is always with respect to a frame of
reference, i.e. a particular point of view, context, basic characteristics, type of domain or attributes
considered (see also Fig. 1.1). This means that background information, or the existence of other
classes will influence the way objects are compared. For instance, two brothers may not appear to
resemble each other. However, they may appear much more alike if compared in the presence of
their parents. The degree of similarity between two objects should be determined relative to a given
context or a procedure.

Any measurement of similarity of objects will be based on some assumptions concerning the prop-
erties of their relation. Such assumptions come from some model. Similarity can be modeled by
a measure of similarity or dissimilarity. These are intimately connected; a small dissimilarity and
a large similarity both imply a close resemblance of objects. There exist some ways of changing a
similarity value into a dissimilarity value and vice versa, but the interpretation of the measure might
be affected. In our work, we mostly concentrate on dissimilarities, which by their construction,
focus on the class and object differences. A choice for dissimilarities is supported by the fact that
they can be interpreted as distances in suitable vector spaces and in many cases they may be more
intuitively appealing. Therefore, we will be mostly concerned with dissimilarities.

In statistical PR, objects are usually encoded by feature values. A feature is a conjunction of mea-
sured values for a particular attribute. For instance, if weight is an attribute for the class of apples,
then a feature consists of the measured weights for a number of apples. For a set D of

-
objects, a

feature-based representation relying on a set
c

of � features is then expressed as an
- � � matrix� f D � c h , where each row is a vector describing the feature values for a particular object. Featuresc

are usually interpreted in a Euclidean feature vector space equipped with the Euclidean metric.
This is motivated by the algebraic structure (defined by operations on vectors) being consistent with
the geometric (topological) structure defined by the Euclidean distance (which is then defined by
the norm). Then all traditional mathematical concepts and methods, such as continuity, conver-
gence or differentiation are applicable. The continuity of algebraic operations makes sure that the
local geometry (defined by the Euclidean distance) is preserved throughout the space [224, 278].
Discrimination techniques operating in vector spaces make use of their homogeneity and other prop-
erties. Consequently, such spaces require that all the features are treated, up to scaling, in the same
way. Moreover, there is no possibility to relate the learning to the geometry defined between the
raw representations of the training examples. The geometry is simply imposed beforehand by the
nature of the Euclidean distance between (reduced) descriptions of objects, i.e. between vectors in
a Euclidean space; see also Fig. 1.3. The existence of a well–established theory for Euclidean metric
spaces made researchers place the learning paradigm in that context. However, the severe restric-
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Find the interpretation of
the dissimilarities to reflect
the geometry defined by them

Represent objects
by their pairwise
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e.g. as a Euclidean distanceDefine a set
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a vector space
as points in

Measurements

Dissimilarity−based (relative) representation

Feature−based (absolute) representation

Fig. 1.3: The difference with respect to the geometry between the traditional feature-based representations
and dissimilarity-based representations.

tions of such spaces simply do not allow the discovery of structures richer than affine subspaces.
From this point of view, the act of learning is very limited.

We argue here that the notion of proximity (similarity or dissimilarity) is more fundamental than
that of a feature or a class. According to an intuitive definition of a class (i.e. a set of similar objects),
proximity plays a crucial role for class constitution, and not features, which may (or may not) come
later. From this point of view, features might be a superfluous step in the description of a class.
Surely, proximity might be based on e.g. a weighted combination of features, but the definition
of the features should be influenced by the way the proximity of objects will be judged. On the
other hand, proximity between objects can be directly found on raw or pre-processed measurements
like images. Moreover, in the case of symbolic objects, graphs or grammars, the determination
of numerical features might be an intractable problem, while a proximity can be easily defined.
This emphasizes that a class of objects is represented by individual examples which are judged
similar according to a specified measure. A dissimilarity representation of objects is then based on
pairwise comparisons and is expressed e.g. as an

-Î��-
dissimilarity matrix

"gf D � D h , where each
entry corresponds to a dissimilarity between pairs of objects; see also Fig. 1.4. Hence, each object~ is represented by a vector of proximities

"gf ~ � D h to the objects in D (precise definitions will be
given in chapter 4). A new example

�
, represented by

"5f ��� D h , is classified to a specific class if it is
sufficiently similar to one or more objects within that class.

For a number of years, Goldfarb and colleagues have been trying to establish a new mathematical
formalism, which would allow one to describe objects from a metaphysical point of view, that is to
learn their structure and characteristics in a process of their construction; see e.g. [153–158]. This
projects aims at unifying the geometric learning models (statistical approach with the geometry
imposed by a feature space) and symbolic ones (structural approach) using dissimilarity as a natural
bridge. A dissimilarity measure is determined in a process of inductive learning realized by so-called
evolving transformation systems [153, 157, 160]. Loosely speaking, such a system is composed
of a set of primitive structures, basic operations that transform one object into another (or which
generate a particular object) and some composition rules which permit the construction of new
operations from the existing ones [155–157, 160, 161]. This is the symbolic component of the
integrated model. The geometric component is defined by means of a dissimilarity. Since there is a
cost connected to each operation, the dissimilarity is determined by the minimal sum of the costs of
operations transforming one object into another (or generating this particular object). In this sense,
the operations play the role of features and the dissimilarity, dynamically learned in the training
process, combines the objects into a class.

In this dissertation, the study of dissimilarity representations has mainly an epistemological char-
acter. It focuses on how we decide (how we make a model to decide) that an entity belongs to
a particular class. Since such a decision builds upon the dissimilarities, we come closer to the na-
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Fig. 1.4: Feature-based (absolute) representation and dissimilarity-based (relative) representation.

ture of what a class is, as, we think, it is proximity which defines the class. This approach is much
more flexible than the one based on features, since now, the geometry and the structure of a class is
defined by the dissimilarity measure, which can reflect the structure of the objects in some space.
Note that the reverse holds in a feature space, i.e. a feature space determines the (Euclidean) dis-
tance measure, hence the geometry; see also Fig. 1.3. Although, dissimilarity information is further
treated in a numerical way, The development of statistical methods dealing with general dissimilar-
ities is the first necessary step towards a unified learning model, as the dissimilarity measure may
be developed in a structural approach.

This integrated model may be constructed for objects containing an inherent, identifiable structure
or organization, like apples, shapes, spectra, text excerpts etc., yet current research is far from being
of a general applicability [160–162, 223]. On the other hand, there are a number of instances
or events which are mainly characterized by discontinuous numerical or categorical information,
e.g. gender or number of children etc. Therefore, we may have to consider heterogeneous types
of information to support decisions in medicine, finance, etc. In such cases, the symbolic learning
model cannot be directly utilized, yet a dissimilarity can be defined. This emphasizes the importance
of techniques operating on general dissimilarities. The study of proximity representations is the
necessary foundation to depart for the journey into alternative inductive learning methodologies,
in which the proximity measure, hence a class description will be learned from examples. This is
expected to become a part of future research.

1.3 Outline of the thesis
Dissimilarities play a key role in the quest for the integrated statistical–structural learning model,
since they are a natural common factor underlying these two approaches, as explained in the previ-
ous sections. This is supported by the theory that (dis)similarities can be considered a connection
between perception and higher–level knowledge, a crucial factor in the process of human recogni-
tion and categorization [115, 166, 418].

Throughout this thesis, all our investigations are devoted to dissimilarity (or similarity) represen-
tations. Note, however, that we do not design new measures. Instead, the goal of our work is to
study both the methodology and the approaches to learning from dissimilarity representations. We
propose novel and advantageous methods, dealing with classification problems in particular. An
outline of the thesis is presented in Fig.1.5.
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Fig. 1.5: Conceptual outline of the thesis.

The concept of a vector space is fundamental to dissimilarity representations. The dissimilarity
value captures the notion of closeness between two objects, which can be interpreted as a distance
in a suitable space. Since we choose to interpret dissimilarity representations in some vector spaces,
our learning methods will ultimately reside there. Therefore, chapter 2 focuses on mathematical
characteristics of various spaces, among others (generalized) metric spaces, norm spaces and inner
product spaces. These spaces serve later as the context, in which the dissimilarities are interpreted
and learning algorithms are designed. Therefore, the understanding of such spaces and their inter-
relations is needed for a further understanding of learning processes.

In chapter 3, some fundamental issues of dissimilarity measures and generalized metric spaces are
discussed. Since a metric distance, particularly the Euclidean distance, is mainly used in statistical
learning, its special role is explained and some related theorems are given. The properties of dissim-
ilarity matrices are studied, together with some embeddings, i.e. spatial representations (as vectors
in some space found such that the dissimilarities are preserved) of symmetric dissimilarity matrices.
This supports the analysis of pairwise dissimilarity data

"5f D � D h based on a set of examples D .

Chapter 4 starts with a brief introduction to feature-based statistical learning. Then a more detailed
description of dissimilarity representations is given. Some discussion on the issue of representation
can be found in our publication [105]. The chapter further focuses on possible methods of building
classifiers for such representations. Three different approaches are considered. The first one uses
dissimilarity values directly by interpreting them as neighborhood relations. The second one inter-
prets them in a space where each dimension is a dissimilarity to a particular object. Finally, the third
one relies on embedding (projection algorithms) and building classifiers in the resulting space.

In chapter 5, various types of similarity and dissimilarity measures are described, together with
their basic properties. The chapter ends with a brief overview of a number of dissimilarity measures
arising from various applications.

Chapters 6 and 7 start from fundamental questions related to exploratory data analysis on dissim-
ilarity data. One of the most basic and crucial points, supporting the process of understanding the
relations between data instances, is data visualization. This is discussed in chapter 6. Some of
the issues presented are based on the reports that resulted from a project in cooperation with Shell
E R P [297–299], a conference article [302] and a book chapter [289]. Other issues related to data
exploration and understanding are presented in chapter 7. They reflect upon intrinsic dimensional-
ity of the dissimilarity data or complexity of the data description, information on possible clusters
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etc. In other words, this chapter focuses on methods of unsupervised learning, where among others
grouping methods are discussed. This chapter has grown from an article [102].

One of the tasks in data analysis is the detection of outliers, i.e. objects with invalid measurements
or very specific and rare objects of a class. The removal of such objects is expected to improve the
coherence of a class description, so a better model can be designed. Some problems are also natu-
rally characterized by the existence of positive (target) examples, say healthy people, and negative
examples, say diseased people, where the occurrence of an illness is a rare event. In such cases,
the data are highly unbalanced, yielding a relatively small group of negative instances. A possible
approach to such problems is by constructing a domain descriptor. Construction of such descrip-
tors for dissimilarity representations is the topic of chapter 8. Some of these methods have been
described in earlier works [301, 306].

Chapter 9 is devoted to classification. Three approaches to learning are examined for some artificial
and real data. For recognition, the so-called representation set can be used instead of a complete
set of training objects. How to select such a set out of a training set and what the advantages and
drawbacks of the approaches are, is discussed. This work is supported by the articles [108, 109] and
our earlier publications [103, 106, 290, 291, 293–296, 300, 301, 315].

Chapter 10 discusses some possibilities of combining. This might be achieved e.g. by the combina-
tion of either different dissimilarity representations or of different types of classifiers. Additionally,
some issues concerning conceptual dissimilarity representations resulting from combining classi-
fiers, one-class classifiers or weak models are briefly discussed. The presented material is based on
[235, 236, 292, 303–305].

The overall conclusions and recommendations are summarized in chapter 11.

1.4 Main contributions
In this work, we propose the use of dissimilarity representations for identification and recognition
purposes. These are especially advantageous in the following cases:S for sensor data, such as spectra, digital images, shapes etc;S when the information on objects is encoded in a structural way, e.g. by trees or strings;S when vector representations of objects live in a high-dimensional space;S when the features describing objects are of mixed types;S as a way of constructing nonlinear classifiers in given feature spaces.

We establish some mathematical foundations for approaching learning problems based on algebra
[26, 177, 285], operator theory [112, 327], functional analysis [225, 234], indefinite inner product
spaces [3, 34, 204] and general topology [62, 224, 278, 363, 376, 379, 419] as well as the results of
Vapnik [403], Schölkopf [345, 346, 348, 350, 351, 356], Goldfarb [151, 152, 154, 163] and other
researchers. We present a systematic approach to study dissimilarity representations, which is the
principal aim of this work. We propose some novel procedures to learning from such representa-
tions, inevitably compared to the nearest neighbor method (NN) [71], which is the one traditionally
applied in this context. To our knowledge, although researchers have thoroughly studied the NN
method and its variants together with a design of perfect dissimilarity measures (appropriate to the
character of the NN rule), little attention has been devoted to alternative approaches. Only recently,
in the machine learning community, has the interest arisen for the support vector machines. How-
ever, these methods rely on a relatively narrow class of (conditionally) positive definite kernels,
which, in our terminology, can be seen as similarity representations [108, 109]. Our methods, on
the contrary, are applicable to general (dis)similarity representations and this is where our main con-
tribution is achieved. A more detailed description of the overall contributions is presented below.
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Representation of objects. The proximity representation quantitatively encodes the proximity be-
tween pairs of objects. It relies on the representation set 1 , a relatively small collection of objects
capturing the variability in the data. Each object is described by a vector of proximities to 1 . In
the beginning, the representation set may consist of all training examples and reduced later in the
process of instance selection. Some selection criteria have been proposed and experimentally inves-
tigated for different learning frameworks. As such, proximity representations have been developed
by us as a first step towards bridging the statistical and structural approaches to pattern recognition.
They are successfully used for solving object recognition problems.

Data understanding. To understand data is a difficult task. The main consideration is whether the
data sampling is sufficient to describe the problem domain well. Other important questions refer
to intrinsic dimensionality, data structure, e.g. in terms of possible clusters and the means of data
visualization. Since there exist many algorithms for unsupervised learning, our primal interest lies
in the former questions.

In this thesis, three distinct approaches to operate on dissimilarity representations have been pro-
posed. The first one relies on an approximate embedding of dissimilarities into a (pseudo-)Euclidean
space. The second approach addresses a dissimilarity representation as a mapping based on the rep-
resentation set 1 . As a result, the so-called dissimilarity space is considered, where each dimension
corresponds to a dissimilarity to a particular object from 1 . The third one operates on the given
dissimilarities directly. The approaches are introduced, studied and applied in various situations.

Domain description. The problem of describing a class has recently gained a lot of attention, since it
can be identified in many applications. The area of interest covers all problems where the specified
targets have to be recognized and the anomalies or outlier situations have to be detected. These
might be examples of any type of fault detection, abnormal behavior, or rare diseases. The basic
assumption that an object belongs to a class if it is similar to examples within this class. The iden-
tification procedure can be realized by a proximity function equipped with a threshold, determining
whether an instance is a class member or not. This proximity function can be e.g. a distance to a set
of selected prototypes. Therefore, the data represented by proximities is more natural for building
the concept descriptors, since the proximity function can be directly built on them.

To study this problem, not only some known algorithms have been adopted for dissimilarity rep-
resentations, but also new methods have been implemented and investigated. Concerning both the
efficiency and the performance issues, our methods were found to perform well.

Classification. New methodologies to deal with dissimilarity/similarity data have been proposed.
These rely either on the approximate embedding in a pseudo-Euclidean space and constructing
the classifiers there or on building the decision rules in a dissimilarity space, or on designing
neighborhood-based classifiers, as e.g. the NN rule. In all cases, some foundations have been estab-
lished, which allow us to handle general dissimilarity measures. Our methods do not require metric
constraints, so their applicability is quite universal.

Combining. A possibility to combine various type of information has proved to be useful in practical
applications; see e.g. [266, 267]. We argue that combining either significantly different dissimilarity
representations or combining classifiers different in nature on the same representation can be ben-
eficial for learning. This may be useful when there is lack of expertise how a well-discrimination
dissimilarity measure should be designed. A few measures can be considered, taking into account
different characteristics of the data. For instance, when scanned digits should be compared, one
measure can focus on the contour information, others on the area or some statistical properties.

Applications. A proximity measure plays an important role in many research problems. Proximity
representations have already been used, although indirectly, in many areas. They serve the purpose
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of text or image retrieval, data visualization, the learning process from partially labeled sets, etc.
Here, a number of other applications is presented, where such measures have been found to be
advantageous.

Credits. This thesis contains work that has been published or submitted before. Robert Duin, Car-
men Lai, Pavel Paclı́k, Dick de Ridder, Marina Skurichina and David Tax are acknowledged for the
discussions on all types of pattern recognition and machine learning issues, which resulted in com-
mon publications. We are also grateful for some dissimilarity data sets to Douglas Zongker, prof.
Anil Jain, Simon Günter, prof. Horst Bunke, Volker Roth, Pavel Paclı́k and Thomas Landgrebe. All
the data sets are described in Appendix A.2. Most of the experiments have been conducted using
PRTools [101], DD-tools [387] and own routines.

1.5 In summary
Progress has not followed a straight ascending line, but a spiral with rhythms of
progress and retrogression, of evolution and dissolution.

JOHANN WOLFGANG VON GOETHE

One of the basic questions in pattern recognition is how to tell the difference between given objects.
Two principal approaches can be distinguished to handle this problem. The statistical approach
focuses on measuring characteristic numerical features and representing objects as points in a Eu-
clidean feature space. Objects are different if their point representations lie sufficiently far away in
this space, which means that the corresponding Euclidean distance is large. The difference between
classes of objects is learned by finding a discrimination function in a feature space. It is constructed
such that the classes, represented by sets of points, are separated as well as possible.

The structural approach is applicable to objects with some identifiable structural organization. Basic
descriptors or primitives, encoded as syntactic units, are then used to characterize objects. Classes
of objects are learned either by suitable syntactic grammars or the objects themselves are compared
by the cost of some specified match procedure. Such a cost expresses a degree of difference between
two objects.

This thesis is concerned with statistical learning methods for dissimilarity representations. These
are numerical representations, in which each value captures the degree of commonality between
pairs of objects. The goal is to develop and study such learning approaches. Since a dissimilarity
measure can be defined on arbitrary data given by collections of sensor measurements, shapes,
strings or graphs, or vectors in a feature space, the dissimilarity representation itself becomes very
general. The advantages of statistical and structural approaches can be now integrated on this level.

To make the use of statistical learning, dissimilarity representations have to be interpreted in some
mathematical frameworks, i.e. in some spaces, in which discrimination functions can be defined.
Since general non-Euclidean dissimilarity measures are used in practical applications, a study out-
side the traditional use of Euclidean spaces was necessary. This led us to more general spaces.

This thesis has some aspects of both mathematical1 and experimental work. As a result, a necessary
trade-off had to be reached to present both theory and practice. Although some foundations are
laid down, the work is not completed as it requires years of research to come. We realize that the
material may be hard to read due to a variety of issues it discusses. Still, we hope that it will be
inspiring and encouraging to think about the presented concepts.

1 Our theorems, observations and propositions are marked by a star. All the proofs are ours.



PART I

Concepts and theory

”I understand,” said Modi, nodding. ”What I am getting at, however, is the nature of
the work. [...] By the nature of your work, I mean...how shall I put it?” He paused,
then said, ”Does it deal with aspects of reality perhaps? With areas that go beyond the
merely mechanical into zones of, shall we say, more nebulous reality? Where, perhaps,
the senses need to be transcended?”

”7 STEPS TO MIDNIGHT”, RICHARD MATHESON



Budowałem na piasku
I zawaliło si �e.
Budowałem na skale
I zawaliło si �e.
Teraz buduj �ac
Zaczn �e od dymu z komina.

”Podwaliny”, Leopold Staff

I built on the sand
And it tumbled down.
I built on a rock
And it tumbled down.
Now when I build, I shall begin
With the smoke from the chimney.

”Foundations”, Leopold Staff



2. Spaces

Ring the bells that still can ring
Forget your perfect offering
There is a crack in everything
That’s how the light gets in.
”ANTHEM”, LEONARD COHEN

The main goal of this thesis is to develop learning methodologies for dissimilarity representations.
Although many dissimilarity measures are designed and further used for matching purposes, a gen-
eral theoretical foundation for learning from examples represented by their dissimilarities to a set
of prototype objects is not established yet. Various dissimilarity measures are used for object com-
parisons in pattern recognition and related fields. Some of the measures are briefly discussed in
chapter 5. Different properties of these measures, such as Euclidean behavior, metric or asymmetric
properties, may lead to different learning approaches.

Many learning methods exist that make use of (Euclidean) distances in vector spaces. This, however,
relies on a feature-based representation of objects, which might not always be feasible to derive
for a given problem. Examples are structural descriptions of objects by graphs or strings. The
question is, therefore, how a learning task can be performed given a set of examples and their
dissimilarity representation. Additionally, sensor measurements or some intermediate description
of the considered examples may be also provided.

In order to make use of statistical learning, an appropriate framework for the interpretation of dis-
similarity data should be created. The concept of a (vector) space is important for the development
of a theoretical foundation, both from representational and algorithmic points of view, since we will
rely on numerical procedures and deal with numerical representations of the problems. Dissimi-
larities quantitatively express the differences between pairs of objects, while learning algorithms
usually optimize some error for a chosen numerical model. Dissimilarities have, therefore, a par-
ticular meaning within the frame of specified assumptions and models. Spaces possessing different
characteristics will allow one for different interpretations of the dissimilarity data, which will lead
to different learning algorithms. It is our aim to present various approaches to learning based on
properties of various spaces. Therefore, before dissimilarity measures and representations, as well
as learning methods are discussed, some essential concepts and properties of spaces are needed.

This chapter is motivated by the lack of a consistent and clearly identified mathematical theory on
general dissimilarity measures not only in pattern recognition field, but also in mathematics. In its
foundations, such a theory relies on the notion of nearness between two objects. Therefore, the
theory of spaces plays a key role, since such a nearness can be easily introduced there. Most of the
existing theory deals with norms, which are often used to define metrics. Usually, Euclidean, city
block or max-norm distances are considered. Other related issues are spread over various subfields
of mathematics, hence they are only partially known in pattern recognition. Our contribution here
is to bring together and present a basic theory on spaces in the context of general dissimilarities,
both metric and non-metric. The spaces described here will serve as interpretation frameworks of
dissimilarity data. The connections will become clear in chapters 3 and 4.

To our knowledge, no book exists yet that explains a theoretical background on general dissimilarity
measures and which studies learning problems from such a perspective (although a general study on



14 2 Spaces

pattern theory in this direction was done by Grenander [174–176]). Therefore, this chapter is meant
to fill this gap. It not only introduces some spaces with their basic properties, but it also shows the
relations between them. Consequently, the concepts are presented from a mathematical point of
view and supported, if possible by examples from pattern recognition. This part, although limited,
may still seem rather theoretical. Yet, its purpose is clear: to establish the mathematical basis for
dissimilarity representations.

In general, a space is a set of elements with an additional structure. From a pattern recognition
point of view, a space should posses some particular properties so that a finite representation of
objects can be characterized for the learning purpose. This means that some of the characteristics
can be induced or/and imposed on the data instances considered. Intuitively, a space should be
characterized by some notion of nearness (closeness) between its elements, compatible with the
algebraic structure1 whenever such a structure is available.

A space is often considered to already posses a structure of a high degree, as e.g. linear or metric
spaces do have. Usually, more primitive spaces are explained using those high-level concepts. In
our case, however, the dissimilarity measure might not satisfy the metric constraints, i.e. reflexivity,
definiteness, symmetry and triangle inequality; see Def. 2.30. Therefore, spaces more primitive than
metric (or Euclidean) should be considered. A bottom-up approach, starting from e.g. a notion of
a neighborhood, is needed. A common approach is either to consider only metric distances or to
impose them by a suitable correction of the given dissimilarity measure. (Even stronger, not only
metric, but often the Euclidean distance is assumed.) Therefore, in the coming sections 2.1 – 2.4, we
will briefly capture the basic concepts of some generalized topological spaces, generalized metric
spaces and linear spaces, as well as some of their essential properties. Most of the proofs are omitted
as they can be found in standard textbooks.

metric space

neighboorhood space

pretopological space

topological space

Hausdorff space

Euclidean space

Fig. 2.1: Some generalized topolo-
gical spaces.

Now we will briefly mention the spaces to be introduced in the
subsequent sections. We start with the notion of a neighborhood2

(or a closure) which is the basis for the construction of more com-
plex spaces, among others neighborhood spaces, pretopological
spaces and topological spaces. For a general illustration of the in-
terrelations between some of the generalized topological spaces,
see Fig.2.1. The idea of such a pictorial schema is to present
how from a very general space satisfying a few constraints, more
specific spaces, possessing more structure, are built. Basically,
if one pictorial space is ’encapsulated’ by another, it obeys more
requirements and possesses more properties than the first one,
and, consequently, it is more specific and its structure is richer.

A set with a neighborhood system creates a neighborhood space. Requiring that the intersection of
two neighborhoods belongs to the neighborhood system leads to a pretopological space. Adding
further the concept of a ’proper’ boundary, i.e. an idempotent closure operator, gives rise to a neigh-
borhood basis consisting of open sets. As a results, one gets a topological space. Imposing the
existence of disjoint neighborhoods for distinct elements (which implies that the sequences of el-
ements have at most one limit) yields a Hausdorff space. By requiring more and more separation
axioms (by the means of topological operations) between disjoint sets and distinct elements, more

1 For instance, the structure of a vector space is based on the operations of addition and multiplication by a scalar,
which e.g. lead to the construction of a linear combination, and consequently to a hyperplane. In a Banach space,
algebraic operations are continuous with respect tot he introduced norm.

2 Even more primitive concepts can be used, like filter, convergence or nearness [62, 141, 375].
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(a) Generalized metric spaces (b) Generalized inner product spaces

Fig. 2.2: A schematic diagram of relations between some classes of spaces. The numbers in (a) correspond
to the conditions of Def. 2.30. See sections 2.2–2.4 for details.

advanced spaces are obtained, finally leading to a metric space3. By providing the Euclidean dis-
tance to a vector space, a Euclidean space is obtained. This brief presentation shows that a Euclidean
space possesses a structure of a high degree.

RKHS space

Banach space

normed space

RKKS space

Krein space

Hilbert space

Fig. 2.3: Some inner pro-
duct spaces. RKHS and
RKKS stand for repro-
ducing kernel Hilbert and
Kreı̆n spaces, respectively.

Having introduced generalized topological spaces, a linear space will be
considered as the foundation for more complex spaces. The following
spaces are briefly discussed: normed and (indefinite) inner product spaces
with their relations to a metric space. Our attention is specifically devoted
to Euclidean (Hilbert) and pseudo-Euclidean (Kreı̆n ) spaces. Since the
inner product and metric are essential concepts for the description of re-
lations between object representations, the dependencies between some
classes of spaces are considered from these two perspectives; see Fig.2.2
for a schematic diagram. In this pictorial schema, if one space is ’em-
braced’ by another, it is either more restricted or a special case of the first
one. For instance, a (finite-dimensional) Euclidean space is a particular
case of a Hilbert space, which, in turn, is an inner product space and a
special case of a Banach space. The latter is an example of normed spaces, which, if metric is
defined, can be considered as metric spaces. If the metric requirements are weakened, then more
general spaces, like quasimetric or premetric spaces are obtained. See sections 2.2 – 2.4 for details.

2.1 Generalized topological spaces
I am always doing that which I cannot do, in order that I may learn how to do it.

PABLO PICASSO

Standard textbooks on topology define a topology on a set
I

by the means of a collection of
open sets. Open set is the basic notion of topology. For instance, in application to digital image
processing, they are used to construct a new digital topology on the ’integer plane’

� � �
; see

[214, 215, 221, 222]. When topology is discussed in normed vector spaces, the norm defines a
metric distance, which is used to construct open ball neighborhoods

	�� f ~ h 6t8�� x I 4 ! f ~ � � h; å�±? ,
for ��Ï k [278, 327]. These open sets determine the natural topology in metric spaces. The con-
cept of neighborhood is, however, more fundamental than the concept of distance, since a metric
(normed) space is already a high-level construction with a high degree of geometric structure; see

3 This ordering of spaces from extremely general to very specific is by no means unique. One may arrive at metric
structure from uniform structure and proximity structure [224, 419].
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Fig. 2.4: Illustration on neighborhoods. (a) Examples of neighborhoods of ~ from the set
I

. (b) A nested
neighborhood basis of

I
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-
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Fig. 2.1 and 2.2. Topology can be derived in a bottom-up way, where the notion of a distance is not
yet available. This can be achieved by the use of neighborhoods or generalized closure operators.
For an introduction to standard topology, see e.g. [278] and for more general topics, see books of
Gastl and Hammer [141], Köthe [224], Sierpiński [363] and Willard [419], as well as the articles
[148, 149, 376, 378, 379].

In this thesis we want to point out that neighborhoods or generalized closure operators can be
considered as basic concepts to build a (pre)topological space and to express the relations between
objects. This can be especially advantageous when one directly works with a representation domain
of objects, such as a collection of strings. Since our analysis starts from dissimilarity relations
between a set of examples, the neighborhoods will be defined here by the use of dissimilarities in
generalized metric spaces.

One of the most crucial characteristics a space should reflect is the notion of nearness, i.e. being able
to tell whether two elements are near or not. Note that at the most basic level it might be impossible
to distinguish that an element ~ is nearer to

�
than to � , although it can be judged that ~ is near to

both � and
�
. So, the relation of nearness may be based on based on the relations between sets and

not yet quantitative. It does not need to be symmetric, i.e. ~ can be near to � , but not vice versa.
(The nearness can also be seen as an asymmetric resemblance relation, e.g. of a child to a parent.)
A further study in this direction may lead to the so-called proximity spaces [62, 419].

A possible formalization of the notion of nearness for the set
I

can be made by defining for each el-
ement ~ x I a collection of subsets of

I
, called neighborhoods of ~ . Intuitively, the basic properties

of neighborhoods should be that each element ~ is contained in all its neighborhoods, any set con-
taining a neighborhood is a neighborhood, so consequently the entire set is the largest neighborhood
of each of its points. Below, formal definitions are presented.

Def. 2.1 (Generalized topology via neighborhoods) Let
��f�I h be a power set of

I
, i.e. the set of

all subsets of
I

. The neighborhood function
o 4 I ² ��f���f�I h+h assigns to each ~ x I the collectiono f ~ h of all its neighborhoods of ~ such that

(1) Every ~ belongs to all its neighborhoods:
© æ¨çÃè © F çXW

ö
æ ù ~ x - .

(2) Any set containing a neighborhood is a neighborhood:© F çYW
ö
æ ù © 4[Z èf - Ð]\ ¦ \ x o f ~ h+h .

(3) The intersection of two neighborhoods is a neighborhood:
© F ÷ 4 çYW ö æ ù -ì� \ x o f ~ h .

(4) For any neighborhood of ~ , there exists a neighborhood of ~ that is a neighborhood of each
of its elements:

© F çYW
ö
æ ùI^ 4 çYW ö æ ù © � ç 4 \ x o f � h .

The pair
f�I � o h with

o
satisfying the first two requirements is a neighborhood space [141]. The

pair
f�I � o h , obeying conditions (1) – (3) is called a pretopological space. If all conditions are

satisfied, then
f�I � o h becomes a topological space.
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Def. 2.2 (Neighborhood basis) A subfamily
o � f ~ h of the neighborhood system

o f ~ h is a neigh-
borhood basis (or a local basis) at ~ if the following conditions are fulfilled:

(1)
© F çYW`_

ö
æ ù ~ x - .

(2)
© F ÷ F3a çYW`_ ö æ ùI^ 4 çYW`_ ö æ ù \ ã -��-5b

.

A neighborhood basis uniquely describes a pretopological space. This follows, since a neighbor-
hood system satisfying the conditions (1) – (3) of Def. 2.1 is built by taking all subsets of

I
larger

than the basis neighborhoods, i.e.
o f ~ h 6Í8 \ ã�I 4 ^ F çYW`_ ö æ ù - Ðc\ ? . (Note that a pretopolog-

ical space may have many bases, each of them capable of describing the entire space.) Therefore,
instead of considering a complete neighborhood system, only a neighborhood basis can be used for
the definition of pretopology.

Neighborhood systems represent the knowledge on relations between the elements of a set
I

. In
general, a neighborhood of an element ~ is somewhat similar to ~ , however its elements are not no-
ticeably distinguishable from ~ . Therefore, the notion of a neighborhood system provides a general
tool for describing relations between elements of

I
. For instance, neighborhoods can be defined

by the use of binary relations, similarity and dissimilarity measures or hierarchic systems. See also
Fig. 2.4 for an illustration on neighborhoods.

Example 2.3 (Neighborhood bases)
1. Let

I 6 8 � �����+d�� ! � " ? . The neighborhood basis emphasizes particular relations between the
elements. For instance, for the relations on the right side below, it is defined as:S o � f �ih 698£8 �&? � 8 � �+d ?£? .S o � f � h 6g8£8 � �����+d ?£? .S o � f d h 6g8£8 d ? � 8 � �����+d ? � 8 d�� ! � " ?£? .S o � f ! h 698£8 d�� ! � " ?£? .S o � f " h 698£8 " ? � 8 d�� ! � " ?£? .

a b d ec

Extension of the above neighborhood relations to a set of integers is the Khalimsky line, used
to define a digital topology [214, 215].

2. Let _ 4 I � I ²ä� rp be a general dissimilarity measure, Def. 2.38, such that _ f ~ � ~ h 6�k . Then,	`e f ~ h 698�� x I 4 _ f ~ � � h¨  Q ? is a neighborhood of ~ for
Q Ï k . The neighborhood basis is given

as
o�� f ~ h 698 	�� f ~ h 4 �;Ï k ? .

3. Let
I

be a set. A hierarchical clustering (see section 7.1) can be seen as a successive top-
down decomposition of

I
, represented by a tree. The root, corresponding to the complete

set, is the largest cluster. Its children nodes point to a decomposition of
I

into a family of
pairwise disjoint clusters. Each cluster can be then further decomposed into smaller clusters
until the single elements in the leaves. In this way, sequences of nested clusters are created.
Now, a neighborhood of ~ is a cluster

 �
at the level

'
in the subtree containing the leaf ~ .

Then,
o � f ~ h 6 8  � 4 ~ x  � ? . Note that the requirement of disjoint clusters at each level is

not essential for the definition of
o � f ~ h .

Def. 2.4 (Neighborhood of a set) Let
f�I � o h be a pretopological space and let

Þ ã�I
. Then

-
is

a neighborhood of
Þ

iff
-

contains a neighborhood
- � for each � x Þ . The neighborhood system

for
Þ

is then given by
o f Þ h 6gf � ç�h o f � h . See also Fig. 2.4(c).

Def. 2.5 (Open and closed sets via neighboorhoods) Let
I

be a set.
� ã I

is open if it is
a neighborhood of each of its elements, i.e.

© æ¨ç�i � x o f ~ h . � is closed if
f�I ��� h is open.

A neighborhood function
o

defines a generalized topology on the set
I

, as given in Def. 2.1. Neigh-
borhoods can be further used to define the generalized interior and closure operators, which may
define open and closed sets, the basic concepts in a topological space. Since the properties of the
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Table 2.1: Equivalent axioms for the neighborhood and generalized closure operators. Axioms (1) – (3)
describe neighborhood spaces, axioms (1) – (4) define pretopological spaces and axioms (1) – (5) define
topological spaces.

Properties Closure
��j

Neighborhood system
o f ~ h

(1)
´ j 6 ´ ©�kmlXnEI x o f ~ h

(2) Expansive
- ã - j - x o f ~ h ¦ ~ x -

(3) Monotonic
� ã 	 ¦ ��j ã 	oj f - x o f ~ h � - Ð]\ h ¦ \ x o f ~ h

(4) Sublinear
f � s 	 h j ã � j s 	 j -9� \ x o f ~ h ¦ -�� \ x o f ~ h

(5) Idempotent
� jpj 6 � j ©rq l�s/tuk�v ^xw l�s$tyk�v ©Gz<l w \ x o f � h

neighborhood, closure and interior functions can be translated into each other, they are equivalent
constructions on

I
. Therefore, a generalized closure can be considered as a principal concept to

define other operators on sets [141, 377, 379].

Def. 2.6 (Generalized closure) Let
��f�I h be a power set of

I
. A generalized closure is a function��f�I h ² ��f�I h that assigns to each

� ã�I
a subset

� �
of
I

such that
´ � 6 ´ and

� ã ���
.

This generalized closure function is not idempotent, in general, i.e. for
� Ð I

, the condition
� ��� 6� �

does not necessarily hold, as required for the topological closure. The interior function and
neighborhood system

o
can be now defined by the generalized closure.

Def. 2.7 (Generalized interior) Let
��f�I h be a power set of

I
. A generalized interior is a function��f�I h ² ��f�I h that assigns to each

� ãtI
a subset

� �
of
I

such that
� � 6 I � f�I ��� h � . Equivalently,

one has
��� 6 I � f�I ��� h � .

Def. 2.8 (Neighborhood system) The neighborhood
o 4 I ² ��f���f�I h+h is a function which as-

signs to each ~ x I the collection of neighborhoods defined as
o f ~ h 6�8 - x ��f�I h 4 ~ Ëx f�I ��- h � ? .

Equivalently, one can write ~ x -Í�|{ f�I ��- h=Ëx o f ~ h .
Def. 2.9 (Generalized topology via closure) Let

��f�I h be the power set of
I

. Consider a gener-
alized closure

� 4 ��f�I h ² ��f�I h with the following properties:
(1)

´ � 6 ´ .
(2) Expansive:

© F Z è - ã - �
.

(3) Monotonic:
© F ÷ 4[Z è - ã \ ¦ - � ã \ �

.
(4) Sublinear:

© F ÷ 4[Z è f - s \ h � ã - � s \ �
.

(5) Idempotent:
© F Z è - ��� 6 - � .

If axioms (1) – (3) are fulfilled, then
f�I ��� h is a neighborhood space. If axioms (1) – (4) hold, thenf�I � � h is a pretopological space. If all conditions are satisfied,

f�I �u� h defines a topological space;
see also Table 2.1.

Corollary } 2.10 Axioms given in Table 2.1 are equivalent.

Proof. Let
I

be a set. Recall that
� ã 	~{ f�I ��	 h ã f�I ��� h holds for any

���
	 ã I
. We will

make use of Def. 2.8, where the generalized closure is defined by the neighborhood system. This means that~ x - j { f�I ��- h=Ëx o f ~ h . The proof follows.

(1)
´ 6 ´ j5{ ©�kmlXn ~ Ëx ´ j5{ ©GkmlYn ~ Ëx f�I � I h j { I x o f ~ h .

(2) ¦ Let
- x o f ~ h . Since the generalized closure is expansive, then

f�I ��- h ã f�I ��- h j . It follows
that

I � f�I ��- h j ã f�I � f�I ��- h+h 6 - . Hence, ~ Ëx f�I ��- h j { ~ x I � f�I ��- h j ¦ ~ x - . As- x o f ~ h , then by Def. 2.8, ~ Ëx f�I ��- h j . Hence, we have proved that
- x o f ~ h ¦ ~ x - .



2.1 Generalized topological spaces 19

� Let us assume that
- x o f ~ h ¦ ~ x - holds. Then, by Def. 2.8, we have ~ x - ¦ ~ Ëx f�I ��- h ¦f�I ��- h=Ëx o f ~ h { ~ x -�j . Consequently,

- ã -�j
.

(3) Assume that
- x o f ~ h and

- ã \ { f�I � \ h ã f�I ��- h . Since the generalized closure is
monotonic, one has

- ã \ { f�I � \ h ã f�I ��- h ¦ f�I � \ h j ã f�I ��- h j holds for all
-9� \ ã

I
. Hence, ~ x f�I � \ h j ¦ ~ x f�I ��- h j , which is equivalent to stating that ~ Ëx f�I ��- h j ¦ ~ Ëxf�I � \ h j , which, by Def. 2.8, is equivalent to

- x o f ~ h ¦ \ x o f ~ h . Since
- x o f ~ h � - ã \

,
then

\ x o f ~ h .
(4) Let

f - s \ h j ã -|j s \ j
hold for all

-E� \ ãI
. Assume that

-E� \ x o f ~ h . Replacing
-

by
f�I ��- h and

\
by
f�I � \ h , one gets:

f+f�I ��- h s f�I � \ h+h j ã f�I ��- h j s f�I � \ h j . Hence ~ xf+f�I ��- h s f�I � \ h+h j ¦ f ~ x f�I ��- h j�� ~ x f�I � \ h j h , which is equivalent to 8 ~ Ëx f�I ��- h j � ~ Ëxf�I � \ h j ¦ ~ Ëx f+f�I ��- h s f�I � \ h+h j ? . Since
-E� \ x o f ~ h and from de Morgan’s law

f�I ��- h sf�I � \ h 6 I � f -�� \ h , the latter implication is equivalent to
f - x o f ~ h � \ x o f ~ h+h ¦ f -¢� \ h¨xo f ~ h by Def. 2.8.

(5) Let
- x o f ~ h . Assume that the generalized closure is idempotent for all subsets of

I
. Then,f�I ��- h j 6 f�I ��- h jpj . Based on Def. 2.8, we have

- x o f ~ h { ~ Ëx f�I ��- h j { ~ Ëxf�I ��- h jpj { f�I � f�I ��- h j h�x o f ~ h . Let
\ 6 I � f�I ��- h j . Then,

\ x o f ~ h by the reason-
ing above. For all � , one has � x \ { � Ëx f�I � \ h { � Ëx f�I ��- h j { � Ëx f�I ��- h jpj {
� Ëx I � f�I � f�I ��- h j h j { � Ëx f�I � \ h j { \ x o f � h , by Def. 2.8. Hence, we have shown that©pq l�s$tyk�v ^ w�� tun���tun�� q v���v�l�s/tuk�v ©�z�l w \ x o f � h . �

The difference between pretopological and topological spaces lies in the notion of a closure operator.
In a topological space, the closure of any set

�
is closed,

� ��� 6 � � , and the interior of any set is
open,

f ��� h � 6 ��� . In a pretopological space, this is not necessarily true, so the basis neighborhoods
are not open. Here, the closure operator expresses the growth phenomenon, where the composition
of several closures results in successive augmentations, i.e.

� ã � � ã � ��� ã ����� .
Example 2.11 (Pretopological and topological spaces)

1. Let
I

be any set and let
B 4 I � I ² ��f�I h be a symmetric relation, i.e.

B f ~ � � h 6 B f � � ~ h .
Let a generalized closure of

� ãìI
be defined as

� � 6 ® æ ÷ � ç�i B f ~ � � h . Then
f�I ��� h is a

neighborhood space, since the generalized closure obeys conditions (1) – (3) of Def. 2.9.
2. Let

I
be a finite set and

f�I �+@ h be a directed graph. Let � f ~ h be a set of the forward neighbors
of ~ , i.e. � f ~ h 476Í8�� x I 4 f ~ � � h¬x @ ? . Let

� ã�I
. It is straightforward to show by axioms of

Def. 2.9 that the closure
� � 6�® æ¨ç�i f � f ~ h s98 ~ ?�h defines a pretopological space

f�I ��� h .
3. Let

o � f ~ h 6g8�� x ��4 � ~ ý � �  �� � � Ï k ? . Then
f � � o � h defines a topological space.

4. Let
o � f ~ h 6g8 f � � Ùth 4 ��x � � ~ x f � � Ùth�? . Then

f � � o � h defines a topological space.

Corollary } 2.12 (Open and closed sets) Let
f�I �u� h be a neighborhood space defined by the gen-

eralized closure, i.e. conditions (1) – (3) of Def. 2.9 hold.
� ã I

is open if
� � 6 � .

�
is closed if� � 6 � ; see also Table 2.2. Therefore, the following holds:

(1)
© æ¨ç�i � x o f ~ h { � 6 I � f�I ��� h � .

(2)
� 6 ���{ � 6 I � f�I ��� h � .

Proof.
(1) Assume that

©Gkmlm� � x o f ~ h holds. By Def. 2.8,
©rkmlX� � x o f ~ h { ©�kmlX� ~ Ëx f�I ��� h j { ©�kmlX� ~ xI � f�I ��� h j . Hence

� 6 I � f�I ��� h j .

(2)
� 6 �3� 6 I � f�I ��� h j by Def. 2.7. �

Lemma } 2.13 Let
f�I � o h be a neighborhood space. The assertions below are equivalent:

(1)
© F çYW

ö
æ ùI^ 4 çYW ö æ ù © � ç 4 \ x o f � h .

(2)
- x o f ~ h { -5� x o f ~ h .
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Table 2.2: Equivalent definitions of open sets. Note that
�

is closed, iff
f�I ��� h is open.

� ãtI
Neighborhood

o f ~ h Closure
� �

Interior
���

�
is open

© æ¨ç�i � x o f ~ h � 6 I � f�I ��� h � � 6 ���

Proof. The proof of Corollary 2.10 (5) shows that
© F çYW

ö
æ ù ^ 4 | ö è�� ö è�� F ù N ù çYW ö æ ù © � ç 4 \ x o f � h .

Since
\ 476 -5� by Def. 2.7, then

-5� x o f ~ h . �
A collection of open sets containing ~ constitutes a neighborhood basis in a topological space,
which can be proved by Lemma 2.13. Equivalently, since the closure operator is dual to the interior
operator, a neighborhood basis in a topological space can be built by a collection of closed sets
containing ~ .

Lemma 2.14 Let
f�I � o � h be a pretopological space. If all neighborhoods of

o �
are open sets or,o � f ~ h 47698 - ã�I 4 ~ x - �- 6 - � ? for all ~ x I , then

f�I � o � h is a topological space.

Corollary } 2.15 (Closure on neighborhoods) Let
f�I � � h be a neighborhood space. Then the

function
��f�I h ² ��f�I h defined as gcl

f � h 476ì8 ~ x I 4 © F çYW ö æ ù �§�í- Ë6 ´ ? , is a generalized
closure operator. Moreover, gcl

f � h 6 � � .

Proof. To prove that gcl
f � h 6 � j for every

� ãÎI
, we will equivalently prove that ~ Ëx gcl

f � h { ~ Ëx � j
holds for all ~ x I .
¦ ~ Ëx gcl

f � h ¦ ^ q l�s$tyk�v -ì��� 6 ´ . By Def. 2.8, this is equivalent to ~ Ëx f�I ��- h j �-ì��� 6 ´ . Since-Û�û� 6 ´ ¦ � ã�I ��-
, then by the monotonic property of

j
, one has

��j ã f�I ��- h j . Since ~ Ëx f�I ��- h j ,
then ~ Ëx ��j .� ~ Ëx � j ¦ f�I ��� h=Ëx o f ~ h by Def. 2.8. Since

f�I ��� h ��� 6 ´ , then ~ Ëx gcl
f � h . �

Def. 2.16 (Limit element) Let
f�I � o h be a neighborhood space. An element � x I is a limit of� ã I

iff for every neighborhood
- x o f � h , - intersects

��� 8�� ? . The set of all limits points
der

f � h 47698�� x I 4 © F çXW ö ��ù f ��� 8�� ?�h ��- Ë6 ´ ? is called the derived set [363].

Corollary 2.17 In a neighborhood space, der
f � h ã �á� . A closed set contains all its limit elements

and conversely.

The notions of both convergence and continuity are important in neighborhood spaces. Convergance
is usually defined by the use of filters.

Def. 2.18 (Filter and convergance) A filter on a set
I

is a collection
c

of subsets of
I

such that
(1)

©r� ç�� � Ë6 ´ .
(2)

© � ÷ � a ç�� ^ � a a ç�� � b�b ã f � � � b h .
(3)

©r� ç�� © � a � ã � b ¦�� b x c .
Let

f�I � o h be a neighborhood space. A filter
c

converges to ~ x I ,
c ² ~ , if

© F çXW
ö
æ ù ^ � ç��� ã -

.

Def. 2.19 (Continuity of a function) Let
# 4 f�I � o h ² f Þq� Ò h be a function between two neighbor-

hood spaces.
#

is continuous if for each ~ x I © 4 ç Ú ö
�
ö
æ ùµùM^ F çXW ö æ ù # f - h ã \ .

Theorem 2.20 (On continuous functions) Let
# 4 f�I � o h ² f Þa� Ò h be a function between two

neighborhood spaces. The following assertions are equivalent to the continuity of
#

[150, 278]:
1. For all ~ x I ,

	 x Ò f # f ~ h+h ¦ # � : f 	 h¨x o f ~ h .
2. For every set

� x ��f�I h , # f ��� h ã f # f � h+h � .

3. For every set
	 x ��f Þ h , f # � : f 	 h+h � ã # � : f 	ô� h .
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4. For every set
	 x ��f Þ h , # � : f 	°� h ã f # � : f 	 h+h � .

Note that in topological spaces, continuity of a function translates to the fact that the pre-image of
an open (closed) set is an open (closed) set.

Def. 2.21 (Cover, compact space)
1. Let

I
be a set. A collection of subsets

M ã¢I
is a cover of

I
if
I 6 ® M . A cover is finite if

finitely many sets belong to it. If
M

and
M b

are covers of
I

then,
M b

is a subcover if
M b Ð M

.
2. A topological space

I
is compact if every open cover has a finite subcover4.

3. A topological space is locally compact if every element has a compact neighborhood.

2.2 Generalized metric spaces
We have just introduced generalized topological spaces defined on sets. The necessity, however,
arises to consider sets on which the two operations: addition of elements and scalar multiplication
are defined. In particular, vector spaces are important. Most of the information presented here can
be found in the following books [33, 112, 177, 195, 224, 419].

Def. 2.22 (Vector space) A vector (linear) space
I

over
T

( � or U ) is a set of elements, called
vectors, with the following algebraic structure5

1.
I

is an additive Abelian group, i.e. there is a function
I � I ² I

, mapping
f ~ � � h to ~¡à �

such that the following conditions are satisfied for all ~ � � �
� x I :
a. associative law:

f ~°à � h à � 6 ~°à f � à � h .
b. commutative law: ~áà ��6�� àí~ .
c. the existence of the zero vector � : ~áà �;6-� àí~ 6 ~ .
d. the existence of an opposite vector

ý ~ for each vector ~ : ~°à f ý ~ h 6-� .
2. There is a mapping

T � I ² I
of
f V � ~ h to

V ~ such that the following conditions are satisfied
for all ~ � � x I and all

V � Xyx T :
a. associative law:

f V X;h ~ 6 V f X ~ h .
b. distributive laws:

V f ~�à � h 6 V ~áà V � , and
f V à X;h ~ 6 V ~°à X ~ .

c. the existence of a unit element j x T : j ~ 6 ~ .

Def. 2.23 (Linear combination, span and linear independence) Let
I

be a vector space over
T

.
The vector ~ is a linear combination of ~ : � ~ < � ����� � ~ > x I if there exist K : � K < � ����� � K > x T such
that ~ 6íz >º�| : K º ~ º . The set span 8 ~ : � ~ < � ����� � ~ > ? is the collection of all their linear combinations.
A finite set of vectors ~ : � ~ < � ����� � ~ >�x I is linearly independent if z >º�| : K=º ~ º 6�k implies that allK º 6�k . Otherwise, the set is linearly dependent. An infinite set is linearly independent if every finite
subset is linearly independent.

Def. 2.24 (Basis of a vector space) Let
I

be a vector space. A set of vectors
	 476¢8 ~ /%? from

I
forms a Hamel basis of

I
if
	

is linearly independent and each vector ~ is in the span of �Ê47658 ~ º ?
for some finite subset � of

	
. The dimension of

I
is the cardinality of

	
.

Def. 2.25 (Subspace) A subspace � of a vector space
I

is a subset of
I

, closed for the operations
of vector additions and scalar multiplication.

Example 2.26 Examples of vector spaces:
4 In a vector space � H , a set � is compact if it is closed and bounded.
5 � is in fact a field, i.e. a set with the binary operations of addition � and multiplication � such that both � and �

are associative and communitative, there exists an additive identity � and a multiplicative identity, different from � and
for every element, there exist additive na multiplicative inverses and � is distributive over the operation � . Usually, � is� or � .
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1. Real and complex numbers, � and U , respectively, with usual operations of scalar addition
and multiplication. ��� and U³� are � -dimensional vector spaces.

2. All matrices
� > ¾ � with the matrix addition and multiplication by a scalar.

3. The set
c�f ` h of all functions defined on a closed and bounded set

`
, with the pointwise

addition
f # à $ h f ~ h 6 # f ~ h à $ f ~ h and the scalar multiplication

f d # h f ~ h 6 d # f ~ h .
4. The set

Ñ f ` h of continuous functions on
`

and the set
Ò f ` h of classes of functions measur-

able in the Lebesgue sense6 are infinite dimensional vector spaces and subspaces of
cEf ` h .

5.
Ó Ô¿ 6Ê8 # x Ñ f ` h 4 f ÕuÖ � # f ~ h � ¿ ! ~ h :
Ø ¿  EÙÎ? for .�Ì j is an infinite dimensional vector space and
a subspace of

cEf ` h .
Def. 2.27 (Algebraic dual space)7 Given a vector space

I
over

T
( � or U ), the dual space

IÍJ
is

a set of all linear functions
# 4 I ² T

, called also linear functionals and also denoted by
Ü f�I � T h .I J

itself becomes a vector space over
T

under the pointwise addition
f # à $ h f ~ h 6 # f ~ h à $ f ~ h and

scalar multiplication
f d # h f ~ h 6 d # f ~ h for all

# �%$ x IåJ , d x T and ~ x I .

If
I

is finite-dimensional, then both
I

and
I J

have the same dimension. Moreover,
I

is iso-
morphic8 to

IåJ
. If

I
is infinite-dimensional, then the dimensionality of

IÊJ
is strictly larger than

that of
I

[224]. The spaces
I

and
I J

are dual with respect to a bilinear function
IÊJ � I ² T

,
called a scalar product, and denoted as

éïî � î ë . For instance, if
I 6Ê� > 6 I J ( � > is self-dual), thené ~ J � ~@ë 6 z >/�| : ~ J/ ~ / for ~ J x I J and ~ x I . Since

I
is a vector space, then

I J 6 Ü f�I � T h . Therefore,
for the evaluation functional

Q æ
,
Q æ # 6 # f ~ h , one has that

Q æ # 6 é # � ~¬ë for
# x I5J and ~ x I . Any

isomorphism
Z 4 I ² I J

defines a unique non-degenerate bilinear product on
I

by
é ~ � � ë 6 Z f ~ h f � h

for ~ � � x I . Now, for the fixed ~ ,
Z f ~ h 4 I ² T

.

Def. 2.28 (Topological vector space) A vector space
I

over
T

( � or U ) is a topological vector
space if there exists a neighborhood system

o
such that

f�I � o h is a topological space and the
vector space operations of addition

f ~ � � h ² ~�à � of
I � I ² I

and multiplication by a scalarf V � ~ h ² V ~ of
T � I ² I

are continuous.

Def. 2.29 (Continuous dual space) The continuous dual
Ü Ý f�I � T h of a topological vector space

I
is a subspace of the dual space

I J 6 Ü f�I � T h consisting of all continuous linear functionals9.

Def. 2.30 (Metric space) A metric space is a pair
f�I � ! h , where

I
is a set and

!
is a distance

function
! 4 I � I ² �qrp such that the following conditions are fulfilled for all ~ � � �
� x I :

(1) Reflexivity:
! f ~ � ~ h 6êk .

(2) Symmetry:
! f ~ � � h 6 ! f � � ~ h .

(3) Definiteness:
! f ~ � � h 6êk ¦ ~ 6Û� .

(4) Triangle inequality:
! f ~ � � h à ! f � �
� h¨Ì ! f ~ �
� h .

For instance,
I

can be ��� ,
� � ,

ÿ � ��� � � , or a collection of all (bounded) subsets of e.g.
ÿ � ��� ��� . If

I
is a finite set, e.g.

I¡  8 ~ : � ~ < � ����� � ~ >@? , then
!

is specified by an
* �³*

dissimilarity matrix
" 6 f ! /7ºÃh ,0 � ¼ 6tj � ����� �+* such that

! /7º 6 ! f ~ / � ~ º h . Consequently, the matrix
"

is nonnegative, symmetric and
has a zero diagonal.

6 Two functions are in the same equivalence class if they agree almost everywhere, i.e. if they disagree on a set of
a measure zero. From now on ¢¤£B¥�� refers to such classes of functions measurable in the Lebesgue sense.

7 The notion of the dual space is useful for inner product and normed spaces; see section 2.3.
8 Isomorphism ¦ is a bijective map (one-to-one and onto) such that both ¦ and its inverse ¦ N � are linear maps.
9 For any finite-dimensional normed vector space (to be defined in section 2.3) or any topological vector space, such

as Euclidean space, the continuous dual and the algebraic dual coincide. §O¨�£©�o� is then a normed vector space, where
the norm ªuª ¦pªuª of a continuous linear functional ¦ on � is defined as ªyª ¦pªyª¬«�¯®�°x±mª ¦r£³²��*ªµ´¶ªyª ²rªuªµ·�¸�¹ .
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Example 2.31 Examples of metric spaces:
1. Let

I
be any set. For ~ � � x I , the discrete metric on

I
is given by

! f ~ � � h 6 e5f ~ Ë6�� h , where
e

is the indicator function. If
I

is a finite set, then all the pairwise distances can be realized by
points lying on an equilateral polytope (an extension of equilateral triangle and an extension
of tetrahedron).

2. Metrics in a vector space � � (to emphasize that a vector �yx � � , we will mark it in bold):S ! ¿ f � �+� h 6 f z �/�| : � ~ / ý � / � ¿ h :+Ø ¿ with .�Ì j , a general Minkowski distance.S ! : f � �+� h 6�z �/�| : � ~ / ý � / � , the city block distance.S ! <   ! # f � �+� h 6|º z �/}| : f ~ / ý � / h < , the Euclidean distance.S ! ¯   ! &('+)ûf � �+� h 6-,$. � :�» / » � � ~ / ý � / � , the max-norm distance.
3. Let

cEf ` h be of all functions defined on a bounded and closed set
`

,
Ñ f ` h be a set of continuous

functions on
`

and
Ó�Ô¿ 658 # x Ñ f ` h 4 f Õ Ö � # f ~ h � ¿×! ~ h :
Ø ¿  �ÙÎ? for .�Ì j . Metrics on the space of

functions
c

:S c 476 Ó Ô¿ ,
! ¿ f # �%$ h 6½¼ Õ Ö f # f C h ý5$ f C h+h ¿ ! C�¾ :
Ø ¿ .S c 476 Ñ f ` h , ! ¯ f # �%$ h 6-¿*À �  ç Ö � # f C h ýå$ f C h � .

Theorem 2.32 (Backward triangle inequality) Let
f�I � ! h be a metric space. Then, for all ~ � � �
� xI

, the backward triangle inequality
� ! f ~ �
� h ý ! f � �
� h � É ! f ~ � � h holds.

Theorem 2.33 (Natural topology in metric spaces) Every metric space
f�I � ! h with a suitable

neighborhood basis is a topological Hausdorff space.

Proof. Let
	`Á f ~ h 476Ê8�� x I 4 ! f ~ � � h  ��£? be an open ball. To show that

f�I � ! h is a topological space, it is
sufficient to prove that the neighborhood basis

o[Â f ~ h 476 8 	 Á f ~ h 4 �¡Ï k ? defines a topology on
I

. Below,
we show that indeed

o Â f ~ h is a neighborhood basis, i.e. the axioms of Def. 2.2 are fulfilled.

(1) Obviously,
! f ~ � ~ h 6�k  �� , which means that ~ x 	�Á f ~ h for any � Ï k , so axiom (1) is satisfied.

(2) Consider any
	ÃÁ f ~ h and

	`Ä f ~ h for � ��Å Ï k . Let Æ É ,$Ç³È=8 � ��Å ? . Then
! f ~ � � h;  Æ É ,$Ç³È 8 � ��Å ? , which

means that if � x 	ÃÉ , then � x 	3Á f ~ h � 	`Ä f ~ h , hence the inclusion
	�É f ~ h ã 	`Á f ~ h � 	`Ä f ~ h holds. Therefore,

axiom (2) is fulfilled and the � -balls are the local basis.

By Lemma 2.14 we need to prove that the � -balls are open sets. By Def. 2.5,
	�Á f ~ h is an open set iff for

all � x 	`Á f ~ h ¦ 	`Á f ~ h x o f � h . We will first show that for each � x 	ÃÁ f ~ h there exists
Å

such that	`Ä f � h ã 	`Á f ~ h . Let � x 	3Á f ~ h . Let
Å

be such that k   Å ÉÊ� ý ! f ~ � � h . Let
� x 	ÃÄ f � h . This means that! f � �
� h¨  Å É�� ý ! f ~ � � h , which leads to

! f ~ � � h à ! f � �
� h¨ �� . By the triangle inequality, we have
! f ~ �
� h¨ �� ,

which stands for
� x 	3Á f ~ h . Hence, we show that

� x 	3Ä f � h ¦ � x 	`Á f ~ h , hence
	3Ä f � h ã 	`Á f ~ h . By axiom

(2) of Def. 2.1, any set enclosing
	 Ä f � h belongs to

o f � h , hence
	 Á f ~ h x o f � h for all � x 	 Á f ~ h . Therefore,o Â f ~ h consists of open sets. Consequently, by Lemma 2.14,

o Â f ~ h defines a topological space.

The fact that every metric space
f�I � ! h is Hausdorff (see also Def. 5.3) can be shown as follows. Let ~ � � x I

and � 6 ! f ~ � � h �m� . Then, the open balls are disjoint, i.e.
	�Á f ~ h ��	Á f � h 6 ´ and ~ x 	3Á f ~ h and � x 	`Á f � h . �

Since a metric space is Hausdorff, every sequence has at most one limit and every subsequence
is convergent to the same limit. This has an impact on applications. Solutions to many practical
problems can be expressed as iterated function systems in some metric space. These properties
ensure that if such systems are convergent, they are convergent to a unique solution. In practice,
however, an additional property of completeness, Def. 2.35, must be required, which takes care that
the limit exists in the domain of interest.

Def. 2.34 (Convergence) Let
f�I � ! h be a metric space. Then the sequence ~ > converges to ~ x I ,Ê Ç³, >�Ë ¯ ~ > 6 ~ , if

Ê Ç©, >�Ë ¯ ! f ~ > � ~ h 6�k or, equivalently, iff the open ball
	 � f ~ h 476g8�� x I 4 ! f ~ � � h¨ ��£?

contains a tail of ~ > .
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Def. 2.35 (Cauchy sequence, completeness) Let
f�I � ! h be a metric space.

1. A sequence ~ > x I is Cauchy iff
Ê Ç©, > ÷ � Ë ¯ ! f ~ > � ~ � h 6�k .

2. A space
f�I � ! h is complete if every Cauchy sequence converges in

I
.

Theorem 2.36 (On metric spaces)
1. In a metric space every convergent sequence is Cauchy, but not conversely; see Example 2.37.
2. In a metric space, the distance

!
is continuous, i.e. the convergence of any two sequences~ > � � >ûx I to ~ and � , respectively, implies that

Ê Ç©, >8Ë ¯ ! f ~ > � � > h 6 ! f ~ � � h .
3. A closed subset of a complete metric space is complete under the induced metric.

Example 2.37 Examples of complete and non-complete spaces:
1.

f+f k � j�� � ! < h is not complete. The sequence ~ > 6 :> ²äk is Cauchy, but not convergent in
f k � j�� .

2.
f � � � ! < h is complete.

3. Let
`

be a closed and bounded set in � � and
Ñ f ` h be a set of continuous functions on

`
.f Ñ f ` h � ! ¯ h is complete.

4. Let
`

be a closed and bounded set in ��� .
f Ñ f ` h � ! ¿ h for j É9.E �Ù is not complete, since

some of the Cauchy sequences converge to discontinuous functions [234]. If
Ò f ` h is a set of

classes of functions measurable in the Lebesgue sense, then
f Ò f ` h � ! ¿ h is complete.

5. Since every metric space is a subset of a complete space [278, 363], it can be completed by
adding the limits of all convergent sequences. E.g.

f+f k � j�� � ! <Ãh can be completed to
f ÿ k � j�� � ! <±h .

Def. 2.38 (Generalized metric spaces) Let
I

be a set and _ 4 I � I ² �×rp be a dissimilarity
function. If the requirements of Def. 2.30 hold, then _ is a distance function. If these requirements
are weakened, spaces with less constraints10 are considered; see also Fig. 2.2:

1. hollow space - a space
f�I � ! h obeying the reflexivity condition.

2. premetric space - a hollow space
f�I � _�h obeying the symmetry constraint.

3. quasimetric space - a premetric space
f�I � _ih obeying the definiteness constraint.

4. semimetric space - a premetric space
f�I � _�h satisfying the triangle inequality.

5. A hollow space
f�I � _ih satisfying the triangle inequality [35].

Example 2.39 Examples of generalized metric spaces:
1. Let

I 6 8 o f X � ¤ h�? be a space of one-dimensional normal distributions. The Mahalanobis
distance between them,

!�4 f o f X : � ¤ : h � o f X < � ¤ < h+h 6 Ì Í � � Í � ÌöÏÎ �� p Î �� ù � L � is premetric; see Fig. 2.5.

2. Let
I 6 � � and

)
, j Ì ) Ì � is a fixed integer. Then, the distance

! « � w 2 > « measuring the
absolute difference along the

)
-th dimension,

!i« � w 2 > « f � �+� h 6 � ~ « ý � « � is semimetric.
3. Let

f ` � ¥ � X;h be a measurable space, i.e.
`

is a set, ¥ is a ¤ -algebra of subsets on
`

and X is
a measure. Then

! Í f � �
	 h 6 X f ����	 h is semimetric [419], where
����	 476 f � s 	 h � f �¢��	 h .

4. Let
I

be a set of closed subsets of � � . Similarly, as above, the � -dimensional volume
symmetric difference

!�Ð?Ñ�Ò f ���
	 h 6 vol
f ����	 h is semimetric. The definiteness condition is

not fulfilled, since
! Ð?Ñ�Ò f ���
	 h 6 k for finite collections of points

�
and

	
. In the pattern

recognition area, this dissimilarity can be computed between two matched shapes as the area
of non-overlapping parts; see also Fig. 1.2(b).

5. Let
f�I � _ih be a semimetric space. Let the equivalence relation Ó be defined as ~ Ó � iff_ f ~ � � h 6�k . If

I�Ô
is the set of equivalence classes

ÿ ~ � in
I

under this relation, then _ Ô defined
on
IÕÔ

such that _ Ô f ÿ ~ � � ÿ ��� h 6 _ f ~ � � h is a metric on
IÕÔ

[419].
6. The space

f � � � ! ¿ h , where
! ¿ f � �+� h 6 f z �/}| : � ~ / ý � / � ¿ h :+Ø ¿ and .�x f k � j h is quasimetric.

10 Terminology is not unified, it varies between authors and contexts.
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B C

A

Fig. 2.5: Mahalanobis distance between one-dimensional normal distributions is premetric. The reflexivity
and symmetry conditions are satisfied, but the definiteness and triangle inequality are not. Although

�
and	

are different,
! f � �
	 h 6 k . Let ¤ 476 ¤ Â 6 ¤�Ö and

� X Â ý X Ö � 6 � . Then
! w f 	��  h 6 � � fµ× � ¤ h and! w f  �
� h 6 � � f ¤pØ à ¤pØ� h*Ù¯Ú Ø . Since ¤ � Ï ¤ ,

! w f  �
� h à ! w f � �
	 h¨  ! w f  �
	 h .
Proof. To prove that the triangle inequality does not hold, let � 6[� and

� 6 ÿ k � j���Û ,
	 6 ÿ k � kX�ÏÛ and 6 ÿ j � kX� Û . Then,

!YÜ f ���
	 h 6 !�Ü f 	��  h 6åj and
!YÜ f  �
� h 65� Ù¯Ú Ü . Finally,

!XÜ f ���
	 h à !�Ü f 	��  h 6��  � Ù¯Ú Ü 6 !�Ü f  �
� h , since .�  j . Hence, the triangle inequality is violated. �
In generalized metric spaces, the definitions of convergence and of a Cauchy sequence are adopted
from the metric case, Def. 2.34 and Def. 2.35.

Def. 2.40 (Convergence) Let
f�I � _ih be a quasimetric space. An element ~ x I is called a limit of

an infinite sequence ~ > ,
Ê Ç©, >�Ë ¯ ~ > 6 ~ , if

Ê Ç³, >�Ë ¯ _ f ~ > � ~ h 6�k .
Def. 2.41 (Continuity of a dissimilarity) Let

f�I � _�h be a generalized metric space. The dissimilar-
ity _ 4 I � I ² �qrp is continuous at ~ and � , if for any two sequences ~ > � � > x I ,

Ê Ç³, >8Ë ¯ ~ > 6 ~
and

Ê Ç³, >8Ë ¯ � > 65� implies that
Ê Ç³, >�Ë ¯ _ f ~ > � � > h 6 _ f ~ � � h . Moreover, _ is continuous in

I
if it is

continuous for each pair from
I

.

Note that all ’nice’ properties of a dissimilarity measure, such as continuity, convergence of a se-
quence to one limit, Cauchy convergent sequences can be considered for the metric only. A gener-
alized metric space may not fulfill these conditions.

Example 2.42 Let
f�I � _�h be a quasimetric space.

1.
I

is not necessarily a Hausdorff space. A sequence may have more than one limit.
Proof. Consider a quasimetric space

f ÿ k � j�� � _�h such that _ f ~ � � h 6 � � ý ~ � if ~ � � x ÿ k � j h , _ f ~ � j h 476_ f ~ � k h if ~ x f k � j h , _ f j � k h 6 _ f k � j h 65j and _ f j � j h 6�k . Then, the sequence ~rÝ 6 ÙÝ converges to both
k and j , since both _ f ÙÝ � k h and _ f ÙÝ � j h have the limit zero if

* ² Ù . �
2. The dissimilarity _ is not necessarily continuous.

Proof. Consider a quasimetric space
f ÿ k � j�� � _ih such that _ f ~ � � h 6Þ� if ~ � � x 8uk � j ? and ~ Ë6 � , and_ f ~ � � h 6 � ~ ý � � , otherwise. Then, _ is discontinuous for the pair

f k � j h , since for ~ßÝ 6 ÙÝ and � Ý 6åj ý ÙÝ ,
we have

Ê Ç³, Ýmà�áÊ~�Ý 6�k and
Ê Ç³, Ýâà�á � Ý 65j , but

Ê Ç³, Ýâà�á _ f ~UÝ � � Ý h 6åj , while _ f ~ � � h 6ã� . �
3. An infinite sequence of elements from

I
might be convergent without being Cauchy.

Proof. Consider a space
f ÿ k � j�� � _ih , such that _ f ~ � � h 6�j if ~ 6 ÙÝ , ��6 Ùä and

* Ë6 � , and _ f ~ � � h 6� ~ ý � � , otherwise. Then, for ~ Ý 6 ÙÝ ,
Ê Ç³, * ² Ù ~ Ý 6åk . So, ~ Ý is convergent, but not Cauchy, sinceÊ Ç³, Ýmà�á _ f ÙÝ � Ùä h 65j . �

Theorem 2.43 If
f�I � _ih is a quasimetric space with a continuous dissimilarity function _ , then for

all ~ x I and all � Ï k , 	�� f ~ h 47698�� x I 4 _ f ~ � � h× t�£? is an open set [363].

Proof. We will use Corollary 2.17 stating that a closed set contains all its limit elements and conversely. To
prove that

	3Á f ~ h is open, we will show that the complementary set
Þ 476 I ��	�Á f ~ h 658�� x I 4 _ f ~ � � hiÌ��±? is

closed. Let
�

be a limit element of
Þ

, which means that there exist elements
� Ý x Þ such that

� Ý converges
to
�
. From continuity of _ , _ f � Ý �
� h ² k . Since

� Ý x Þ , then for any ~ x I , one has _ f ~ �
� Ý h ÌÊ� . From
continuity of _ , it follows that _ f ~ �
� h 6 Ê Ç³, Ýmà�á _ f ~ �
� Ý h;Ì5� . This proves that

� x Þ . Consequently,
Þ

is
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a closed set, as it contains its limit elements. Hence,
	�Á f ~ h is open. �

Theorem } 2.44 (Generalized metric spaces with ball neighboorhoods are pretopological)
(1) A hollow space is pretopological.
(2) A premetric space is pretopological.
(3) A quasimetric space

f�I � _�h with a continuous dissimilarity _ is topological.
(4) A semimetric space is topological.
(5) A hollow space

f�I � _�h satisfying the triangle inequality is topological.

Proof. To show that hollow, premetric and quasimetric spaces are pretopological, one needs to prove that
the � -balls define a neighborhood basis. Such a proof directly follows the proof given in the metric case by
Theorem 2.33. A continuous dissimilarity measure in a quasimetric space assures that the � -balls are open
sets by Theorem 2.43, hence the axioms of the topological space are fulfilled. The proof that a semimetric
space is topological follows the same reasoning as in the metric case; see the proof of Theorem 2.33. The
proof that a hollow space satisfying the triangle inequality is topological is given in [35]. �
Since generalized metric spaces are pretopological, the continuous functions between such spaces
can be defined adequately; see Def. 2.19 and also Corollary 2.20. Making use of neighborhood
balls, we have:

Def. 2.45 (Continuity of a function) Let
f�I � ! h and

f Þa� _ih be generalized metric spaces. A func-
tion

# 4 I ² Þ
is continuous at ~ x I if

©¬�?å
r ^ e å r � x 	 e f ~ h ¦ # f � h�x 	�� f # f ~ h+h , where the

neighborhood balls are defined as
	Ãe f ~ h 6 8 � 4 ! f ~ �
� h   Q ? and

	 � f # f ~ h+h 6 8 # f � h 4 _ f # f � h � # f ~ h+h& ��£? ,
respectively. In case of the metrics, the � - and

Q
-balls are open sets. The function

#
is continuous if

it is continuous at every ~ x I .

Corollary 2.46 (On continuous functions) Let
f�I � ! h and

f Þa� _ih be metric spaces (or generalized
metric spaces with continuous dissimilarity measures). The following assertions are equivalent:

1.
#

is continuous at ~ .
2. For every neighborhood

\
of
# f ~ h¨x Þ ,

#³� : f \ h is a neighborhood of ~ x I .
3. If

Ê Ç©, >�Ë ¯ ~ > 6 ~ , then
Ê Ç³, >�Ë ¯ # f ~ > h 6 # f ~ h .

Corollary 2.47 (Continuity of a composed mapping) Let
f�I � ! è h , f Þq� ! h h and

f  � !�æ h be gener-
alized metric spaces with continuous dissimilarity measures and let

# 4 I ² Þ
,
$ 4 Þ ² 

and' 4 I ² 
be mappings. The composed mapping of

#
and

$
is denoted by

' 6 $ 	 # such that' f ~ h 6 $ f # f ~ h+h . If
#

and
$

are continuous, then
'

is continuous as well.
Sketch of proof. The proof follows directly from considering the equivalence between the continuity and the
convergence of a sequence based on Corollary 2.46.

Direct product spaces can be used for a construction of a new space by combining two (or more)
spaces. In the context of generalized metric spaces, if the measures describe the same set of objects,
a new dissimilarity measure can be created, as a result (e.g. by their summation).

Def. 2.48 (Product space) Let
f�I � !¨è h and

f Þq� !�h h be generalized metric spaces. Then, a product
generalized metric space

I ��Þ
with a dissimilarity

!
can be defined as

f�I ��Þa� ! è S ! h h , where S is
the sum or max operator. This means that

f ! è S ! h h f+f ~ : � � : h � f ~ < � � < h+h 6 ! è�f ~ : � ~ < h à ! h f � : � � < h orf ! è S ! h h f+f ~ : � � : h � f ~ < � � < h+h 6-,$. � 8 ! è f ~ : � ~ < h � ! h f � : � � < h�? for ~ : � ~ < x I and � : � � < x Þ .

The extension of neighborhoods, convergence and continuity to the product space is straightforward.
For instance, ç is a neighborhood of the pair

f ~ � � h if there exist a neighborhood
-

of ~ x I
and a neighborhood

\
of � x Þ such that

- � \ ã ç . Also, the convergence of a sequencef ~ > � � > h¨x I ��Þ
is equivalent to the convergence of sequences ~ >ûx I and � > x Þ .
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2.3 Normed and inner product spaces
Metric spaces are already richer in structure than topological spaces, still more structure can be
introduced; see Fig. 2.1 and Fig. 2.2. Normed and inner product spaces are special cases of metric
spaces, where metric is defined either by a norm or an inner product. The algebraic and geometric
structures of such spaces are richer than those of metric spaces only. Inner product spaces are impor-
tant, since there exists a well-developed mathematical theory which places the pattern description
and learning in their context. Most of theory presented here can be found in [112, 224, 327].

Def. 2.49 (Normed space) Let
I

be a vector space. A norm on
I

is a function
�ð� î �ð� 4 I ² �×rp

satisfying for all ~ � � x I and all K x U the following conditions:
(1) Nonnegative definiteness:

�ð� ~ �ð� Ì k .
(2) Non-degeneration

�ð� ~ �ð� 6�k iff ~ is a zero vector.
(3) Homogeneity:

�ð� K ~ �ð� 6 � K ���ð� ~ �ð� .
(4) Triangle inequality:

�ð� ~áà � �ð� É �ð� ~ �ð� à �ð� � �ð� .
A vector space with a norm,

f�I � �ð� î �ð� h , is called a normed space. If only the axioms (1), (3) and (4)
are satisfied, then

�ð� î �ð�
becomes seminorm and

f�I � �ð� î �ð� h a seminormed space.

Example 2.50 Examples of seminormed spaces:
1.

f}cEf ÿ ý j � j�� � �ð� î �ð� h with
�ð� # �ð� 476 � # f k h � is a seminormed space.

2.
f � � � �ð� î �ð� ¿ h , with .�Ì j , where

�ð� � �ð� ¿ 6 f z �/}| : � ~ / � ¿ h :+Ø ¿ is a normed space.
3.

f � � � �ð� î �ð� ¯ h , where
�ð� � �ð� ¯ 6-,$. � /}| : ÷�è�è�è7÷ � � ~ / � , is a normed space.

4. Let
Ñ f ` h be a set of continuous functions on a closed and bounded set

` Ð ��� .
f Ñ f ` h � �ð� î �ð� ¿ h ,

where
�ð� # �ð� ¿ 6 f Õ Â2 � # f ~ h � ¿ ! ~ h :
Ø ¿ and .�Ì j , is a normed space.

Lemma 2.51 (On seminormed spaces)
1. The (semi)norm is a continuous function, i.e. if

Ê Ç³, >8Ë ¯ ~ > 6 ~ , then
Ê Ç©, >�Ë ¯ �ð� ~ > �ð� 6 �ð� ~ �ð� .

2. Every (semi)normed space is a (semi)metric space with the distance
! f ~ � � h 6 �ð� ~ ý � �ð� .

3. A (semi)normed space is a topological vector space, where
! f ~ � � h 6 �ð� ~ ý � �ð� defines open ball

neighborhoods.
4. Not every metric space is a normed space.

Sketch of proof. Let
I 6E� and

! f ~ � � h 6 e�f ~ Ë6E� h . Suppose that
! f ~ � � h 6 � � ~ ý � �ð� is true. Then for

all Káx � and
� x � ,

�ð� K � �ð� 6 � K �ð�ð� � �ð� should hold. Let
� 476 ~ ý � , then

�ð� � �ð� 6åj . Consider K 6�� . Then,
we have � 6 � K �ð�ð� � �ð� 6 �ð� K � �ð� 6Êj , hence a contradiction. Consequently, there is no norm that generates
this metric. �

Def. 2.52 (Banach space) A normed space for which the associated metric induced by the norm is
complete (i.e. every Cauchy sequence converges there) is called a Banach space.

Example 2.53 Examples of Banach spaces:
1.

f ��� � �ð� î �ð� <Çh is a Banach space.
2. Let ñ ¯¿ � .�Ì j � be a vector space of real sequences ~ 6 f ~ : � ~ < � ����� h such that z ¯/}| : � ~ / � ¿  ÊÙ

with the norm given by
�ð� ~ �ð� ¿ 6 f z ¯/}| : � ~ / � ¿ h :
Ø ¿ . This norm induces the Minkowski metric

! ¿ .
Consequently, ñ ¯¿ and ñ �¿ 476 f � � � ! ¿ h are Banach spaces.

3. Let ñ ¯¯ be a vector space, where each element is a sequence ~ 6 f ~ : � ~ < � ����� h with norm given
by

�ð� ~ �ð� ¯ 6é¿+À � / � ~ / � . This norm induces the metric
!
¯ . Therefore, ñ ¯¯ is a Banach space.

Consequently, the space ñ �¯ 476
f ��� � ! ¯ h is Banach, as well.

Def. 2.54 (Inner product space) Let
I

be a vector space. An inner product
éïî � î ë is a bilinear

mapping
I � I ²äU such that for all ~ � � �
� x I and K �+L x U , one has:
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(1) Nonnegative definiteness:
é ~ � ~¬ë Ì k .

(2) Non-degeneration:
é ~ � ~¬ë 6êk iff ~ is a zero vector.

(3) Symmetry:
é ~ � � ë 6 é � � ~¬ë ½ , where ê stands for a complex conjugate.

(4) Linearity in
I

and over U :
é K ~°à L � �
� ë 6 K é ~ �
� ë à L é � �
� ë .

Lemma 2.55 (On inner products)
1. The inner product in an inner product space is a continuous function.
2. Every inner product space is a normed space with the norm defined as

�ð� ~ �ð� 6 é ~ � ~@ë :
Ø�< .
3. The parallelogram law:

�ð� ~@à � �ð� < à �ð� ~ ý � �ð� < 6ã� �ð� ~ �ð� < à � �ð� � �ð� < holds for the norm
�ð� ~ �ð� 6 é ~ � ~¬ë :
Ø�< .

4. Polarization identity. The real inner product
éïî � î ë can be determined from the corresponding

norm as:
é ~ � � ë 6 :< f �ð� ~�à � �ð� < ý �ð� ~ �ð� < ý �ð� � �ð� < h . The complex inner product can be determined

as
é ~ � � ë 6 :ë f �ð� ~°à � �ð� < à �ð� ~ ý � �ð� < ý 0 �ð� ~�à 0 � �ð� < ý 0 �ð� ~ ý 0 � �ð� < h , where 0 < 6 ý j .

5. In a complex inner product space
é ��� K ~áà L � ë 6 K ½ é ~ �
� ë à L;½ é � �
� ë .

Theorem 2.56 (Cauchy-Bunyakovski-Schwarz inequality) Let
I

be an inner product space. For
all ~ � � x I , one has

� é ~ � � ë � É é ~ � ~¬ë :
Ø�< é � � � ë :
Ø�< and the equality holds iff ��6 K ~ for some K�x U .

Def. 2.57 (Hilbert, pre-Hilbert space) An inner product space for which the induced norm gives
a complete metric space is a Hilbert space. A non-complete inner product space is a pre-Hilbert
space.

Example 2.58
1.

f � � � éïî � î ë h with
é ~ � � ë 6 z �/}| : ~ / � / is a Hilbert space.

2. ñ ¯< is a Hilbert space with an inner product defined by
é ~ � � ë 6 z ¯/}| : ~ / � / . The metric becomes

then
! f ~ � � h 6 �ð� ~ ý � �ð� 6 f z ¯/}| : f ~ / ý � / h < h :
Ø�< .

3. The space
Ó Ú < defined on a set

Ò f ` h of Lebesgue measurable classes of functions withé # �%$ ë 6 f Õ Â2 # f ~ h $ f ~ h{X f ! ~ h+h :
Ø�< is a Hilbert space. Note that
ÓqÔ < , defined on a set of continuous

functions, since not complete, is only a pre-Hilbert space.
4. The space ñ ¯¿ (and ñ �¿ ) with . Ë6ã� is not an inner product space, hence not a Hilbert space.

Sketch of proof. The proof is based on the contradiction of the parallelogram law for ~ 6f j � j � k � k � ����� h and ��6 f ý j � j � k � k � ����� h .
5. The space

Ó Ô
¯ on

` 476 ÿ � ��� � with the norm
�ð� # �ð�

¯ 6Þ,$. � æ{ç�ì 2 ÷ Â¯í � # f ~ h � is not an inner product
space, hence not a Hilbert space.
Sketch of proof. The proof is based on the contradiction of the parallelogram law for the functions# f ~ h 6 � and

$ f ~ h 6 ~ ý � defined on
ÿ � ��� � . �

Def. 2.59 (Orthogonality, orthogonal complement)
1. Let

I
be an inner product space. Vectors ~ and � are orthogonal in

I
, ~pî � , if

é ~ � � ë 6Ûk .
Hence, a zero vector is orthogonal to every vector. A subspace � of

I
is orthogonal if all

pairs of vectors of � are orthogonal.
2. Let

�
be a closed subspace of a Hilbert space

d
. The closed subspace

� â 4768�� x d 4© æ¨ç8ï é � � ~¬ë 6�k ? with the property that
���E� â 698uk ? is the orthogonal complement of

�
.

Def. 2.60 (Orthonormal basis) Let
d

be a Hilbert space. The set 8 " / ? of elements in
d

is a basis
if every ~ x d can be uniquely written as ~ 6 z ¯/}| : K / " / { ~ 6 Ê Ç³, F Ë ¯ z

F/}| : K / " / for some K / x U
and z ¯/}| : � K / � < . If additionally,

é " / � " º ë 6 Q /7º , where
Q / º is the Kronecker delta,

Q /7º 6 e�f 0 6 ¼ h , then
the basis is orthonormal.

Theorem 2.61 (Orthogonal expansions) Let 8 " /
? ¯/}| : be an orthonormal basis in a Hilbert spaced
. Then for all ~ � � x d , we have:
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1. Bessel inequality: z�¯/}| : � é ~ � " / ë � É �ð� ~ �ð� < . It is also valid for a pre-Hilbert space.
2. Parseval formula:

�ð� ~ �ð� < 6 z ¯/}| : � é ~ � " / ë � .
3.

é ~ � � ë 6 z ¯/}| : é ~ � " / ë é " / � � ë .
Theorem 2.62 (Projection theorem) Let

�
be a closed subspace of

d
. Then, for every ~ x d , there

exist unique ~ Ð x � and ~ â x � â such that ~ 6 ~ Ð à ~ â . Define ~ Ð 6 2 ~ , where
2

is the orthogonal
projection of ~ onto

�
.
2

has the following properties:
1.
2 < 6 2 (idempotent).

2.
é 2 ~ � � ë 6 é ~ � 2 � ë (self-adjoint).

3.
é 2 ~ � f ( ý 2 h ~¬ë 6�k .

4. ~ 6 2 ~áà f ( ý 2 h ~ and
2 î f ( ý 2 h .

Only the first two conditions are required for
2

to be a projection.

2.3.1 Reproducing kernel Hilbert spaces

Reproducing kernels are used in a variety of applications like function estimation, function ap-
proximation or model building. They uniquely define so-called reproducing kernel Hilbert spaces
(RKHS), which are spaces of bounded linear functionals11. Reproducing kernels are used in statis-
tical learning theory [403] for the construction of support vector machines; see also chapter 4. Here,
we will provide some basic definitions and facts. More details can be found e.g. in [22, 112, 337–
339, 412].

Def. 2.63 (Positive definite function or kernel) [22, 412] Let
I

be a set. A Hermitian function, 4 I � I ² U is positive definite (pd) iff for all
* xñð , 8 ~ : � ����� � ~ >@? ãtI and 8 d : � ����� �+d > ? ã U , one

has z >/ ÷ º�| : d / d ½º ,�f ~ / � ~ ºÃh¨Ï k , where ê stands for a complex conjugate. Such a Hermitian function is
called a kernel12. Additionally,

,
is conditionally positive definite (cpd) iff the above condition is

satisfied only for 8 d : � ����� �+d >@? such that z >º�| : d º 6�k . Depending on the sign of z >/ ÷ º�| : d / d ½º ,�f ~ / � ~ º h ,
also (conditionally) negative, nonnegative and nonpositive functions can be defined.

If
I

is an
*

-element finite set, such as
I 476�1�6Û8 . : � . < � ����� � .&>¬? , then

,
is pd iff the

* �³*
matrix,�f 1 � 1 h is pd. Moreover, if

,
is pd, then

, f . / � . / h¨Ì k for all . / x 1 .

Theorem 2.64 (Riesz representation theorem) For every continuous linear functional
#

on
a Hilbert space

d
, there is a unique

A x d such that
# f ~ h 6 é ~ � A ë for all ~ x d [80].

Def. 2.65 (Reproducing kernel Hilbert space) Let
I

be a set and U
è

denotes a space of functions# 4 I ² U . Let
d�ó Ð U

è
be a Hilbert space of bounded (hence continuous) linear functionals. A

bilinear function
, 4 I � I ²äU is a reproducing kernel for

d�ó
if

1.
,�f ~ � î h¨x dôó for all ~ x I and

2.
,�f ~ � î h is the representer of evaluation at ~ in

d�ó
, that is

# f ~ h 6 é # � ,�f ~ � î h ë¶ò(ó for all
# x d�ó

and all (fixed) ~ x I .dôó
equipped with

,
is called the reproducing kernel Hilbert space (RKHS).

The reproducing kernel map is realized by
[ 4 ~ ² , f ~ � î h , so

[ f � h 6 ,�f ~ � � h . Since
, f � � î h is the

representer of evaluation at � , then
[ f � h 6 é [�� , f � � î h ëôò(ó 6 é , f ~ � î h � ,�f � � î h ë¯ò(ó As a result, one gets,�f ~ � � h 6 é ,�f ~ � î h � , f � � î h ë¯ò(ó . This means that a pd kernel

,
can be seen as a Gram operator in

11 Consider a linear functional ¦�´ô�öõ÷� on a linear normed space � . It is bounded if there exists øúù`� F such
that ª ¦r£©²8�*ª�·�øûªyª ²rªuª ü for all ²ýùI� . It is known that a linear functional is bounded iff it is continuous.

12 Kernel þ originates from the study of integral operators, where £¬ÿ ó ¦x�*£³²8�Y«�� ü þ5£©²������¯¦r£������	� . Then, þ is called
the kernel of the operator ÿ ó .
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d�ó
, i.e. there exists a function

[
in a Hilbert space

d�ó
such that the evaluation of the kernel at ~

and � is equivalent to taking the inner product between
[ f ~ h and

[ f � h .
If
I

is a set of a finite cardinality, say
*

, then the functions are evaluated only at a finite number of
points. Consequently, the RKHS becomes an

*
-dimensional space, where the linear functions be-

come
*

-dimensional vectors. As a result, the reproducing kernel
,

simplifies to an
*��°*

Hermitian
(or symmetric) pd matrix.

Theorem 2.66 (Mercer theorem) Let
d�ó

be a Hilbert space of functions
# 4 I ² U and let

, 4I � I ² U be a pd kernel13. If
é , f ~ � î h � ,�f ~ � î h ë¯ò(ó É Ù , then

,
can be expanded by a countable

sequence of orthonormal eigenfunctions
[ / and real positive eigenvalues

V / such that the bilinear
series

,�f ~ � � h 6Ez ¯/}| : V / [ / f ~ h [ / f � h ½ converges uniformly and absolutely14.

The theorem above means that the eigenfunctions and eigenvalues are found as a solution to the
eigenequation

é ,�f ~ � î h �+[ / fïî h ë¯ò(ó 6 V / [ / f ~ h or, in the integral form,
Õ è ,�f ~ � � h [ / f � h ! ��6 V / [ / f ~ h ,

if
,

corresponds to an inner product defined by the integral. In practice this requires that
I

is
a compact subset of ��� or an index set. As the eigenfunctions 8 [ /
? ¯/}| : are linearly independent
functions (an orthonormal basis of

d ó
), then any function

#
in the space

d ó
can be written as# f ~ h 6 z ¯/}| : � / [ / f ~ h . The inner product between

#
and

$
in the Hilbert space

d�ó
is defined

as
é # f ~ h �%$ f ~ h ë¯ò(ó 6ìz�¯/�| :

2 Ä Â�
Ä� Ä , where
$ f ~ h 6ìz�¯/�| : � / [ / f ~ h . Indeed, such a space of functions

with the kernel
,

is a RKHS, since
é # � ,�f ~ � î h ë ò(ó 6 é # f � h � ,�f ~ � � h ë ò(ó 6 é # f � h � ,�f � � ~ h ½ ë ò(ó 6

z ¯/}| :
2 Ä öµö � Ä� Ä ö æ ùµù 
 ù 
� Ä 6 z ¯/}| : �{/ .=Au0À/ f ~ h 6 # f ~ h , because

,
is Hermitian, i.e.

,�f ~ � � h 6 ,�f � � ~ h ½ . Note

that
�ð� # �ð� <ò(ó 6 é # f ~ h � # f ~ h ë <ò(ó 6�z ¯/}| : Ì 2 Ä Ì �� Ä and

�ð� , �ð� <ò(ó 6 é ,�f ~ � î h � ,�f ~ � î h ë <ò(ó 6�z ¯/}| : V / .
There is an equivalence between choosing a specific

d�ó
, reproducing kernel

,
and defining the set

of
V / and

[ / .
Theorem 2.67 (Moore-Aronszajn) [412] For every pd kernel

,
on

I � I
(
I

is a compact set),
there exists a unique RKHS

d ó
over

I
for which

,
is the reproducing kernel and vice versa.

2.4 Indefinite inner product spaces
Indefinite inner product is a generalization of a (positive definite) inner product

éïî � î ë , Def. 2.54,
by requiring that only the symmetry and linearity conditions hold. The facts presented here are
based on books of Alpay et al. [3], Bognár [34], Greub [177] and Iohvidov [204] and the articles
[67, 92, 151, 152, 320]. Proofs and propositions are ours.

Def. 2.68 (Indefinite inner product space) Let
�

be a vector space. An indefinite inner productéïî � î ë�� is a mapping
���×� ²äU such that for all ~ � � �
� x � and K �+L x U , one has:

(1) Symmetry:
é ~ � � ë � 6 é � � ~¬ë ½� , where ê stands for a complex conjugate.

(2) Linearity in
I

and over U :
é K ~°à L � �
� ë � 6 K é ~ �
� ë � à L é � �
� ë � ,

Since
é ~ � ~@ë � can have any sign, there is a distinction among positive, negative and neutral vectors

and the corresponding subspaces. For the material presented below,
�

is assumed to be an indefinite
inner product space. We will write

éïî � î ë only if the traditional inner product, Def. 2.54, is meant,
otherwise, we will write

éïî � î ë�� to refer to a vector space
�

.

13 In the integral form the positive-definiteness means that �¬þo¦��¶¦������« � ü��âü þg£³²�������¦r£©²8��¦r£���� 
 �Y²��	���Õ� .
14 Let ±�����¹ be a set of functions � õ¤� . A series  "!Ä$# � ���x£©²8� , converges uniformly to �G£©²8� iff for every %'&Ã� , there

exists a natural number ( , such that for all ² ù � and all )*��( , ª � � £³²��,+-�r£³²��*ª/.0% . For a fixed ² , a series  Ä � Ä £³²��
converges absolutely if the series  Ä ª � Ä £©²8�*ª converges.
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Def. 2.69 (Positive, negative and neutral vectors) A vector ~ x � is positive if
é ~ � ~@ë � Ï k , nega-

tive if
é ~ � ~¬ë �   k or neutral if

é ~ � ~@ë � 6gk . A subspace
� Ð �

is called positive, negative or neutral
if all its elements are so, respectively. Every indefinite inner product space contains at least one
non-zero neutral vector [34].

Def. 2.70 (Orthogonality, isotropic subspace, degenerate subspace)
1. Vectors ~ � � x � are orthogonal if

é ~ � � ë � 6�k .
2. A vector

C x � is isotropic if it is a non-zero vector orthogonal to every vector in
�

.
3. Let

� ã �
. Then,

� â 698�� x � 4 © æ¨ç8ï é � � ~@ë � 6�k ? is an orthogonal complement of
�

.
4. Let

� " �21 be the zero vector. Let
� ã �

. The isotropic subspace
�
r of

�
consists of isotropic

vectors, i.e.
�
r 6

� ��� â
. If

�
r Ë6¡� , then

�
is degenerate and

éïî � î ë�� is degenerate on
�

. The
entire space

�
is degenerate if

� â Ë6 � .
Example 2.71 Inner product spaces:

1. Let
�

be a vector space of pairs of real numbers. Let
é ~ � � ë � 6 ~ : � : ý ~ < � < for ~ 6 f ~ : � ~ < h

and ��6 f � : � � <�h . Then
f ��� éïî � î ë � h is indefinite. Note also that if

� 6t8 f ~ : � ~ <Çh 4 ~ : à¢~ < 6Ík ? ,
then

� â 6 � . Hence
�

is a degenerate subspace of
�

.
2. Let

�
be a vector space of number sequences

f C : ��C < � ����� h satisfying z�¯/�| : � ��/ ��� C / � <  ôÙ . Then,é ~ � � ë � 69z ¯/}| : � / ~ / � ½/ defines an inner product. Depending on the signs of � / , é ~ � � ë � may be
positive, negative or indefinite. If ��/ are of different signs, then

é ~ � � ë � is indefinite. Moreover,
if there exists at least one zero � º , then

é ~ � � ë � is degenerate.
3. Let

Ó�f ÿ � ��� � h be a vector space of real valued functions that are measurable and square-
summable with respect to some function X . Then

f # �%$ h 6 Õ Â2 # f ~ h $ f ~ h ! X f ~ h defines an inner
product which might be indefinite or definite, depending on the function X ; see also [185].

Def. 2.72 (Fundamental decomposition) Let
f ��� éïî � î ë � h be an indefinite product space. If

�
is

represented as a direct orthogonal decomposition15 � 6 � p ß � � ß �
r , such that

� p ,
� � and�

r are positive, negative and neutral subspaces, respectively, then such a decomposition is called
a fundamental decomposition and

�
is decomposable.

Not every space
�

admits a fundamental decomposition [34], yet, every finite-dimensional inner
product space does. Spaces which yield a fundamental decomposition are called Kreı̆n spaces and
are of our interest. Pseudo-Euclidean spaces are the most simple examples of these. See also
Fig. 2.2(b).

Def. 2.73 (Pseudo-Euclidean space and its orthonormal basis) A pseudo-Euclidean space
õ 476

�¡ö ¿{÷ øÈù is a real linear vector space equipped with a non-degenerate, indefinite inner product
éïî � î ë ü

[177].
õ

admits a direct orthogonal decomposition
õ 6 õ p ß õ � , where

õ p 6Ê� ¿ and
õ � 6Ê� ø and

the inner product is positive definite on
õ p and negative definite on

õ � . The space
õ

is, therefore,
characterized by the signature

f . �
ú h [151]. An orthonormal basis 8 ¸ : � ����� � ¸ ¿ p ø ? in
õ

is given such
that

é ¸ / � ¸ / ë 65j for 0 65j � ����� � . and
é ¸ / � ¸ / ë 6 ý j for 0 6 . à j � ����� � . à ú and

é ¸ / � ¸ º ë 6�k for 0ûË6 ¼ .
By making use of the standard inner product

éïî � î ë in a Euclidean space, the inner product between
two vectors � and

�
in �×ö ¿¨÷ ø�ù can be expressed as:

é � �+� ë ü 6
¿3
/�| : ~ / � /

ý ¿ p ø3
/}| ¿ p :

~ / � / 6 � ¹ l ¿Çø � 6 éÀl ¿Çø � �+� ë � l ¿Çø 654 ( ¿ ¾ ¿ k
k ý ( ø ¾ ø76 � (2.1)

15 A direct sum 8ã«ã�:9<; means that every =Kù08 can be uniquely decomposed into ²3ù`� and ;�ù*; such that= «$²Ã�>� . Here, a direct orthogonal decomposition ?�«@? F 9A? N 9A?�B means that ? N «@?�CF and ?�Br«�£D? F@E ?�CF ��C ,
i.e. ? B «�? F E ?FCF consists of neutral vectors perpendicular to all other vectors in ? .
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Fig. 2.6: Left: a pseudo-Euclidean space
õ 6 � t Ù�G Ù v 476 � Ù � 0 � Ù with

! Ø f � �+� h 6 f � ý�� h Û l Ù�Ù f � ý�� h .
Orthogonal vectors are mirrored versus the lines ~ Ø 6 ~ Ù or ~ Ø 6 ý ~ Ù , for instance

é�H � � H  ë/I 6�k . Vector G
defines the plane k¡6 é G � � ë I 6 G Û l Ù�Ù � . Note that the vector

H 6 l Ù�Ù G , a ’flipped’ version of G , describes
the plane as if in a Euclidean space � Ø . Therefore, in any pseudo-Euclidean space, the inner product can be
interpreted as a Euclidean operation, where one vector is ’flipped’ by

l ÜKJ
. The square distances can have any

sign, e.g.
! Ø f � �  h 6åk , ! Ø f ���
	 h 6�j , ! Ø f 	��  h 6 ý j , ! Ø f " �
� h 6 ý*L , ! Ø f � �+@ h 6 ý �NM and

! Ø f @�� " h 6"Oâ� .
Right: A pseudo-sphere

�ð� � �ð� ØI 6 ~ Ø Ù ý ~ ØØ 69k . From the Euclidean point of view, this is an open set between
two conjugated hyperbolas. Consequently, the rotation of a point is carried out along them; see also [152].

where
( ¿ ¾ ¿ and

( ø ¾ ø are the identity matrices. If � p and � � stand for the orthogonal projections of� onto � ¿ and � ø , respectively, then
é � �+� ë ü 6 é � p �+� p ë ý é � � �+� � ë . The pseudo-norm of a non-zero

vector � becomes then
�ð� � �ð� <ü 6 é � � � ë ü 6 �¬¹ l ¿Çø � , which can be positive, negative or zero. Making

use of the inner product, the squared distance can be expressed analogous to the Euclidean case as

! < f � �+� h 6 �ð� � ý5� �ð� <ü 6 é � ý��q� � ý�� ë ü 6 f � ý�� h ¹ l ¿�ø f � ý�� h (2.2)

which can be positive, negative or zero. Therefore, the distance
!

is either real or in the form of0�P � ! � , where 0 < 65j . Note that the distance between distinct � and
�

may also be zero.

Alternatively, a pseudo-Euclidean space � ö ¿¨÷ ø ù can be represented as a Cartesian product � ¿ � 0 � ø .
It is, thereby, a

f . à ú h -dimensional real subspace of the
f . à ú h -dimensional complex space U ¿ p ø ,

obtained by taking the real parts of the first . coordinates and imaginary parts of the remaining
ú

coordinates. This justifies formulas (2.1) and (2.2) and allows one to express the square distance
as
! < f � �+� h 6 ! <E % f � �+� h ý ! <ERQ f � �+� h , where the distances on the right side are square Euclidean.

A Euclidean space is a special case of the pseudo-Euclidean space, i.e. � ¿ 6��×ö ¿¨÷ r ù .
The notions of symmetric and orthogonal matrices should be now properly redefined.

Def. 2.74 (Symmetric, orthogonal matrices) Let
�

be an
* �³*

matrix in � ö ¿¨÷ ø ù , * 6 . à ú .
1.
�

is symmetric or self-adjoint if
l ¿Çø � ¹ � 6 � .

2.
�

is orthogonal if
fÀl ¿Çø � ¹ h l ¿Çø � 6 ( .

The matrix
l ¿�ø plays a key role in the definitions above. In general, a symmetric or orthogonal

matrix in a pseudo-Euclidean space is not symmetric or orthogonal in the Euclidean sense. If,
however, �×ö ¿¨÷ ø ù coincides with a Euclidean space, i.e.

ú 6ík , then the above definitions simplify to
the traditional ones, since

l ¿Çø becomes the identity operator
(
. For instance, by straightforward

operations one can check that the matrix S : � << � :UT is symmetric in �¡ö : ÷ : ù with
l ¿Çø 6VS : rr � : T , and that:W X S < � :: � <YT is orthogonal in �×ö : ÷ : ù . If we denote

� J 476 l ¿Çø � ¹ l ¿Çø , then the conditions above can be
reformulated as

� J 6 � for a symmetric
�

and as
� J � 6 ( for an orthogonal

�
. This formulation

already suggests that
� J

may play a special role. Adjoined operators are discussed below.
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Note also that the symmetry and orthogonality of
�

, Def. 2.74, can be equivalently formulated by
treating � ö ¿¨÷ ø�ù as � ¿ � 0 � ø . Let

� 6 ÿ � ¿ � ø � , where the matrices
� ¿ and

� ø of the sizes
*í� . and* ��ú

correspond to the spaces � ¿ and � ø , respectively.
�

is symmetric if
ÿ � ¿ 0 � ø � ½ 6 ÿ � ¿ 0 � ø � and�

is orthogonal if
ÿ � ¿ 0 � ø � ½ ÿ � ¿ 0 � ø �È6 ( , where 0 < 65j .

A further extension of a pseudo-Euclidean space leads to a Kreı̆n space, which is a generalization
of a Hilbert space as a pseudo-Euclidean space is a generalization of a Euclidean space.

Def. 2.75 (Kreı̆n and Pontryagin spaces) A Kreı̆n space is a linear space
n

over U satisfying:
1. There exists a bilinear form

éïî � î ë
þ on
n

such that for any ~ � � �
� x n and any K �+L x U the
following conditions are fulfilled:

a. Symmetry:
é ~ � � ë þ 6 é � � ~¬ë ½þ ,

b. Linearity:
é K ~°à L � �
� ë þ 6 K é ~ �
� ë þ à L é � �
� ë þ .

2.
n

admits a direct orthogonal decomposition
n 6 n p ß n � such that

f n p � éïî � î ë h and
f n � ��ý éïî � î ë h

are Hilbert spaces16 and
é ~ p � ~ � ë þ 6ík for any ~ p x n p and ~ � x n � .

n � is called also an
antispace with respect to

éïî � î ë .
In other words,

n
admits a fundamental decomposition with a positive subspace

n p and a negative
subspace

n � . Therefore,
n p 6 f n � h â . Let dim

n p 6[Z p and dim
n � 6\Z � be the ranks of positivity

and negativity, respectively. Kreı̆n spaces with a finite rank of negativity are called Pontryagin
spaces (in other sources, e.g. [34], the rank of positivity is assumed to be finite). A Pontryagin
space with a finite Z � is denoted by ]_^ . Note that if

éïî � î ë þ is positive definite or zero for zero
vectors only, then

n
is a Hilbert space.

Example 2.76 (Pseudo-Euclidean, Kreı̆n and Pontryagin spaces) Let
�

be a vector space of
real sequences

f C : ��C < � ����� h satisfying z�¯/�| : � ��/ ��� C / � <  Ù . Then,
é ~ � � ë � 476 z�¯/�| : �u/ ~ / � / defines

an inner product. If � : 6 j and � º 6 ý j for all ¼ Ï j , then the inner product is given asé ~ � � ë � 6 ~ : � : ý z�¯/}| < ~ / � / and
�

becomes a Pontryagin space. If �£< º Ï k and ��< º � :�  k , then
�

equipped with
é ~ � � ë � defines a Kreı̆n space. If

�
is a vector space of finite sequences

f C : ��C < � ����� ��C � h
and all �Èº�Ë6êk , then

�
with

é ~ � � ë � 6 z �/�| : �u/ ~ / � / is a pseudo-Euclidean space.

Corollary 2.77 (Indefinite inner product expressed by the traditional one)
é ~ � � ë þ 6 éÀl ~ � � ë .

Def. 2.78 (Fundamental symmetry and fundamental projections) Let
n 6 n p ß n � . The or-

thogonal projections
2 p and

2 � onto
n p and

n � , respectively, are called fundamental projections.
Therefore, any ~ x n can be represented as ~ 6 2 p ~�à 2 � ~ where

( þ 6 2 p à 2 � is the identity
operator in

n
. The linear operator

l 6 2 p ý 2 � is called a fundamental symmetry.

In Hilbert spaces, the classes of symmetric, self-adjoint, isometric and unitary operators are well
known [112, 327]. Linear operators, carrying the same names can also be defined in Kreı̆n spaces.
The definitions are analogous and many results from Hilbert spaces can be generalized to Kreı̆n
spaces. However, due to indefiniteness of the inner product, the classes of some special properties
with respect to the inner product are larger. We will only present the most important (for us) results;
see [34, 151, 152, 204, 312] for details.

Def. 2.79 (H-scalar product, H-norm) Let ~ � � x n . Then, the H-scalar product is defined asÿ ~ � ���È6 éÀl ~ � � ë þ and the H-scalar norm is
�ð� ~ �ð� � 6 ÿ ~ � ~ � �� .

Let ~ x n be represented as ~ 6 ~ p à5~ � , where ~ p x n p and ~ � x n � . Since
ÿ ~ � ���È6 éÀl ~ � � ë þ , based

on this, we can write
ÿ ~ � ���±6 é ~ p � �Ãp ë þ ý é ~ � � � � ë þ 6 é ~ p � �Ãp ë ý f ý é ~ � � � � ë h 6 é ~ � � ë . This means

that
ÿ ~ � ��� is equivalent to the traditional (Hilbertian) inner product and

n p and
n � are orthogonal

16 All Hilbert spaces discussed here are assumed to be separable, i.e. they admit countable bases.
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with respect to
ÿ ~ � ��� . Moreover, the associated Hilbert space

d
is then such

d 6 � n � 476 n p ß � n � � ,
where

� n � � stands for
f n � � éïî � î ë h . Formally, there is a close ’bound’ between a Kreı̆n space and the

associated Hilbert space:

Lemma 2.80 A decomposable, non-degenerate inner product space
n

is a Kreı̆n space iff for every
fundamental symmetry

l
, the H-scalar product turns it into a Hilbert space [34].

H-scalar product is a Hilbert inner product, therefore
n

can be regarded as a complete Hilbert space
(Banach space) with the H-scalar product (H-norm). As a result, the (strong) topology of

n
is the

norm topology of the associated Banach space, i.e. the H-norm topology. This topology does not
depend on the choice of fundamental symmetry [34]17. Therefore, continuity, convergence etc. can
be defined for

n
with respect to the H-norm.

Def. 2.81 (Convergence, Cauchy sequence)
1. The sequence ~ > in

n
converges to ~ x n with respect to the H-norm iff

Ê Ç³, >�Ë ¯ é ~ > � � ë þ 6é ~ � � ë þ for all � x n and
Ê Ç©, >�Ë ¯ é ~ > � ~ > ë þ 6 é ~ � ~@ë þ .

2. The sequence ~ > in
n

is Cauchy with respect to the H-norm iff
é ~ > ý ~ �

� ~ > ý ~ � ë þ ² k andé ~ > � � ë þ form a Cauchy sequence for � x n .

Corollary 2.82 Since
é ~ � � ë þ 6 ÿ ~ p � �Ãp�� ý ÿ ~ � � � � � , then

é ~ � � ë þ is continuous with respect to the
H-norm in both ~ and � .
Theorem 2.83 (Schwarz inequality) For all ~ � � x n , we have:

� é ~ � � ë þ � É �ð� ~ �ð� � �ð� � �ð� � .
Proof.

� é ~ � � ë�` � Ø É � ÿ ~'a � � a � ý ÿ ~ j � � j � � Ø É f �ð� ~Ra �ð���ð� � a �ð� à �ð� ~ j �ð���ð� � j �ð� h Ø É f �ð� ~Ra �ð� Ø à �ð� ~ j �ð� Ø h f �ð� � a �ð� Ø à�ð� � j �ð� Ø h 6 �ð� ~ �ð� Øb �ð� � �ð� Øb . �
Theorem 2.84 (Orthogonal expansions) If

n p and
n � are separable Hilbert spaces, then there

exists a countable orthonormal basis 8 " / ? ¯/}| : in
n

whose span contains any element ~ of
n

. This
means that

é " / � " / ë þ 65j if
2 p " / is an orthonormal vector in

n p ,
é " / � " / ë þ 6 ý j if

2 � " / is an orthonor-
mal vector in

n � , and
é " / � " º ë þ 6�k , otherwise. For ~ � � x n , we also have [34]:

(1) z ¯/}| : � é ~ � " / ë þ � <  ôÙ .
(2)

ý z5c�d Ä ÷ d Äfefg | � : � é ~ � " / ë þ � < É é ~ � ~¬ë þ É z5c�d Ä ÷ d Ähefg | : � é ~ � " / ë þ � < .
(3)

é ~ � � ë þ É z ¯/}| : é " / � " / ë þ é ~ � " / ë þ é " / � � ë þ .

Def. 2.85 (Adjoint operator) Let
Ü×Ý f ná� m h be a space of continuous linear operators on the Kreı̆n

space
n

onto the Kreı̆n space
m

. If
m

is
n

, then
Ü¡Ý f n h will be used.

1.
� J x ÜqÝ f m �
n h is a unique adjoint of

� x Ü�Ý f ná� m h if
é � ~ � � ë¶� 6 é ~ �
� J � ë þ for ~ x n and � x m .

2.
� x ÜaÝ f n h is self-adjoint (symmetric) if

� J 6 � , i.e.
é � ~ � � ë þ 6 é ~ �
� � ë þ for all ~ � � x n .

Observation 2.86 [34, 204] The fundamental symmetry
l

fulfills
l 6 l J 6 l � : .

Theorem 2.87 (Factorization) [34] Every self-adjoint operator
� x Ü Ý f n h can be expressed as

� 6
DED J , where D x ÜaÝ f ���
n h for some Kreı̆n space

�
and ker

f D h 6�k , where ker
f D h 47698 ~ x � 4£D f ~ h 6�k ? .

Def. 2.88 (Isometric and unitary operators) [3, 34] Let
� x Ü Ý f ná� m h , then

�
is isometric if� J � 6 ( � and coisometric if

�9� J 6 ( þ .
� x ÜaÝ f n h is unitary if

é � ~ �
� � ë þ 6 é ~ � � ë þ for all ~ � � x n ,
or in other words, if both isometric and coisometric.

17 In a Kreı̆n space, there are infinitely many fundamental decompositions, hence fundamental symmetries and, con-
sequently, infinitely many associated Hilbert spaces. However, the decompositions yield the same ranks of positivity
and negativity, the same H-norm topologies; simply, they are isomorphic.
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Since a Kreı̆n space is inherently connected to the associated Hilbert space, both the adjoint and
unitary operators can be expressed through operators in this Hilbert space. Hence, the assertioné � ~ � � ë¶� 6 é ~ �
� J � ë þ is equivalent to

éÀl � ~ �%$ ë 6 éÀl ~ �
� J � ë , which is equivalent to
éÀl � ~ �%$ ë 6é ~ � l � J ë , since

l
is self-adjoint also in the associated Hilbert space. This means that in a Hilbert

space, the adjoint of
fÀl � h is

fÀl � J h . Let
��½

be a Hilbert adjoint of
�

, then
fÀl � h ½ 6 ��½ l 6 l � J and

finally
� J 6 l ��½ l .

For a unitary operator in a Kreı̆n space, we have
é � ~ �
� � ë þ 6 é ~ � � ë þ , which is equivalent to stating

that
éÀl � ~ �
� � ë 6 éÀl ~ � � ë . Since

l
is self-adjoint, then

é+fÀl � h ~ � fÀl � h � ë 6 é ~ � � ë . So,
fÀl � h is a

unitary operator in a Hilbert space, which means that
fÀl � h ½ 6 fÀl � h � : . Then,

��� : 6 l ��½ l , which
is equivalent to

� � : 6 � J . Formally, we have:

Corollary 2.89 Let
� x Ü¡Ý f ná� m h , then

� x ÜaÝ f � n � � � m � h for the associated Hilbert spaces
� n �

and
� m �

.
If
��½

is a Hilbert adjoint of
�

, then we have
� J 6 9 þ ��½ 9 � , where

l þ and
l � are the fundamental

symmetries. Moreover,
�ð� � J �ð� � 6 �ð� � ½ �ð� � 6 �ð� � �ð� � .

Def. 2.90 (A Kreı̆n subspace) A Kreı̆n (regular) subspace of a Kreı̆n space
n

is a subspace
�

which is a Kreı̆n space in the inner product of
n

, i.e. :
é ~ � � ë ï 6 é ~ � � ë þ for ~ � � x � .

Def. 2.91 (Positive, uniformly positive subspaces) A closed or non-closed subspace
� x n

is
positive, if

é ~ � ~¬ë þ Ï k for all ~ x � and
�

is uniformly positive if it is positive and
é ~ � ~¬ë þ ÏgK �ð� ~ �ð� <�

for some positive K depending on
�

and the associated H-norm. Similar definitions can be made
for negative, uniformly negative, nonnegative etc. subspaces. The term maximal, if added, stands
for a subspace which is not properly contained in another subspace with the same property.

Every maximal positive (negative) subspace of a Kreı̆n space is closed. If
n 6 n p ß n � is the

fundamental decomposition, then the subspaces
n p and

n � are maximal uniformly positive or
negative, respectively. Any maximal uniformly positive or negative subspace arises in this way [34].

Def. 2.92 (Positive definite operator) A self-adjoint operator
� x Ü Ý f n h is positive definite (k-pd)

in a Kreı̆n space if
é ~ �
� ~¬ë þ Ï k for all ~ x n . The negative definiteness (k-nd) or semi-definiteness

can be defined accordingly.

The above condition is equivalent to stating that k é ~ �
� ~@ë þ   éÀl ~ �
� ~¬ë 6 é ~ � l � ~¬ë . This means that�
is k-pd if

l �
is pd in the associated Hilbert space

� n �
. For instance, the fundamental symmetry

l
is k-pd, since it is self-adjoint and

l¡l 6 ( .
Theorem 2.93 (Projection theorem) [34, 204] Let

�
be a closed, non-degenerate subspace of

n
.

Then, for every ~ x n , there exist unique ~ Ð x � and ~ â x � â such that ~ 6 ~ Ð à ~ â , where ~ Ð 6 2 ~
and

2
is the orthogonal projection of ~ onto

�
.
2

has the following properties:
1.
2 < 6 2 (idempotent).

2.
é 2 ~ � � ë þ 6 é ~ � 2 � ë þ (self-adjoint).

3.
é 2 ~ � f ( þ ý 2 h ~@ë þ 6�k .

4. ~ 6 2 ~áà f ( þ ý 2 h ~ and
2 î f ( þ ý 2 h .

Only the first two conditions are required for
2

to be a projection.

Def. 2.94 (Gram and cross-Gram operators) Let
�

be a linear subspace of
n

spanned by linearly
independent vectors 8 C : ��C < � ����� ��C >@? . The Gram operator, i.e. the inner product operator, is defined
as
� Ð?Ð 6 f�é C / ��C º ë þ h / ÷ º�| : ÷�è è�è ÷ > . Assume further that a subspace

� ã n
, spanned by 8 A : � ����� � A  ? , is

given. Then,
� Ðji 6 f�é C / � A º ë þ h /}| : ÷ è�è�è ÷  �k º�| : ÷�è�è è7÷ > is the cross-Gram operator.
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Theorem } 2.95 (Projection onto a subspace) Let
� 6 span 8 C : ��C < � ����� ��C >@? be a linear subspace

of a Kreı̆n space
n

. Let � 476 ÿ C : � ����� ��C > � ½ be the adjoint (conjugate transpose operator) of
the corresponding operator in the associated Hilbert space

� � �
. If the Gram operator

� Ð?Ð 476f�é C / ��C º ë þ h / ÷ º�| : ÷�è è�è ÷ > is nonsingular, then the orthogonal projection of ~ x n onto
�

is unique and
it is given by18

~ Ð 6 � ½ � � :Ð?Ð-l æ � (2.3)

where
l æ 6 ÿ é ~ ��C : ë þ � ����� � é ~ ��C > ë þ � ½ . If the Gram operator

� Ð?Ð
is singular, then either the projection

does not exist or ~ Ð 6 � ½�� , where
�

is a solution to the linear system
� Ð?Ð � 6 l æ .

Proof. Let ~�m be the projection of ~ onto
�

. Based on Theorem 2.93, ~ 6 ~,m�à ~Rn and
é ~Rn ��Cpo ë�` 6gk . The

latter formula allows us to write
l k 6 ÿ é ~�m ��C Ù ë�` � ����� � é ~�m ��C Ýië�` �Dq . Since 8 C2o ? are linearly independent, then

there exists K Ù � K Ø � ����� � K Ý such that ~�m 6 z Ýo � Ù K oBCpo 6 � q N , where N is a column vector. Plugging this intol k , gives rise to
l k 6 � mYm N . If

� mYm is nonsingular, then N can be determined uniquely as
� j ÙmYm l k , hence~�m 6 � q � j ÙmYm l k . If

� mYm is singular then either there is no solution to
l k 6 � mYm N or there are many solutions.�

In a Hilbert space, the singularity of the Gram operator
� Ð?Ð

means that the 8 C /
? are linearly depen-
dent. In case of a Kreı̆n space, this means that

�
contains an isotropic vector, i.e. there exists a linear

combination if 8 C / ? which is orthogonal to every vector in
�

. In other words, to avoid the singularity
of the Gram operator, the subspace

�
must be non-degenerate.

Observation } 2.96 Since
é ~ ��C / ë þ 6 éÀl ~ ��C / ë 6 ~ ½ l C / , then by the use of the Hilbert operations only,

we can write that
l æ 6 � l ~ and also

� Ð?Ð 6 � l � ½ . As a result, ~ Ð 6 � ½ f � l � ½ h � : � l ~ and the
projection operator

2
of ~ onto

�
is expressed as

2 6 � ½ f � l � ½ h � : � l .

Corollary } 2.97 Let
� 6 span 8 C : ��C < � ����� ��C >@? and

� 6 span 8 A : � A < � ����� � A  ? be linear subspaces of
n

.
Assume the Gram operator

� Ð?Ð
and the cross-Gram operator

� Ðji 6 f�é C / � A º ë þ h /}| :�r  ÷ º�| :�r > . If
� Ð?Ð

is nonsingular, then by Theorem 2.95 the orthogonal projections of the elements from
n

onto
�

are
given by

3 � 6 � Ðji � � :Ð?Ð � .

Theorem } 2.98 (Indefinite least-square problem from a Hilbertian perspective)19. Let
�

, span-
ned by 8 C : ��C < � ����� ��C >@? , be a linear non-degenerate subspace of a Kreı̆n space

n
and let � 476ÿ C : � ����� ��C > � ½ . Then, for

A x n , the function � f ~ h 476 �ð� A ý � ½ ~ �ð� <þ reaches its minimum iff
� Ð?Ð 476 � l � ½

is positive definite in a Hilbert sense20. Then, the solution is found as ~ts 6 � � :Ð?Ð l�i , where
l'i 476 � l$A .

Otherwise, no solution exists.

Proof.
�ð� A ý � q ~ �ð� Ø` 6 A q l/A ý � ~ q � l�A àô~ q � l � q ~ . From mathematical analysis [28, 125], ~vu is a station-

ary point of � f ~ h if wKxw kzyy k � kK{ 6�k . By a straightforward differentiation of � , one gets � � l � q ~ ý � � l�A 6�k ,
hence � l � q ~Ru 6 � l�A . Since � is non-degenerate, then

� j ÙmYm exists. Therefore, by Observation 2.96, the
solution is then given as ~ u 6 f � l � q h j Ù�� l$A 6 � j ÙmYm l'| . Traditionally, the stationary point ~ u is a unique
minimum iff the

* �³*
Hessian } with } o�~ f w��Uxw kK� w k�� h Ýo G ~ � Ù � k � k { is positive definite in a Hilbert sense. Indeed,

18 The same formulation holds for a Hilbert space, provided that the inner product ������� � is used instead of ������� � g .
19 For comparison, an equivalent formulation is given for the Hilbert case:

(Least-square problem in a Hilbert space) Let ?
« span ±�� � ��� � ����������� � ¹ be a linear subspace of a Hilbert space �
and let ��´�«A� � � �����������K�p� 
 . Then, for �3ù�� , the norm �Ã£³²��U´�«Õªyª ��+>� 
 ²Gªyª � is minimized for ² such that � 
 ²´�«���� ,
i.e. the orthogonal projection of � onto ? . The unique solution is found as ²���«�� N ����R��� , where � ��� if the Gram matrix
(in a Hilbert space) and ��� «���������� � �������������������K���f��� .
Proof. ªuª ��+A� 
 ²rªuª � «Õªuª ��+\��� �A����+�� 
 ²rªuª � «Õªuª ��+\���âªyª � �Þªyª ����+�� 
 ²rªuª � , since ����+\���N������+>� 
 ²��x« � . From
Theorem 2.95, we know that the projection of � onto ? is unique and it is given by � � «"� 
 � N ���� � � . �Ã£©²8� is then
minimized for ªuª ����+\� 
 ²rªuª � « ªyª � 
 � N ���� � � +\� 
 ²rªuª � being equal to zero, if the sought solution is ² � «�� N ���� � � .

20 From a Hilbertian point of view, the minimum of � cannot be found for an arbitrary indefinite space. Assume,
for instance a Kreı̆n space ��´ «��F  �U¡ ��¢ with the pseudo norm ªyª ²Gªyª �g «-² � � +² �� . Then, for a particular ²Ã´�«£�u¸ ² � � , the
minimum of ªuª ��+o²rªuª g� «$¸�+ ² �� is reached at +¥¤ .
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the Hessian equals } 6�� � l � q , so
� mYm 6 � l � q should be positive definite. If

� mYm is not positive definite
than ~ u cannot be considered as the solution to the indefinite least-square problem. �
Below, we present an interpretation of the indefinite least-square problem, but from the indefinite
point of view. The solution does not change, however, the interpretation does:

Theorem } 2.99 (Indefinite least-square problem) Let
�

, spanned by 8 C : ��C < � ����� ��C >@? , be a linear
non-degenerate subspace of a Kreı̆n space

n
and let � 476 ÿ C : � ����� ��C > � ½ . Then, for

A x n , the function� f ~ h 476 �ð� A ý � ½ ~ �ð� <þ is minimized in the Kreı̆n sense21 for ~ such that � ½ ~ 476 A Ð , i.e. the orthogonal
projection of

A
onto

�
. The unique solution is found as ~ s 6 � � :Ð?Ð l i .

Proof. Similarly as in the proof above, we have:
�ð� A ý � q ~ �ð� Ø` 6 A q l/A ý � ~ q � l/A àÛ~ q � l � q ~ . ~'u is

a stationary point of � f ~ h if the w�xw k � k � kK{ 6�k . This leads to the equation � l � q ~'u 6 � l�A . By Observation
2.96, the solution is then given as ~ u 6 � j ÙmYm l'| . Traditionally, the stationary point ~ u is a unique minimum iff
the Hessian is pd in a Hilbert sense. Equivalently, in an indefinite case, we should require that the Hessian,
equal to � � l � q , is positive definite in the Kreı̆n sense. Indeed, since

l � l � q is positive definite in the
Hilbert sense22 , then, according to Def. 2.92, � l � q is positive definite in a Kreı̆n space. Since

l 6 2 a ý 2 j ,
then � 2 a � q is positive definite in a Hilbert space

n a , hence ~Ru G `,¦ yields a minimum there and
ý � 2 j � q

is negative definite in a Hilbert space
� n j � , hence ~Ru G ` � yields a maximum there. �

Note that the system of linear equations � l � ½ ~ 6 � l$A to be solved in an indefinite least-square
problem can be expressed as

3 J 3 ~ 6 3 J?A , where
3 6 � ½ . This can be seen as a system of normal

equations in a Kreı̆n space. Consequently,
� � :Ð?Ð � l can be interpreted as a pseudo-inverse of � .

2.4.1 Reproducing kernel Kreı̆n spaces

Reproducing kernel Kreı̆n spaces (RKKS) are natural extensions of reproducing kernel Hilbert
spaces (RKHS). The basic intuition here relies on the fact that a Kreı̆n space is composed as a direct
orthogonal sum of two Hilbert spaces, hence the reproducing property of the Hilbert kernels can be
extended to a Kreı̆n space, basically by constructing two reproducing Hilbert kernels and combining
them in a usual way. We will present some facts on reproducing kernel Pontryagin spaces (RKPS),
which are Kreı̆n spaces with a finite rank of negativity (in other sources, e.g. [34], a rank of posi-
tivity is assumed to be finite; then the results have to be converted). Here, we will only present the
most important issues, for details and proofs, see the book of Alpay et al. [3] and also the articles
[67, 92, 320]. All Hilbert spaces associated to Kreı̆n spaces are considered to be separable.

Def. 2.100 (Hermitian kernel) Let
I

be a closed and bounded set. A function
,

defined onI � I ² U of continuous linear operators is called a Hermitian kernel if
,�f ~ � � h 6 ,�f ~ � � h J for all~ � � x I .

,�f ~ � � h has Z negative squares ( Z is a nonnegative integer) if every matrix 8 ,�f ~ / � ~ º h�? >/ ÷ º�| :
for

* 65j � � � ����� and 8 ~ : � ����� � ~ >@? x I has at most Z negative eigenvalues and at least one such a matrix
that has exactly Z negative eigenvalues.

Lemma 2.101 Let ]_^ be a Pontryagin space and let ~ : � ~ < � ����� � ~ > x ]z^ . The Gram operatorf+é ~ / � ~ º ë�§�¨ h >/ ÷ º�| : can have no more than Z negative eigenvalues. Every total set in ] ^ contains
a finite subset whose Gram matrix has exactly Z negative eigenvalues [3].

21 The minimum here is understood as a special saddle point of � in a Hilbert space such that ��ª g�© takes minimum
at � � ¡ g�© and ��ª gRª takes the maximum at � � ¡ gRª , where � � ¡ g�© and � � ¡ gRª are the fundamental projections of � � onto
either � F or � N , respectively.

22 This follows from «5«�¬ F +�¬ N , where ¬ F and ¬ N are fundamental projections. One has «0�*«� 
 «�¬ F ��¬ F � 
 �¬ N ��¬ N � 
 +\¬ F �®¬ N � 
 +\¬ N ��¬ F � 
 . The last two terms become zero, since for any �Où¯� , we have ��«�� F �[� N ,
where ��°�«[¬'°R� and ± «-¬ F �<¬ N is the identity operator and � 
F «_� N «ã� , see also Def. 2.75. Hence, «0�®«�� 
 «±N��±N� 
 «��*� 
 , which is positive definite in the Hilbert sense.
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Lemma 2.102 Let ~ : � ~ < � ����� � ~ > belong to an inner product space
n

. Then, the number of negative
eigenvalues of the Gram operator

f+é ~ / � ~ º ë þ h >/ ÷ º�| : coincides with the dimensionality of the maximal
negative subspace of span 8 ~ : � ����� � ~ > ? [3].

Def. 2.103 (Reproducing kernel Kreı̆n space) Let
I

be some measurable set and U
è

denotes
a space of functions

# 4 I ² U . Let
n ó Ð U

è
be a Hilbert space of continuous linear functionals

on
I

. A bilinear function
, 4 I � I ²äU is a reproducing kernel

n ó
if

1.
,�f ~ � î h¨x n ó for all ~ x I and

2.
,�f ~ � î h is the representer of evaluation at ~ in

n ó
:
# f ~ h 6 é # � ,�f ~ � î h ë þ ó for all

# x n ó and all
(fixed) ~ x I .n ó

equipped with
,

is called a reproducing kernel Kreı̆n space (RKKS). If
n ó

is a Pontryagin
space, then the resulting space of functions is called a reproducing kernel Pontryagin space (RKPS).

A reproducing kernel exists if all evaluation mappings
@ f ~ h 4 ~ ² , f ~ � î h are continuous. This

means that
@ f ~ h@x ÜaÝ f n ó � U h for every ~ x I . Hence, the reproducing kernel is unique and can be

written as
,�f ~ � � h 6 @ f ~ h @ f � h J , where

@ f ~ h J x Ü Ý f U �
n ó h is the adjoint of the evaluation mapping@ f ~ h for any fixed ~ x I . Similarly to the Hilbert case, one has
é ,�f ~ � î h � ,�f � � î h ë þ ó 6 ,�f ~ � � h . In

case of the Pontryagin space,
,�f ~ � � h has at most Z negative squares, Def. 2.100, where Z is the rank

of negativity.

Theorem 2.104 (On reproducing kernels) [320] Let
, f ~ � � h be a Hermitian kernel

I � I ² U .
The following assertions are equivalent:

1.
,�f ~ � � h is a reproducing kernel for some Kreı̆n space

n ó
of functions on

I
.

2.
,�f ~ � � h has a nonnegative majorant23 Ó�f ~ � � h on

I � I
.

3.
,�f ~ � � h 6 , p f ~ � � h ý , � f ~ � � h for some nonnegative definite kernels

, p and
, � on

I � I
.

If the above holds, then for a given nonnegative majorant
Ó�f ~ � � h for

,�f ~ � � h , there exists a Kreı̆n
space

n ó
with a reproducing kernel

,�f ~ � � h , which is continuously contained in the Hilbert spaced 6
with the reproducing kernel

Ó�f ~ � � h .
Note that

Ó�f ~ � � h can be chosen as
, p f ~ � � h à , � f ~ � � h . Note also that the consequence of this

theorem is that the decomposition
,�f ~ � � h 6 , p f ~ � � h ý , � f ~ � � h can be realized such that

, p is
a reproducing (Hilbert) kernel for

f n ó h p and
, � is a reproducing (Hilbert) kernel for

f n ó h � in
a fundamental decomposition

n ó 6 f n ó h p ß§f n ó h � . Practically, this means that the
,-²

can be
chosen as reproducing kernels for the spaces in a fundamental decomposition.

Theorem 2.105 (On reproducing kernels in RKPS) Suppose that
, : f ~ � � h and

, < f ~ � � h are re-
producing kernels for Pontryagin spaces ]³^ � and ]z^ � of linear functions on

I
with the ranks of

negativity Z : and Z < , respectively. Then,
,�f ~ � � h 6 , : f ~ � � h à , < f ~ � � h is the reproducing kernel for

a Pontryagin space ]_^ with Z É Z : à Z < . Equality holds iff
d 6\]z^ � � ]*^ � is a Hilbert space with the

inner product:
é ~ � � ë ò 6 é ~ � � ë § ¨ � à é ~ � � ë § ¨ � for ~ � � x d .

2.5 Discussion
Some classes of spaces are briefly described. These are pretopological and topological spaces,
generalized metric spaces, normed and various inner product spaces. Normed and metric spaces are
topological. A norm can also be induced in an inner product space, hence a topology. Therefore,
Euclidean, Hilbert and Banach spaces, as the usual examples of inner product and normed spaces,
are topological, as well.

23 A nonnegative majorant ÿ for þ is a nonnegative definite kernel ÿ such that ÿ0+3þ and ÿ��þ are nonnegative
definite kernels in the ’Hilbert’ sense, i.e. according to Def. 2.63.
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In practical applications more general spaces are also of interest. However, most of the developed
learning methodology deals with feature-based representations of objects either in Euclidean or
Hilbert spaces. The reason is that in these spaces inner product, norm (defined by the inner product),
metric (defined by the norm) and topology (defined by the metric balls) coincide. Since the learning
approaches are well developed there, a natural requirement for dissimilarity data seems to be their
metric behavior. As a result, in statistical learning many dissimilarity measures are constructed
or corrected to obey this condition. Additionally, other ñ ¿ metrics are considered in feature vector
spaces, such as the city block or max-norm distance. On the other hand, many general dissimilarity
measures are derived for object comparisons in the pattern recognition area, as briefly described
in chapter 5. Therefore, there is a need for learning paradigms working with general dissimilarity
measures.

Only if a proper mathematical foundation is established for metric and non-metric dissimilarities,
more general measures may be used and developed further in pattern recognition and machine
learning fields. It is the aim of this dissertation to develop such general learning methods and
to apply them to a number of problems. They will be constructed in a mathematical framework
relying on generalized metric spaces (e.g. pretopological spaces) and Kreı̆n spaces, which reduce to
pseudo-Euclidean spaces for finite data representations. Since Kreı̆n spaces are a natural extensions
of Hilbert spaces, Kreı̆n spaces accommodate a more general interpretation of dissimilarity data
than Hilbert spaces.

Our starting point is a dissimilarity representation, which can be interpreted in a (finite) generalized
metric space. From this point of view, all the relations and close bounds between generalized metric
spaces and (indefinite) inner product spaces, as well as, generalized metric spaces and generalized
topological spaces are important. The most essential properties have been just discussed. How these
spaces are used for learning becomes the topic of chapter 4.





3. Characterization of dissimilarities
A rock pile ceases to be a rock pile the moment a single man contemplates it, bearing
within him the image of a cathedral.

”FLIGHT TO ARRAS”, ANTOINE DE SAINT-EXUPÉRY

Various spaces in the context of generalized metric spaces were introduced in chapter 2. These
are pretopological spaces, as well as normed and (indefinite) inner product spaces. This chapter
focuses on theoretical aspects of dissimilarities and the relations between generalized metric spaces
and inner product spaces. Semimetric and metric transformations, as well as isometric embeddings
are described, since they provide a basic framework, where learning algorithms can be created for
dissimilarities. A theory is also presented, which deals with transformations preserving metric prop-
erties or which allows one to test whether a particular dissimilarity is Euclidean. In brief, this chapter
introduces some tools that check or enhance particular properties of dissimilarity representations.
It prepares the ground on which data exploration techniques and learning algorithms, discussed in
chapters 6 – 10, will rely on.

In practice, we always deal with finite samples, i.e. a finite collection of numerically represented
data entities. This finite representation is used to define a space or a more general framework,
where learning algorithms can be applied. For a set 1 of

*
objects, the representation is given as an* �³*

dissimilarity matrix
"gf 1 � 1 h . Each entry

! /7º of
"

is a dissimilarity value between the 0 -th and¼ -th objects. Consequently, the properties of dissimilarity measures and possible spaces where they
can be interpreted are mainly discussed in the context of such finite collections.

Metric dissimilarities have advantageous properties, since many methods work in (Euclidean) met-
ric spaces. Section 3.1 briefly introduces basic aspects of city block and Euclidean embeddings.
Such isometric mappings find correspondences between an abstract space defined by a (finite) rep-
resentation of distances and a chosen metric space. Semimetric and metric transformations are also
considered. Next, also tree models for the representation of dissimilarity relations are introduced.
Section 3.2 presents basic relations and properties of dissimilarity matrices, especially with respect
to the metric and Euclidean behavior.

Many traditional learning methods are designed in a Hilbert space or in a Euclidean space equipped
with a Euclidean distance. Therefore, given a distance measure, it is important to check whether
it has a Euclidean behavior. For the Euclidean distance, every finite representation

"
can be per-

fectly embedded in a Euclidean space. This means that a configuration in a Euclidean space can be
found such that the original distances are preserved. If the measure is non-Euclidean, then either
it is corrected to become Euclidean or it is used directly. Any premetric non-Euclidean measure,
i.e. satisfying the definiteness and symmetry constraints, Def. 2.38, can be interpreted as a distance
in a pseudo-Euclidean space (Kreı̆n space). Section 3.3 explains how both isometric and approx-
imate embeddings in a pseudo-Euclidean space can be achieved. Such mappings are examples of
spatial models of the dissimilarity data. Some other projection techniques are presented in section
3.4. Additionally, spherical embeddings are discussed in section 3.3.8.

3.1 Embeddings, tree models and some transformations
Both embeddings and tree models are means to represent generalized metric spaces in spatial or-
ganizations. The main purpose of (isometric) embeddings is to determine whether a given space
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f�I � ! h with a dissimilarity measure
!

is isometrically equivalent to a predefined space possessing
some useful properties. Tree models order the dissimilarity information in terms of organizational
aspects, hierarchical and nested structures.

3.1.1 Embeddings

Embeddings are a useful tool in practical problems, where finite dissimilarity representations,
i.e. finite (generalized) metric spaces

f�I � ! h defined by the corresponding dissimilarity matrix
"

,
are considered. If an equivalence between such spaces and other known spaces is established, the
latter, if possessing favorable properties, can be used for the setting and construction of learning
paradigms.

Many spaces can be considered in this context, but Hilbert and Euclidean spaces are the most exten-
sively investigated. The reason for their applicability is the fact that they are simultaneously inner
product, normed and metric spaces, where the inner product is used to define the norm, which fur-
ther defines the metric. These properties assure that many theoretical models exist, which are used
for the solution of pattern recognition problems formulated in such spaces. Studying the questions
related to embeddings allows one for a better characterization of commonly used metric spaces, as
well as the relations between them.

The primary work in the area of Euclidean (Hilbert) embeddings was done by Blumenthal [33],
Cayley [56], Menger [268] and Schoenberg [341, 343, 344]. Since Euclidean embeddings require
a thorough treatment, they become the subject of section 3.2 and partly of section 3.3. Here, we
will briefly describe some aspects of the ñ7¿ -embeddings, with ñ : -embeddings, in particular. Theñ : -embeddings rely on the additive property of the ñ : metric, which, on the other hand, can be
represented by an additive tree; see also Def. 3.12.

Let us first remind basic definitions (see also Example 2.31). Let
Ò f ÿ � ��� � h be a set of functions

classes on
ÿ � ��� � measurable in the Lebesgue sense. Formally, one has:S ñ �¿ 476 f � � � ! ¿ h , where

! ¿ f � �+� h 6 f z �/}| : � ~ / ý � / � ¿ h :
Ø ¿ and .�Ï k .S ñ �¯ 476 f ��� � ! &('*) h , where
! &('+)&f � �+� h 6-,$. � / � ~ / ý � / � .S ÓqÚ¿ 476 f Ò f ÿ � ��� � h � ! ¿ h , where

! ¿ f # �%$ h 6 f Õ Â2 � # f ~ h ýg$ f ~ h � ¿ ! ~ h :+Ø ¿ and .�Ï k .S ÓqÚ¯ 476 f Ò f ÿ � ��� � h � ! ¿ h , where
!
¯
f # �%$ h 6 Õ Â2 ¿+À � æ � # f ~ h ý5$ f ~ h � ! ~ .

ñ �¿ defines an � -dimensional space, while ñ ¯¿ describes an infinite dimensional space. For simplic-
ity, we will also write ñ ¿ instead of ñ �¿ , when the dimensionality � is fixed. If .�Ì j , then ñ ¿ and

Ó�Ú¿
are metric spaces, otherwise, they are quasimetric spaces. ñ : stands for the city block metric, whileñ < is the Euclidean metric.

Def. 3.1 (Isometric embedding) Let
f�I � ! è h and

f Þq� ! h h be metric spaces. Then,
f�I � ! è h is iso-

metrically embeddable into
f Þa� ! h h , if there exists an isometry

Z 4 I ² Þ
, i.e. a mapping

Z
such that! è f ~ : � ~ <Çh 6 ! h f Z f ~ :�h � Z f ~ <£h+h for all ~ : � ~ < x I .

Def. 3.2 ( ñ Ü -embeddability) A metric space
f�I � ! h is ñ ¿ -embeddable if

f�I � ! h is isometrically em-
beddable into the space ñ �¿ for some integer � Ì j .
Isometries are injective. Two spaces are isometrically isomorphic (see footnote 8 on page 22) if
there exists a bijective isometry between them. In this case, the two spaces are essentially identical.
Every metric space is isometrically isomorphic to a subset of some normed vector space. Every
complete metric space is isometrically isomorphic to a closed subset of some Banach space.

Def. 3.3 (Lipschitz mapping and contraction) Let
f�I � ! è h and

f Þq� ! h h be metric spaces. A map-
ping

Z 4 I ² Þ
is Lipschitz continuous if there exists a constant Z such that for all ~ : � ~ < x I ,
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! h f Z f ~ : h � Z f ~ < h+h¨É Z ! è f ~ : � ~ < h holds. If Z   j , then
Z

is called a contraction.

Lemma 3.4 (On Lipschitz mappings)
(1) Every Lipschitz mapping is continuous.

The reverse is not generally true. E.g. let
I 6�� ,

! f ~ � � h 6 � ~ ý � � and
# f ~ h 6 ~ < . # is continuous,

but not Lipschitz, since no Z exists that
� ~ < ý � < � É Z � ~ ý � � . To show this, consider ��6�k . Then

for
� ~ � É j , ~ < É � ~ � , but for

� ~ � Ï j , ~ < Ï ~ , hence a contradiction.
(2) Let

f�I � ! h be a metric space. For every
� x I , the mapping ~ ² ! f ~ �
� h is Lipschitz with Z�65j .

Lemma 3.5 [33] A Euclidean space � � can be embedded in a Hilbert space. Every finite subset of
� elements in a Hilbert space can be embedded in a �a� � : .

2

1
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I J K LNot every metric space

f�I � ! h can be embedded in a Hilbert space. A counterexample
is a metric space of four elements, i.e.

I 6 8 ( � 9 � , � Ó ? represented by a distance
matrix on the right. From the definition of

!
, there exist two points

9
and

Ó
which

should be the middle points between
(

and
,

. However, in a Hilbert space, every
pair ~ and � determines a unique middle point

� 6 :< f ~�à � h between them such that! f ~ �
� h 6 ! f � � � h 6 :< ! f ~ � � h [33]. Hence, a contradiction.

Theorem 3.6 (Schoenberg) Let .�x f k � �Y� and � x f k � . �m�Y� . The spaces
f � � � ! w¿ h and

f Ò f ÿ � ��� � h � ! w¿ h ,
are isometrically embeddable in a Hilbert space.

Proof. See [342] for a proof.

This theorem covers some classes of both non-metric and metric spaces with the dissimilarity
! ¿ ,

whose distances can be transformed by an appropriate power function such that they become em-
beddable in a Hilbert space. If a finite collection of points is considered, then Theorem 3.6 refers
to a Euclidean embedding. This theorem justifies the validity of a common sense approach, where
non-metric or non-Euclidean finite spaces

f�I � ! h are transformed by a power transformation with
the power � x f k � j h . This is done in practice, since such a transformation may be capable of making
the space metric or even Euclidean; see section 3.1.3. After such a transformation, also a premetric
space may become semimetric.

Lemma } 3.7 (On embeddability of metric spaces into max-norm spaces) Any finite metric
space

f�I � ! h is ñ ¯ -embeddable.

Proof. Assume that
I 6 8 ~ Ù � ~ Ø � ����� � ~ Ý ? . Then a metric space

f�I � ! h can be embedded in ñ Ýá . Let
Z 4I ² � Ý be a mapping such that

Z f ~ h 476 ÿ ! f ~ � ~ Ù h � ! f ~ � ~ Ø h � ����� ! f ~ � ~UÝ h �ÏÛ . Denote
��o 476 Z f ~ o h , 0 65j � ����� �+* .

Then, one has
! á f Z f ~ o h � Z f ~ ~ h+h 6 ! á f �Ko%�
��~ h 6 ,/. � Ù�´�µ	´ Ý � � o µ ý°� ~ µ � 6é,$. � Ù�´�µ	´ Ý � ! f ~ o%� ~ µ h ý ! f ~ ~£� ~ ~ h � .

Thanks to the backward triangle inequality, Theorem 2.32,
� ! f ~ o%� ~ µ h ý ! f ~ ~±� ~ µ h � É ! f ~ o%� ~ ~ h holds for any)

and
! f ~ o%� ~ ~ h on the right side is attained for

) 476 ¼ . Hence, ,$. � Ù�´�µ	´ Ý � ! f ~ o%� ~ µ h ý ! f ~ ~£� ~ µ h � 6 ! f ~ o+� ~ ~ h
and

! á f Z f ~ o h � Z f ~ ~ h+h 6 ! f ~ o%� ~ ~ h . So,
Z

plays the role of an isometric embedding of
f�I � ! h into ñ Ýá . �

Def. 3.8 (Cut semimetric) A partition of a set
I

into � Ð I
and

I � � is called a cut. Such a cut
defines a cut semimetric as: Q?> f ~ � � h 6 e�f � � � 8 ~ � � ? � 6§j h � (3.1)

where
� î �

stands for the cardinality of the set and
e

is the indicator function.

A cut semimetric (metric without the definiteness condition required) serves for a further charac-
terization of the ñ : distance. A distance

!
can be embedded in ñ � : , if

!
can be decomposed as a

nonnegative linear combination of � cut metrics. Moreover, there exists a nonnegative measure
space1 such that

!
is the measure of the symmetric difference. Formally, one has:

1 A measure space is defined as a triple £¬¥¶��·0��¸U� , where ¥ is a set, · is a ¹ -algebra on ¥ (a collection of subsets ·
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Theorem 3.9 (Characterization of ñ Ù ) Let
I 476 8 ~ : � ����� � ~ >@? and

! / º 476 ! f ~ / � ~ º±h . Assume
f�I � ! h is

a finite metric space. For all 0 � ¼ 65j � � � ����� �+* , the following assertions are equivalent [88]:
1.
! /7º 6 ! f ~ / � ~ º h 6Ez > r > Z è V >�Q?> f ~ / � ~ º h , where

V > x ��rp .
2. There exists a nonnegative measure (probability) space

f ` � ¥ � X;h and
� : �
� < � ����� �
� >ûx ¥ such

that
! / º 6 X f � / �ê� º h .

3.
f�I � ! h is ñ � : -embeddable, i.e. there exist vectors 8 G : � ����� � G;>¬?yx � � for some integer � Ì j
such that

! /7º 6�z �« | : � C / « ý[C º « � .
The fact that the ñ : distance admits a decomposition by cut semimetrics does not simplify the process
of determine whether a particular distance is ñ : -embeddable or not. The difficulty of devising a
polynomial algorithm for an ñ � : -embedding is due to the non-uniqueness of such a decomposition.

Distorted metric embeddings. Not every metric space can be embedded into the ñ : or ñ < spaces.
This is, however, possible with some distortions. Let

f�I � ! è h and
f Þq� ! h h be metric spaces. Then,

a mapping
Z 4 I ² Þ

is a Lipschitz embedding with the distortion Z Ì j if for all ~ � � x I ,
one has j��pZ ! è f ~ � � h�É ! h f Z f ~ h � Z f � h+haÉ ! è f ~ � � h . There has been a lot of research devoted to the
problems of distorted embeddings into the ñ : , ñ < and ñ ¯ spaces. For instance, a classical result is
that any finite semimetric space of

*
points can be embedded into ñ : with a distortion of

H�f Ê�º2» < f * h+h
[39]. The problems of Lipschitz embeddings are beyond the scope of this dissertation, but they
remain of interest for further study. A brief overview of important results concerning low-distortion
embeddings with the algorithmic emphasis can be found e.g. in [203, 264].

3.1.2 Tree models for dissimilarities

A tree is a connected graph2, where each pair of nodes is connected by a unique path. Repre-
senting dissimilarities by trees is an important issue in many scientific fields, like data analysis,
mathematical psychology, historical linguistics and evolutionary biology; see e.g. [8, 216, 370]. A
tree structure of the dissimilarity matrix allows for a natural interpretation of relations between the
objects. It is a useful tool for understanding the data structure, especially for a smaller number of
objects, where the results can be presented visually. Further on, tree models support the hierarchical
clustering scheme based on proximities; see chapter 6.

A key model is the additive tree model, which represents objects by nodes of a tree and defines
dissimilarities as path lengths between two nodes, computed by the sum of the weights of the edges
on the path. A special case of a rooted additive tree is an ultrametric tree, in which the distance from
the root to every leaf is identical. The formal definitions follow.

Def. 3.10 Let
f�I � ! h be a metric space. Assume that

I 47698 : � ~ < � ����� � ~ >@? . Then
!

is described by the* �³*
distance matrix

" 6 f ! /7º h , such that
! /7º 6 ! f ~ / � ~ º h . Additional constraints can be considered

for all ~ � � �
� � A x I :
1. ultrametric inequality:

! f ~ �
� h×É ,$. � 8 ! f ~ � � h � ! f � �
� h�? .
2. four-point property:

! f ~ � � h à ! f ��� A h×É ,$. � 8 ! f ~ � A h à ! f � �
� h � ! f ~ �
� h à ! f � � A h�? .
such that ¥�ù¯· and if ¼�ù¯· , then ¥�½K¼�ù¯· , and a union of any number of subsets of · belongs to · , as well).

2 A graph £h�,�/¾ñ� consists of a set of nodes, �c«é±�� � �����������K�8¹ and a set of edges ¾c«¡±X£�� Ä ��� Å � ´¿� Å ��� Å ù��3¹
connecting two nodes. In a directed graph, the pairs £�� Ä ��� Å � in ¾ are ordered, in an undirected graph, they are not.
The degree of a node � Ä is the number of edges incident in � Ä . Nodes with degree one are called leaves. Nodes with
larger degree are called internal. A path between two nodes � ÄÁÀ and � ÄÁÂ is a sequence of connected edges £�� Ä�À ��� Ä�Ã � ,£�� Ä�Ã ��� Ä$Ä �Y��������£�� Ä Â�ª À ��� Ä Â � . A graph is connected if there is a path between any of the vertices. In a weighted graph, a
nonnegative weight Å ÄÆÅ is associated to the edges £�� Ä ��� Å � . The length of a path is then a sum of the weights of the
connected edges between the nodes � Ä�À and � Ä$Â . The minimum path distance between any two nodes is defined as the
minimum length of the paths connecting them.
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Fig. 3.1: Tree examples. (a) Additive tree for the given distance matrix
"

satisfying the four-point property.
(b) Ultrametric tree for the given ultrametric distance matrix

"
.

3. hypermetric inequality:
� ¹ " � É k and

� x � > such that
� ¹ · 6�z / � / 65j . An infinite metric

space
I

is hypermetric if the inequality holds for every finite subspace of
I

.
4. negative type:

� ¹ " � É k for
� x � > such that

� ¹ · 6�k . An infinite metric space
I

is of
negative type if the inequality holds for every finite subspace of

I
.

A metric space satisfying one of the above inequalities is called appropriately, e.g. a hypermetric
space. Ultrametric space is also called non-Archimedean. The ultrametric and four-point properties
can also be considered for premetric spaces.

The four-point property and ultrametric inequality are inherently connected to a tree structure of
dissimilarity data.

Def. 3.11 (Additive, ultrametric trees) An additive tree is a connected, undirected graph where
each pair of nodes is connected by a unique path. An ultrametric tree is an additive tree in which
each leaf is equidistant (along the path) from the root.

Let
f�I � ! h be a finite metric space and let

"
be the corresponding dissimilarity matrix.

"
defines

a unique additive tree iff the four-point inequality holds for any quadruple from
I

.
"

defines a
unique ultrametric tree iff the ultrametric inequality holds for any triplet from

I
. See Fig. 3.1 for an

example. Formally, one has:

Def. 3.12 (Additive distance tree) [8] Let
" 6 f ! /7º±h be an

* ��*
symmetric distance matrix between

the elements of
I

. Let D,Æ be an edge weighted tree with at least
*

nodes, where
*

distinct nodes
of D Æ are labeled by the elements of

I
. D Æ is an additive tree for the matrix

"
if for every pair of

the labeled nodes
f 0 � ¼ h , the path from the node 0 to the node ¼ has the total weight equal to

! /7º . See
Fig. 3.1(b) for an example.

Note that in an additive tree the root is not determined, and choosing different roots may suggest
different interpretations. Basically, the root will distinguish two or three significant groups in the
data. The root could be then chosen to enhance the interpretability of the data, but this requires some
prior knowledge. Another possibility is to place the root at a node which minimizes the variance of
the distances from the root to the leaf nodes, so it splits the data into homogeneous groups.

In a weighted graph, the path metric defines the shortest path, judged by the total sum of weights,
between two nodes. A metric satisfying the four-point property is the path metric of nonnegative
weighted trees.

Theorem 3.13 Every path metric, i.e. the shortest-path metric in a tree, is ñ : -embeddable.

Proof. Let D¢6 f � �+@ h be a tree. Every edge
" 6 f C « ��C Ò h introduces a partition of � into two sets� «YÒ and � Ý«YÒ 6 � � � «�Ò such that

C « x�� «YÒ and
C Ò x
� Ý«�Ò . Then, the path metric of D can be decomposed

as
! ¹ f C / ��C º h 6�z ö

Ð7Ç ÷ Ð�È ù ç # Q?> ÇUÈ f C « ��C Ò h , where
Q<> ÇUÈ

is the cut metric, Def. 3.8. In case of a weighted
tree, the

Q<> ÇUÈ f C « ��C Ò h are multiplied by the weights P «YÒ . By Theorem 3.9, since the path metric can
be decomposed as a linear combination of cut metrics, then it is ñ : -embeddable. �
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This proposition makes a connection between ñ : -embeddability and a path metric of an additive tree.
Hence, any dissimilarity matrix

"
which is ñ : -embeddable can be represented by a path metric of

an additive tree. This is then a discrete model of dissimilarity relations between the objects.

Def. 3.14 (Ultrametric dissimilarity tree) [8] Let
" 6 8 ! /7º¨? >/ ÷ º�| : be an

* �³*
symmetric dissimilar-

ity matrix between the elements of
I

. An ultrametric tree for the matrix
"

, called also a dendogram,
is a rooted tree D Æ with the following properties (see also Fig. 3.1(a)):

1. D Æ contains
*

leaves, each labeled by a unique element of
I

.
2. Each internal node is labeled by a dissimilarity values from

"
such that

! /7º is the label of the
least common ancestor of the leaves 0 and ¼ .

3. Along any path from the root to a leaf, the numbers labeling internal nodes strictly decrease.
4. Each internal node has at least two children.

In practice, there might be no additive tree to represent the dissimilarity data
"

, since there might be
no path metric coinciding exactly with

"
. A solution can be offered by finding a tree which models

the given dissimilarities as well as possible in terms of the path distances. Such a tree metric
" ¹

should provide the best approximation of
"

under the error criteria defined e.g. by the norms ñ : , ñ <
or ñ ¯ . This is a formulation of a numerical taxonomy problem, which has received a great deal of
attention over the years; see e.g. [8, 216]. The additive or ultrametric tree fitting problems are known
to be NP-hard under the ñ : and ñ < norms [64, 216, 370]. In case of the ñ ¯ norm, the same holds for an
additive tree [1], however the optimal ultrametric tree can be computed in a polynomial time [123].
There exists a number of other methods trying to construct either an ultrametric or additive tree such
that the path distance approximates the given distance as well as possible. See [8, 167, 216, 370]
for general references or [1, 66, 123, 139, 140, 373, 374], for more specific algorithms. See also
section 6.3 for more discussion.

3.1.3 Transformations in semimetric spaces

Some transformations are considered, which either preserve the (semi)metric properties or, in par-
ticular cases, change a dissimilarity measure into a metric.

Theorem } 3.15 ((Semi)metric transformation) Let
f�I � ! h be a semimetric space. Then the com-

position of mappings,
# 	¬!

, is also semimetric if
# 4£� rp ² � r p is a non-decreasing and concave

function such that
# f k h 6�k . If

f�I � ! h is a metric space, then
# 	 !

is metric, if additionally
#

is positive
on ��p . Such

#
will be called a (semi)metric transformation.

Proof. Here, only the metric space is considered, since the proof for the semimetric space follows directly.
Let

f�I � ! h be a metric space. Since
# f ~ h&Ï k for ~ Ï k and

# f k h 69k , then
# 	i!

directly fulfills the positivity,
reflexivity and symmetry constraints; see Def. 2.30. Therefore, it suffices to prove the triangle inequality
only. Let

! Ù 6 ! f ~ � � h , ! Ø 6 ! f � �
� h and
!�É 6 ! f ��� ~ h for any ~ � � �
� x I . Assume that

! Ù à ! Ø Ì !ÊÉ
holds for each triplet

! Ù � ! Ø � !ÊÉ . Since
# f ! Ù à ! Ø h Ì # f !�É h , #�Ë , one suffices to show that

# f ! Ù h à # f ! Ø h Ì# f ! Ù à ! Ø h . The inequality
# f ! Ù h à # f ! Ø h=Ì # f !ÊÉ h is then straightforward. Based on the concavity of

#
, we

have
# f K C à f j ý K h A h¨Ì�K # f C h à f j ý K³h # fBA h for all K�x ÿ k � j�� and all

C � A Ì k . Let K 6 Ì7ÍÌ7Í a Ì � , A 6 ! Ù à ! Ø andC 6�k . Then, we have:# f ! Ù h 6 # f Ì7ÍÌ7Í a Ì � f ! Ù à ! Ø h à Ì �Ì7Í a Ì � k h¨Ì Ì7ÍÌ7Í a Ì � # f ! Ù à ! Ø h à Ì �ÌjÍ a Ì � # f k h 6 Ì7ÍÌ7Í a Ì � # f ! Ù à ! Ø h
Similarly,

# f ! Ø h¨Ï Ì �Ì Í a Ì � # f ! Ù à ! Ø h . Therefore,
# f ! Ù h à # f ! Ø h¨Ì # f ! Ù à ! Ø h , which finishes the proof. �

Above, we required that
#

is non-decreasing and concave. Note that instead of concavity, in fact, the
subadditive property of

#
is needed, i.e.

# f ~ : à�~ <Çh É # f ~ : h à # f ~ <�h for all ~ : and ~ < in the domain
of
#

.



3.1 Embeddings, tree models and some transformations 47

Corollary } 3.16 Let
f�I � ! h be a metric space. Then

f�I � # 	u! h is also metric for
# 4µ��rp ²ä�³rp defined

as one of the following functions:
(1)

# : f ~ h 6 d ~ ,
d Ï k .

(2)
# < f ~ h 6 ~áà d e�f ~ Ï k h , d Ï k .

(3)
# X f ~ h 6-,$Ç³È=8 d�� ~ ? , d Ï k .

(4)
# ë f ~ h 6 ~ w � k   � É j .

(5)
#2Î f ~ h 6 ææ p Ý , d Ï k .

(6)
#pÏ f ~ h 6 sigm

f ~ h 476 <: pFÐ )�Ñ ö � æ Ø Î ù ý j and ¤ Ï k .
(7)

#2Ò f ~ h 6 Ê�º2» f j à ~ h
Proof. Cases (1) – (3) are trivial. So, we focus on the remaining cases. Let

) Ï O . It is straightforward to
verify that

# µ f k h 6ík and
# µ is monotonically growing. Now, we prove that

# µ is concave by showing that
the second derivative of

# µ is negative for positive ~ [125]. Thus, we have
#ÔÓ ÓÉ f ~ h 69� f � ý j h ~�Õ j Ø   k , since

� x f k � j�� , # Ó ÓÖ f ~ h 6 ý � d Ø � f ~�à d Ø h É   k , # Ó Ó× f ~ h 65��� ¤pØ f ���8� f ý � ~ � ¤ h ý ���8� f ý ~ � ¤ h+h � f j à������ f ý ~ � ¤ É h�  k ,
since ����� f ý ~ h is a monotonically decreasing function and

# Ó ÓØ f ~ h 6 ý j�� f j àÛ~ h Ø   k . By Theorem 3.15,f�I � # 	¨! h is metric. �
Theorem 3.17 (Blumenthal) Let

f�I � ! h be a metric space and let
# w f ~ h 6 ~ w be a metric transform

with � x f k � j��m�Y� . Then
! w

is metric and any four points of
f�I � ! w h can be isometrically embedded in

a Euclidean space.

Proof. See [32] for a proof.

Note that for any metric, every three points can be isometrically embedded in a Euclidean space,
which follows from the triangle inequality; see also section 3.2. The above theorem explains that
the power transformation

# w f ~ h 6 ~ w with k   � É j��m� makes the metric ’more’ Euclidean, since the
embeddability holds for any four points.

Corollary } 3.18 Let .gx f k � j h . Then, the space
f � � � ! ¿¿ h is metric.

Proof. Assume that � �+�q�
� x � ä . Note that
! ÜÜ f � �+� h 6 z äo � Ù � ~ o=ý � o � Ü . It suffices to show that the triangle

inequality holds, since
f � ä � !�Ü h with .5x f k � j h is quasimetric, as shown in Example 2.39. Based on the

Minkowski inequality3 z äo � Ù � � o à � o � Ü É z äo � Ù � � o � Ü à z äo � Ù � � o � Ü , we have z äo � Ù � ~ o ý³� o � Ü 6�z äo � Ù � f ~ o ý � o h àf � o ý&�Ko h � Ü É z äo � Ù � ~ o ý � o � Ü à z äo � Ù � � o ý ��o � Ü . The latter inequality is equivalent to
! ÜÜ f � �
� h¨É ! ÜÜ f � �+� h à ! ÜÜ f �q�
� h .

Hence,
! ÜÜ

is metric. �
Observation } 3.19 Note that since

f � � � ! ¿¿ h , with .�x f k � j h is a metric space, then based on Corol-
lary 3.16,

f � � � ! w¿ h with � x f k � . � is a metric space as well.

Def. 3.20 Let
�

denote a set of functions
$ f ~ � .¬h of one real variable ~ Ì k and one real parameter.�Ï k such that

$ f k�� .¬h 6�k and
$ f ~ � .¬h is a continuous strictly increasing function of ~ . Moreover,

$
is

such that for any ~ Ï k and any real � Ï k , there exists � such that .�É�� ¦ � $ < f ~ � .¬h ý j � É�� [70].

Example 3.21 Examples of the functions from
�

are [70]:S Power function:
$ f ~ � .¬h 6 ~ ¿ with ¿+À �×~   Ù . Let �ô  j . Then, �9Ï k for ~ 6 j and � 6ÿ Ê�º2» f j à sign

f ~ ý j h¨��h �B� f � Ê�º2» f ~ h
h , otherwise.S Weibull function:
$ f ~ � .@h 65j ý ����� f ý ~ w � .¬h with � Ï k .

Let �   j . Then, � 6 ý ~ w � Ê�º2» f j ý × j ý �Çh .
3 The proof of this inequality relies on the following fact. Let Ù¶�ÛÚR��� and Ü�ù�£¬����¸Y� . Consider Ý�£©²8�8«5£�¸��³Þ Àß ��à

with Þ3ù[£©����¸Y� and ²®�-¸ . Ýá since Ý a £©²8��«>+ ¨ Àßà�â¥ã$ä�å £�¸��³Þ Àß � ã�ä	å £DÞ*�fÝx£³²��æ��� . Therefore, Ý has the minimum value of¸m�zÞ at ²M«/¸ . For ²M« �% and Þ�«èçé ·
¸ , we have: £�Ù % �_Ú % � Àê «�Ù,Ýx£ �% �p�³ÙvÝ�£�¸���«�Ù!�_Ú . Hence, £DÙx�_Ú*� % ·³Ù % �_Ú % .
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Theorem 3.22 (Courrieu) Let
f�I � _�h be an

*
-element finite quasimetric space. Consider a function$ x � . Then, the following statements hold:

1. There exists a real K f�I hqÏ k such that for any positive .�ÉíK f�I h , the space
f�I �%$ fïî � .¬h 	 _�h is

isometrically embeddable in a Euclidean space of a dimensionality É * ý j .
2. There exists a real

L f�I h such that k   L f�I h;ÉgK f�I h and for any positive .°É L f�I h the spacef�I �%$ fïî � .¬h 	 _ih is isometrically embeddable in a Euclidean space of a dimensionality
* ý j .

Proof. See [70] for a proof.

The above theorem explains that any finite quasimetric space can be transformed into a Euclidean
space by a suitable function

$ fïî � .@h . It does not, however, explain how a proper parameter . can be
determined. This depends on the set

I
and cannot be captured by a general formula. In practice,.�  j . For . approaching zero, the quasimetric space resembles more and more a discrete metric

space; see Example 2.31. This means that the structure in the data is weakened in the embedded
Euclidean space, since the points move towards the corners of an equilateral polytope. Still for any.�Ï k , some structural information is present.

3.1.4 Direct product spaces

Direct product spaces allow one for a construction of a new space by combining two (or more)
spaces; see also section 2.2. In the context of generalized metric spaces, this means that given
two (or more) such finite spaces describing the same objects, a new dissimilarity measure can be
created by their summation or by maximum operator. Now, some conclusions can be drawn for the
combined spaces.

Theorem } 3.23 Let
f�I � ! è h and

f Þa� ! h h be metric spaces. The direct product space
f�I �aÞq� ! è S ! h h

defined as
f ! è S ! h h f+f ~ : � � : h � f ~ < � � < h+h 6 ! è�f ~ : � ~ < h�S ! háf � : � � < h , where ~ / x I and � / x Þ , 0 6Íj � � andS is either the sum or max operator, is metric.

Proof. The proof is straightforward by checking the conditions of Def. 2.30.

Theorem } 3.24 Let
f�I � _ è h and

f Þa� _ h h be generalized metric spaces. Let the direct product spacef�I �qÞa� _ è S{_ h h be defined such that
f _ è S{_ h h f+f ~ : � ~ < h � f � : � � < h+h 6 _ è f ~ : � ~ < h à _ h f � : � � < h ~ / x I and

� /±x Þ , 0 65j � � . Then the space
f�I ��Þa� _ è S{_ h h is

(1) ñ : -embeddable, iff
f�I � _ è h and

f Þa� _ h h are ñ : -embeddable.
(2) is hypermetric, iff

f�I � _ è h and
f Þq� _ h h are hypermetric.

(3) is of negative type, iff
f�I � _ è h and

f Þq� _ h h are both of negative type.

Proof. Let
 6 I ��Þ and _ 6 _ n S{_�ë .

(1) ¦ Assume that
f ×� _�h is ñ Ù -embeddable. Then _ f+f ~ Ù � � Ù h � f ~ Ø � � Ø h+h 6 _ náf ~ Ù � ~ Ø h à k à _ ë f � Ù � � Ø h à k 6_ náf ~ Ù � ~ Ø h à _ náf ~ Ø � ~ Ø h à _ ë f � Ù � � Ù h à _ ë f � Ù � � Ø h 6 _ f+f ~ Ù � � Ù h � f � Ù � ~ Ø h+h à _ f+f � Ù � ~ Ø h � f ~ Ø � � Ø h+h . Conse-

quently,
f ×� _�h is

f�I � 8 ~ Ø ? � _ n h � f 8�� Ù ? �;Þq� _ ë h , which is equivalent to
f�I � _ n h � f Þa� _ ë h . Hence,

f�I � _ n h
and

f Þq� _ ë h are ñ Ù -embeddable.� Assume that
f�I � _ n h and

f Þa� _ ë h are ñ Ù -embeddable. Let
Z n

and
Z ë denote the ñ Ù -embedding of

f�I � _ n h ,
and

f Þa� _ ë h , correspondingly. Then, the embedding
Z

of
f ×� _�h into ñ Ù can be obtained by

Z f ~ � � h 6ÿ Z n°f ~ h Z ë f � h � . Since _ 6 _ n S@_ ë , then _ f+f ~ Ù � ~ Ø h � f � Ù � � Ø h+h 6 _ náf ~ Ù � ~ Ø h à _ ë f � Ù � � Ø h 6 �ð� Z náf ~ Ù h ýZUn f ~ Ø h �ð� Ù à �ð� Z ë f � Ù h ý Z ë f � Ø h �ð� Ù 6 �ð� ÿ ZUn f ~ Ù h Z ë f � Ù h � ý ÿ ZUn f ~ Ø h Z ë f � Ø h �ð� Ù 6 �ð� Z f ~ Ù � � Ù h ý Z f ~ Ø � � Ø h �ð� Ù .
Hence,

f�I ��Þa� _ih is ñ Ù -embeddable.

(2) ¦ Let
f  � _ih be hypermetric. This means that for � Ù x Þ ,

f�I � 8�� Ù ? � _�h is hypermetric as well. Then,_ f+f ~ Ù � � Ù h � f ~ Ø � � Ø h+h 6 _ n°f ~ Ù � ~ Ø h , so
f�I � _ n h is hypermetric. The same reasoning holds for

f Þq� _ ë h .� Let
f�I � _ n h and

f Þa� _ ë h be hypermetric spaces. Let
� x �zì satisfy z tyk Í G z Í v�l ì � f ~ Ù � � Ù h 6ìj . De-
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fine
A x � n and G§x � ë such that

A f ~ Ù h 476 z z Í l ë � f ~ Ù � � Ù h and
C f � Ù h 476 z k Í lXn � f ~ Ù � � Ù h . Then,

z k Í lYn A f ~ Ù h 6 z z Í l ë C f � Ù h 6 j . Then, zîí tuk Í G k � v lXn�ïxtuz Í G z � v l ëFð � f ~ Ù � � Ù h � f ~ Ø � � Ø h{_ f+f ~ Ù � ~ Ø h � f � Ù � � Ø h+h 6z tuk Í G k � v lXn A³f ~ Ù h A³f � Ù h{_ n°f ~ Ù � � Ù h à z tyz Í G z � v�l ë C f � Ù h C f � Ø h{_ ë f � Ù � � Ø h¨É k . Hence
f ×� _�h is hypermetric.

(3) The proof is similar to the one above. �
If
I 6 Þ , then the above theorem states that the summation of distances _ è à _ h preserves the ñ : -

embeddability, hypermetric and negative type properties. Moreover, we also know that for
f  � _ih of

negative type,
f  � _ :
Ø�< h is ñ < -embeddable; see Theorem 3.31. This means that if

f ×� _ è h and
f  � _ h h

are ñ < -embeddable, then
f  � f _ <è à _ <h h :
Ø�< h is also ñ < -embeddable.

3.2 Properties of dissimilarity matrices
This section discusses some properties of dissimilarity matrices with respect to metric behavior,
metric transformations and Euclidean embeddings, as well as the corrections of dissimilarities im-
posing the metric or Euclidean constraints. This is done explicitly for dissimilarity matrices, since
our learning algorithms will be later based on such finite representations. Therefore, the issues
discussed here prepare us for the analysis of dissimilarity data. A substantial part of the presented
theory comes from Gower [171].

Let us consider an
* �³*

dissimilarity matrix
" 6 f ! / ºÃh and an

* �³*
similarity matrix

B 6 f A�/7º±h for0 � ¼ 6êj � ����� �+* . In all discussions below, we assume that both
"

and
B

are nonnegative and
"

has
a zero diagonal. Concerning the notation, a few points are important. ¸ º x � > is a standard basis
vector (a vector of all zeros except for

" º 6Ûj ), · stands for a vector of all ones and
Á

denotes the
Hadamard (element-wise) operation on matrices. So,

�ÎÁ�	
denotes the Hadamard matrix product,

i.e. if
 6 ��Áû	 and

 6 f d /7º h , then
d /7º 6 � /7º � /7º ,  J « 6 f d «/7º h is the Hadamard power. Moreover, if

a vector representation
I

is mentioned, we follow the convention from pattern recognition, where
vectors are placed in rows of

I
, i.e.

I 476 ÿ � ¹ : ��������� � ¹ > � .
Def. 3.25 (Metric for D) Let

"
be a symmetric dissimilarity matrix with positive off-diagonal ele-

ments.
"

is metric, if the triangle inequality
! /7º à ! º « Ì ! / « holds for all triplets

f 0 � ¼ � ) h .
Observation } 3.26 Let

"
be a semimetric, i.e. the definiteness axiom may not hold.

(1) if
! / º 6 � , then

� ! / « ý ! º « � É�� for any
)
.

(2) if
! / º 6�k , then

! / « 6 ! º « for any
)
.

Proof. (1) Making use of the triangle inequality the following inequalities hold:
! o µ à ! o�~ Ì ! µ ~ and! ~ µ à ! ~�o Ì ! µ o for any

)
. Based on the symmetry condition and

! o�~ 6 � , one obtains:
! o µ à �EÌ ! ~ µ and! ~ µ à � Ì ! o µ , which after a simple transformation, gives

! o µ à � Ì ! ~ µ Ì ! o µ ý � and finally
� ! o µ ý ! ~ µ � É�� .

(2) Trivial, by the same reasoning as in (1). �
These properties of metric dissimilarities are important from a practical point of view. Basically,
if two objects are similar, i.e. the dissimilarity between them is small (close to zero or equal to
zero), then any other object will have a similar relation to them both. That means that one of them
can become a prototype to represent both of them. This property enables a construction of the
approximate nearest neighbor searches in a Euclidean space; see e.g. [273].

Observation } 3.27
"

is a metric if every triplet is Euclidean.

Any metric triplet
! / º , ! / « and

! « º is Euclidean, i.e. it constitutes a Euclidean triangle. However, for* Ï O , not every
* ��*

metric distance matrix
"

has a Euclidean representation. A counterexample is
given by a M � M matrix

"
presented in Fig.3.2. There, an ñ <: -embedding can be found such that

"
can be represented by points in a � -dimensional space with the city block distances equal to

! /7º .
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Fig. 3.2: An example of (a) metric distances with (b) no Euclidean representation and (c) a possible ñ Ù
representation. In order to get a � " or O " Euclidean representation, the distances from the point

Ó
to other

points should be at least equal to ØÉ É�� ÉØ 6 × O . They are smaller, so no Euclidean embedding exists.

Corollary 3.28 If
"

is quasimetric (the triangulation inequality does not hold), then the matrix" b 6 " à d f · · ¹ ý ( h , where
d Ì ,$. � ¿¨÷ ø�÷ w � ! ¿Çø à ! ¿ w ý ! ø w � is metric.

Proof. It suffices to show that
" Ó

fulfills the triangle inequality, since other properties are easily checked.
Let

f 0 � ¼ � ) h be a triplet for which the triangulation inequality does not hold, i.e.
! o ~ à ! ~ µ   ! o µ . Since

d Ì,/. � Ü G J G Õ � ! ÜKJ à ! Ü Õ ý ! J Õ � , then
d Ì � ! o�~ à ! ~ µ ý ! o µ � . Now, we should prove that

f ! o�~ à d h à f ! ~ µ à d h¨Ì f ! o µ à d h .
Note that

! o�~ à ! ~ µ à d Ì ! o�~ à ! ~ µ à � ! o�~ à ! ~ µ ý ! o µ � 6 ! o µ , since
� � � 6 ý � for

�   k . Because
d

is nonnegative,
then

f ! o ~ à d h à f ! ~ µ à d h¨Ì f ! o µ à d h , which finishes the proof. �
If
d

is relatively small, then the dissimilarity matrix
"

is only slightly non-metric. If, however,
d

is
large, then the analysis should take into account its non-metric properties. The triangle inequality is
the most burdensome to check; in the worst case, all the triplets needs to be investigated.

Observation } 3.29 An important question refers to transformations of a metric dissimilarity such
that the metric properties are preserved. From Theorem 3.15, we already know that if

"
is metric,

then
" � 6 f # f ! /7º h+h is a metric as well for

#
being a non-decreasing and concave function such that# f k h 6�k and

# f ~ h¨Ï k for ~ Ï k . Consequently, if
"

is metric, then for
d Ï k the dissimilarity matrices

defined as:
f d ! / ºÃh , f ! /7º à d f j ýÍQ / º±h+h , f ,$Ç³È=8Ãj � ! /7ºi?�h , f ! w/7º h with � x f k � j�� , f ! /7º � f ! / º à d h , f sigm

f ! /7º±h+h ,f Ê�º2» f j à ! /7º h+h are also metric; see Corollary 3.16.

Below we present some results, mostly related to the Euclidean behavior of a distance matrix and
its vector representation. A more thorough explanation can be found in section 3.3.

Def. 3.30 (Euclidean behavior) An
* �³*

dissimilarity matrix
" 6 f ! /7ºÃh is Euclidean if it can

be embedded in a Euclidean space
f � � � ! # h , where � É *

. This means that a configuration
8 ��: � �;< � ����� � � >¬? can be determined in ��� such that

�ð� � / ý �&º �ð� < 6 ! / º .
Theorem 3.31 (Test I for Euclidean behavior) A symmetric

* �³*
matrix

"
with a zero diagonal

is Euclidean iff
"�J < 6 f ! </ º h is conditionally negative definite (cnd), i.e.

� ¹ "�J < � É k for all vectors� x � > such that
� ¹ · 6�k . Equivalently, a symmetric

* �³*
matrix

"
with a zero diagonal is Euclidean

iff
ý "�J <

is conditionally positive definite (cpd).

Proof. The proof makes use of equivalent transformations. Let
"�� Ø be a square Euclidean matrix, i.e.

! Øo�~ 6�ð� � o�ý � ~ �ð� Ø in a Euclidean space � µ . Let
l 6 ÿ �ð� � Ù �ð� Ø � �ð� � Ø �ð� Ø � ����� � �ð� � Ý �ð� Ø � Û . Then,

� Û "	� Ø � 6�z o G ~ ��o���~ �ð� � o�ý� ~ �ð� Ø 6�z o G ~ � o � ~ �ð� � o �ð� Ø ý ��z o G ~ � o � ~ é � o � � ~ ëià z o G ~ � o � ~ �ð� � ~ �ð� Ø 6 � Û l · Û �ûý � �ð� z o � o � o �ð� Ø à � Û · l Û � 6� � Û · l Û ��ý � �ð� � Û I �ð� Ø . Note that
�ð� � Û I �ð� Ø Ì k and

� Û · l Û � Ì k , since
· l Û is a positive semidefinite matrix.

Since
� Û "	� Ø � 6Õ� f � Û · l Û � ý �ð� � Û I �ð� Ø h , then to assure that

� Û "	� Ø � É k , one should require that
� Û · 6gk ,

which finishes the proof. �
Theorem 3.32 (Test II for Euclidean behavior)

"
is Euclidean iff the matrix

" s 6 9 s "�J < 9 ¹s with9 s 6 f ( ý ·�
 ¹ah is negative semidefinite (nsd) for 
 ¹ · 6Êj . Equivalently,
"

is Euclidean iff the matrix
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B s 6 ý :< " s is positive semidefinite (psd) for 
 ¹ · 65j [171].

Proof. ¦ For any ��x � µ�UÙ , � 6 f ( ý ·�
 Û h{� is orthogonal to
·
, i.e.

� Û · 6 � Û f ( ý 
{· Û h · 6 � Û · ý � Û ·�
 Û · 6� Û · ý � Û · j&6�k . Then, based on Theorem 3.31,
� Û "�� Ø � É k , which yields � Û ÿ f ( ý ·�
 Û h "	� Ø f ( ý 
±· Û h � �yÉ k .

This proves that
" u is negative semidefinite.� Let

� Û · 6�k and
" u be nsd. Then, k Ì � Û " u � 6 � Û ÿ f ( ý ·�
 Û h " � Ø f ( ý 
±· Û h � � 6 � Û " � Ø �¡ý � � Û ·�
 Û " � Ø à� Û ·�
 Û " � Ø 
±· Û � 6 � Û " � Ø � . This means that

" � Ø is cnd and by Theorem 3.31,
"

is Euclidean. �
Observation } 3.33

"
is Euclidean iff

" Ý 6 9 " J < 9 is nsd.
9 476 f ( ý :> ·&· ¹ah is known as the centering

matrix. This is a special case of Theorem 3.32 for 
 6 :> · . Another special case holds for 
 6 ¸ / ,
where ¸ /±x � > is a standard basis vector.

Observation } 3.34 Let
"

be an
* �³*

dissimilarity matrix. If Theorem 3.32 is true for a particular
 , e.g. 
 6 :> · , then it is true for any 
 such that 
 ¹ · 65j . See also section 3.2.1.

Theorem 3.35 (Vector representation) For an
* �³*

Euclidean distance matrix
"

, a vector rep-
resentation of the distances in � � is given by the rows of the

* � � matrix
I

, � É *
, whereI I ¹ 6 ý :< f ( ý ·�
 ¹ h "�J < f ( ý 
Ã· ¹ h and


 ¹ · 65j .
Proof. Indirectly, the goal is to prove that the matrix

B u 6 ý ÙØ f ( ý ·�
 Û h " � Ø f ( ý 
{· Û h is a matrix of inner
products (Gram matrix) of a vector representation

I
in � ä . Let ��6 " � Ø 
 ý ÙØ ·�
 Û " � Ø 
 (it can be easily check

that � describes a diagonal of
B u ; see also section 3.2.1). Then, after straightforward mathematical operations,

we can express
B u as follows

B u 6 ý ÙØ f ( ý ·�
 Û h "	� Ø f ( ý 
±· Û h 6 ý ÙØ f "	� Ø ý � · Û ý · � Û h . Note that sincef ¸ o ý ¸ ~ h Û · 6åk , then � · Û f ¸ o ý ¸ ~ h 65k . Consequently,
f ¸ o ý ¸ ~ h Û B u f ¸ o ý ¸ ~ h 6 ý ÙØ f ¸ o ý ¸ ~ h Û " � Ø f ¸ o;ý

¸ ~ h 6 ý ÙØ f ! ØoÁo à ! Ø~�~ ý � ! Øo�~ h 6 ! Øo�~ , since
"	� Ø has a zero diagonal (

! oÁo 6Ûk for any 0 ). On the other hand,
according to Def. 3.30, for an Euclidean distance

"
, there exist a vector configuration

I 6 ÿ � Û Ù � � Û Ø ������� � � Û Ý �
such that

! Øo�~ 6 �ð� � oqý � ~ �ð� ØØ . So, we can further write
! Øo ~ 6�6 �ð� I Û ¸ oaý I Û ¸ ~ �ð� ØØ 6 �ð� I Û f ¸ o�ý ¸ ~ h �ð� ØØ 6f ¸ o ý ¸ ~ h Û IEI Û f ¸ o ý ¸ ~ h . Since,

! Øo�~ 6 f ¸ o ý ¸ ~ h Û B u f ¸ o ý ¸ ~ h , then
I

can be related to
B u as

B u 6 I9I Û .
Note that the dimensionality � of

I
is obtained as the rank of

B u . �
Theorem } 3.36 (Test III for Euclidean behavior) Let

"
be an

* �³*
non-zero symmetric matrix

with the zero diagonal.
"

is Euclidean iff 4 � Æ�� � ·· � r 6 has exactly one negative eigenvalue.

Proof. This theorem and its proof follows directly from the considerations of Chabrillac and Crouzeix on
semidefinitness of quadratic forms [58]. Given an

* �³*
real symmetric matrix

�
, they show that requiring

that
� Û ��� Ì k for all

�
such that

	 Û � 6 k is equivalent to stating that the matrix S � ÂÂ�� ¶ T has exactly

� 6�� � * ) f 	 h negative eigenvalues. By Theorem 3.31,
"

is Euclidean iff
"�� Ø is cnd, that is

� Û f ý "	� Ø h � Ì k
for all k�6 � Û · 6 · Û � . By substituting

� 6 ý " � Ø and
	 6 · , we get that S j���� � ·· ��� T has exactly one negative

eigenvalue. �
Observation } 3.37 If an

* ��*
symmetric matrix

"
with a zero diagonal is Euclidean, then

ý "gJ <
has exactly one negative eigenvalue. The reverse does not hold.

Proof. Assume that 8 V o ? Ýo � Ù are the eigenvalues of
ý "�� Ø . Since the trace of

ý "�� Ø is, on the one hand, a sum
of the diagonal elements and, on the other hand, the sum of eigenvalues, then z Ýo � Ù V o 6ík . It follows thatý " � Ø must have at least one negative eigenvalue. By Theorem 3.31,

"
is Euclidean iff

ý " � Ø is cpd. From
Chabrillac and Crouzeix [58] follows that a

* �³*
cpd matrix has at most one negative eigenvalue. Hence,ý "	� Ø has exactly one negative eigenvalue.

To prove that the reverse does not hold, consider a nonnegative symmetric matrix
� 6 4 � É ÙÉ � ÙÙÕÙ � 6 � One may

found out that the eigenvalues of
ý � � Ø are 8 � � ki� �ij"!�k ��ý �¨� �ij"!�k ? . Hence,

ý&� � Ø has exactly one negative
eigenvalue. However,

�
cannot be Euclidean since the triangle inequality is not fulfilled as j à j   O . �
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Theorem } 3.38 (Constructing D from S) Let
B

be a psd similarity matrix.
(1) For

B 476 f Au/7ºÃh with the elements A�/7º obeying k ÉÍAu/7º�É j and Au/ / 6�j , the dissimilarity matrix" : 6 f ·&· ¹ ý B h J �� is Euclidean. Also the matrix
" < 6 f ·=· ¹ ý B h is Euclidean.

(2) The dissimilarity matrix
" 6 f ! /7º h with

! /7º 6 f A / / à A º+º ý � A /7º h :
ØÈ< is Euclidean.

If
B

is not psd, then the corresponding dissimilarity matrices shown above are not Euclidean, yet
they can still be constructed.

Proof. By Theorem 3.31, it is sufficient to prove that
" � ØÙ and

" � ØØ are cnd for all
�

such that
� Û · 6�k .

(1) Let
� Û · 6�k . Since

"	� ØÙ 6 ·=· Û ý B , then
� Û "	� ØÙ � 6 � Û · · Û �ôýÎ� Û B � 6êk ý¢� Û B � É k . The latter

inequality holds since
B

is psd, i.e.
� Û B � Ì k for any

�
. Hence,

"�� ØÙ is cnd. Consequently,
" Ù is Euclidean.

One also has that
" � ØØ 6 ·&· Û ý � B à B � Ø . Then,

� Û " � ØØ � 6�6�k ý � Û f � B ý B � Ø h � . Now, one needs to require
that

� Û f � B ý B � Ø h � Ì k . This holds if
f � B ý B � Ø h is psd. To show that, we will make use of two theorems.

The Schur theorem states that the Hadamard product of psd matrices is psd [22]. The other theorem says
that a square matrix

�
is psd iff it has a dominant diagonal, i.e. � oÁo Ì z ~$#� o � o�~ . In our case, since

B
and

B � Ø
are psd (

B � Ø is psd by the Schur theorem), then the following inequalities are true: j�6 A oÁo Ì z ~%#� o A o ~ and
j×6 A ØoÁo Ì z ~%#� o A Øo�~ . Since A o�~ É j , then A Øo�~ É A o�~ and consequently, z ~$#� o A o�~ Ì z ~$#� o A Øo�~ . So, ��6]� A oÁo Ì��z ~%#� o A o�~ Ì z ~$#� o A Øo�~ , as well. This leads to j�6¡� A o$o ý A Øo$o Ì ��z ~$#� o A o ~ ý z ~%#� o A Øo�~ , which states thatf � B ý B � Ø h is psd, which finishes the proof.

(2) Let

 6 diag

f B h . Then,
"�� Ø 6 
±· Û à ·�
 Û ý � B . Let

� Û · 6êk . Consequently,
� Û "	� Ø � 6 � Û 
Ã· Û � à� Û ·�
 Û � ý � � Û B � 6�k à k ý � � Û B �   k , since

B
is psd. Hence,

" � Ø is cnd. As a result,
"

is Euclidean. �
Corollary 3.39 [171] If the matrix

" 6 f ·&· ¹ ý B h J �� is either non-metric or non-Euclidean metric,
then

B
is not psd. Moreover, if

" 6 f · · ¹ ý B h is either non-metric or non-Euclidean metric, then� B ý B J < is not psd.

Theorem 3.40 (Correcting
"

to make it Euclidean) Let
"

be a non-Euclidean symmetric dissim-
ilarity matrix and let

B f " h 6 ý :< 9 " 9
, where

9 6 f ( ý :> ·&· ¹ h . Denote
V &'&)( as the smallest eigenvalue

of
B f "�J < h and

V &('+)
as the largest eigenvalue of the matrix 4 H > ¾ > � B f " J < hý ( > ¾ > ý M B f " h 6 , where

H > ¾ > is the

zero matrix and
( > ¾ > is the identity matrix. Then,

"
can be corrected such that the matrices

" ö : ù*
and

" ö < ù^ are Euclidean [171]4:

(1)
" ö : ù* 6 ÿ "�J < à �,+ f · · ¹ ý ( h � J :+ØÈ< , + Ì ý V &'&)( ,

(2)
" ö < ù^ 6 " à Z f · · ¹ ý ( h , Z Ì V &('*) .

Proof.
(1) Assume that

"
is a non-Euclidean symmetric dissimilarity matrix. We will use Observation 3.33 to prove

that
" t Ù v- is Euclidean. Consider

B/. 6 ý ÙØ f ( ý ÙÝ · · Û h " � Ø f ( ý ÙÝ · · Û h . Let ��6 ÙÝ " � Ø · ý ÙØ Ý � ·�· Û " � Ø · . Then,
after straightforward mathematical operations, we can express

B,.
as follows

B�. 6 ý ÙØ f " � Ø ý � · Û ý · � Û h .
Note that diag

f B . h 6 ý ÙØ ÿ diag
f "	� Ø h ý diag

f � · Û h ý diag
f · � Û h ��6 ý ÙØ ÿ ¶ ý � ý � �i60� . Therefore,

"�� Ø
can be expressed as

"�� Ø 61� · Û à · � Û ý � B2. 6 diag
f B�. h · Û à ·

diag
f B�. h Û ý � B2. . Let

B�. 6 f A o ~ h , then! Øo�~ 6 A oÁo à A ~�~ûý � A o ~ for all 0 � ¼ 6Êj � ����� �+* . From the latter equation follows that adding a constant + to the
diagonal of

B�.
is equivalent to adding �$+ to the off-diagonal elements of

" � Ø .
An eigendecomposition of

B3.
is given as

B�. 6 3 W 3 Û , where
W 6 diag

f V o h consists of the eigenvalues in
a non-increasing order and

3
is an orthogonal matrix of the corresponding eigenvectors. If

B .
is psd, then

all eigenvalues are nonnegative, hence
V547698 Ì k . However, since

"
is non-Euclidean, then

B:.
is not psd by

Theorem 3.32. This means that there exist some negative eigenvalues, thereby
V/47698   k .

Let + Ì ý V;47698 , where + Ï k if
B�.

is not psd (note that + Ì k if
B3.

would be psd). Then,
W à + ( is a matrix

4 There are mistakes (misprints?) in the formulation of this theorem in [171].
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Fig. 3.3: Any non-Euclidean distances can be corrected to become Euclidean. Let

"
be the dissimilarity

matrix from Fig. 3.2. Then, the matrix
" t Ù v- 6 ÿ " � Ø à �,+ f ·&· Û ý ( h � � Ù¯Ú Ø is Euclidean for + Ì ki� O2O and

the matrix
" t Ø vX 6 " à Z f · · Û ý ( h is Euclidean for Z Ì ki� Oij<�NM ; see Theorem 3.40. The plots present

Euclidean embeddings of the corrected distances. Note that by using +q6�ki� O2O and Za6�ki� Oij<�NM , � -dimensional
representations are obtained; see plots (a) and (b), while for +×6AZ 69ki�ZY the number of dimension increases;
see plots (c) and (d).

whose diagonal has nonnegative values. As a result,
B - 476 3 ÿ W à + ( � 3 Û is psd. Note further that

B - 63 W 3 Û à 3 + ( 3 Û 6 B à + 3Í3 Û 6 B . à + ( and by the observation above,
B - 476 B . à + ( 6 "�� Ø à �,+ f ·=· Û ý ( h .

Since
B�.

is psd, then by Observation 3.33,
ÿ "�� Ø à �,+ f · · Û ý ( h � � Ù¯Ú Ø is Euclidean.

(2) Here, the smallest Z Ï k is sought such that
" t Ø vX 6 " à Z f ·=· Û ý ( h is Euclidean. Based on Observation

3.33, this means that Z should be chosen such that the smallest eigenvalue of
B X 6 ý ÙØ 9 f " t Ø vX h � Ø 9 , where9 6 f ( ý ÙÝ · · Û h , is zero. Let [ be the eigenvector of

B X corresponding to the zero eigenvalue. Then, one has:B X [�6�k . Since
f " t Ø vX h � Ø 6 " � Ø à �2Z " à Z Ø f · · Û ý ( h and

9I9 6 9 (which is easy to check), then after simple
transformations, we obtain

ý ÙØ f 9 "�� Ø 9 à �2Z 9 " 9 ý Z Ø 9 h [�6�k . Let \ be a vector such that \�6 ý ÙX "	� Ø 9 [
or, equivalently,

ý Z 9 \�6 9 "�� Ø 9 [ . Then, one gets:
ý Z 9 \ à �2Z 9 " 9 [ ý Z Ø 9 [ 6Êk . After the division byZ (remember that Z Ï k ), the following equation is obtained:

ý 9 \ à � 9 " 9 [ 6£Z 9 [ . Consequently, by the

fact that
9M9 6 9 , one needs to solve the following system of equations

] ý 9 " � Ø 9 f 9 [ h 6\Z f 9 \ hý 9 \ à � 9 " 9 f 9 [ h 6\Z f 9 [ h �
which is equivalent to 4 H Ý � Ý ý 9 "�� Ø 9ý ( Ý � Ý � 9 " 9 6 4 9 \9 [ 6 6"Z"4 9 \9 [ 6 � This means that Z is the largest eigenvalue of

the matrix 4 H Ý � Ý � B f "�� Ø hý ( Ý � Ý ý M B f " h 6 , which finishes the proof. �
Note that both corrections defined above yield different solutions, as illustrated in Fig. 3.3. In the
first case, the correction of dissimilarities is linearly related to the corresponding matrix of inner
products

B¬Ý
(see also Theorem 3.35), such that ^B=Ý 6 B=Ý à + ( . This does not hold in the latter case.

Theorem 3.41 Let
f�I � ! h be a finite metric space with the associated dissimilarity matrix

"
. Con-

sider the assertions [8, 120, 195, 213]:
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(1)
f�I � ! h is ultrametric.

(2)
f�I � ! h possesses the four-point property.

(3)
f�I � ! h is ñ < -embeddable.

(4)
f�I � ! h is ñ : -embeddable.

(5)
f�I � ! h is hypermetric.

(6)
f�I � ! h is of negative type.

(7)
f�I � ! :
ØÈ< h is ñ < -embeddable.

The following implications: (1) ¦ (2)
(3)

¦ (4) ¦ (5) ¦ (6) ¦ (7) hold.

Proof.
(1) ¦ (2) Ultrametric space is realized by an ultrametric tree, which is additive by Def. 3.11. Hence, the four
point property is fulfilled.

(1) ¦ (3) See [243] for a proof.

(2) ¦ (4) See Theorem 3.13 and also [8].

(3) ¦ (4) See [44, 75] for proofs.

(4) ¦ (5) Let
I 6�8 ~ Ù � ~ Ø � ����� � ~UÝ ? . Based on Theorem 3.9, it suffices to show that every cut metric,

Def. 3.8, satisfies the hypermetric inequalities, Def. 3.10. Let � and � .
476 I � � define the cut. Then, the cut

metric
QN_ f ~ o%� ~ ~ h equals j if

� � � 8 ~ oï� ~ ~ ? � 6tj and k , otherwise. Let
� x � Ý such that z Ýo � Ù � o 6¢j . Then

z Ýo � Ù z Ý~ � Ù � o � ~uQN_ f ~ oï� ~ ~ h 6ã� z o l _ z ~$#l _ � o � ~ 6ã� f z o l _ � o h f z ~%#l _ � ~ h 6ã� f z o l _ � o h f j ý z o l _ � o h¨É k .
The latter inequality holds, since z o l _ � o is an integer and, therefore, either both z o l _ � o and j ý z o l _ � o
have opposite signs or one of them is zero. Hence, the cut metric is hypermetric.

(5) ¦ (6) Let
"

be hypermetric. Then, by Def. 3.10,
� Û " � É k for

� x  Ý such that
� Û · 6åj . Let �yx � Ý be

any vector. Then,
� 6 f ( ý · � Û h{�°x � Ý . Moreover, it is easy to check that

� Û · 6Ek . Hence, by Def. 3.10,
"

is of negative type.

(6) ¦ (7) There is an equivalence of
!

being of negative type and
" � Ø being cnd. This implication is true

based on Theorem 3.31. �
Many dissimilarity measures are constructed by combining the measure applied to all the at-
tribute separately. Given � attributes, the dissimilarity can be expressed in the form of

! f ~ � � h 6
z �w | : # f ~ w � � w h , where

# f ~ w � ~ w h 6�k and
# f ~ w � � w h 6 # f � w � ~ w h¨Ì k for all � . Then, we have:

Corollary 3.42 Let ~ � � x � � . Then
! f ~ � � h 6 z �w | : # f ~ w � � w h is metric, iff

#
is metric in � .

Proof. ¦ Since
#

is nonnegative, symmetric and
# fBA � A h 6 k for

A x � , then the axioms of reflexivity,
symmetry and definiteness are fulfilled. Since

!
is metric, then

! f ~ � � h à ! f � �
� h¡Ì ! f ~ �
� h for all ~ � � �
� .
Consider ~ � � �
� such that ~ Õ 6 d k , � Õ 6 d z , � Õ 6 da` for all � and some constants

d k �+d z
and

dN`
. The triangle

inequality for
!

reduces to
# f ~ . � � . h à # f � . �
� . h¨Ì # f ~ . �
� . h , hence

#
is metric.� Trivial. �

Theorem 3.43
! f ~ � � h 6 z �w | : # f ~ w � � w h is metric, iff _ f ~ � � h 6 f z �w | : ÿ # f ~ w � � w h � < h :+ØÈ< is metric.

Proof. See [171] for a proof.

Remark } 3.44 Direct product spaces allow us for a construction of a new space by combining two
(or more) spaces; see also section 3.1.4. Given a number of square dissimilarity matrices, a new
dissimilarity matrix can be created by applying some element-wise operator, such as sum or max,
to them. For instance,

" 6 " : à " < . In the light of section 3.1.4, this means that finite generalized
metric spaces are combined into a new one. The spaces are assumed to be defined on the same finite
set

I
, yet they are distinguished by the dissimilarities measures used. Now, the consequences from

Theorems 3.23 and 3.24 and the mathematical induction are:
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S The max and sum operators preserve the metric properties.S A square dissimilarity matrix, resulting from the summation of dissimilarity matrices pre-
serves the ñ : -embeddability, hypermetric and negative type properties.S If
"�J < : and

"�J < < are of negative type, then
f "�J < : à "�J < <Çh J :
Ø�< is ñ < -embeddable. This follows

from the preservation of the negative type property by summation and Theorem 3.41(7).

3.2.1 Relations between square distances and inner products

Assume
*

vectors 8 ��: � � < � ����� � � >¬? are given in a Euclidean space. Based on the definitions of
a Euclidean distance and an inner product, one has

! < f � / � � º±h 6 é �@/ ý �&º � �@/ ý �&º ë . Therefore,
! < f � / � � º±h 6 é �@/ � �@/ ë@à é � º � �&º ë ý � é � / � � º ë 6 ! < f �@/ � ¶ h à ! < f �&º � ¶ h ý � é � / � �&º ë � (3.2)

where
¶

is the origin in this space. Consequently, the inner product
é �³/ � � º ë can be expressed as:

é � / � � º ë 6 ý j� S ! < f �@/ � �&º±h ý ! < f � / � ¶ h ý ! < f �=º � ¶ h T � (3.3)

Based on well known properties of inner products and formula (3.3), the square distance of ��/ to the
mean of the configuration,

! < f �@/ � �;h , can be expressed by distances as follows (see also [152, 398]):
! < f � / � � h 6 �ð� � / ý � �ð� < 6 é � / ý � � � / ý � ë 6 é � / � � / ë@à é � � � ë ý � é � / � � ë

6 ! < f � / � ¶ h à j* <
>3
¿ | :

>3s | : é � ¿ � � s ë ý �* >3s | : é � / � � s ë
6 ! < f � / � ¶ h à j� * <

>3
¿¨÷ s | : S ! < f � ¿ � ¶ h à ! < f � s � ¶ h ý ! < f � ¿ � � s h T

ý j*
>3s | : S ! < f �@/ � ¶ h à ! < f � s � ¶ h ý ! < f � / � � s h T

6 j*
>3s | : ! < f � / � � s h ý j� * <

>3
¿{÷ s | : ! < f � ¿ � � s h 6 ! </ è ý j� ! < è è �

(3.4)

where, abusing somewhat the notation,
! </ è stands for the mean computed over the 0 -th row of the

matrix
"�J <

and
! < è�è is the overall mean.

Without loss of generality, let us assume that the mean vector coincides with the origin, i.e. � 6 ¶ .
This implies that

! < f �@/ � ¶ h 6 ! < f �@/ � �;h . By applying this into formula (3.3) and by plugging (3.4),
one gets the following expression for all 0 � ¼ 65j � � � ����� �+* :

é � / � � º ë 6 ý j�cbd ! < f � / � � º h ý j*
>3s | : ! < f � / � � s h ý j*

>3s | : ! < f � s � � º h à j* <
>3

¿¨÷ s | : ! < f � ¿ � � s hfeg � (3.5)

Let
I x � > ¾

«
be a representation of all vectors ( �@¹/ is the 0 -th row of

I
) and let

�
be the matrix of

inner products, i.e.
� 6 I I ¹ , such that

$ /7º 6 é � / � � º ë . Then, formula (3.5) simplifies to

$ /7º 6 ý j� f ! </7º ý ! </ è ý ! < è º à ! < è�è h � (3.6)

Let
" J <

be an
* ��*

square Euclidean distance matrix. By using the following substitutions! </ è 6 :> "�J < f � / � î h · ¹ ,
! < è º 6 :> "�J < fïî � � º±h ¹ · ¹ and

! < è�è 6 :> � · "�J < · ¹ and after some straightforward
mathematical operations,

�
is determined as

� 6 ý j� 9 " J < 9 � where
9 6 ( ý j* · · ¹ � (3.7)
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Alternatively, by formula (3.2),
" J <

can be defined by the Gram matrix
�

as

" J < 6 l · ¹ à · l ¹ ý � � � (3.8)

where
l

is a vector of the diagonal elements of
�

, i.e.
l 6 diag

f � h . In this way, an explicit linear
relation between the Gram matrix

�
and the matrix of square Euclidean distances

" J <
is expressed.

Although the vectors
I

are assumed to have a zero mean, this is not essential, since the configuration
can be shifted such that the origin coincides with any other vector lying in a convex hull of

I
. This

means that instead of � 476 I ¹ :> · 6 ¶ , we require that
I ¹ 
 6 ¶ with 
 ¹ · 6Ûj . As a result,

9
from

formula (3.7) becomes
9 6 ( ý ·h
 ¹ , so in a bottom-up way, we reached Theorems 3.32 and 3.35, and

Observation 3.34.

Note that precisely the same reasoning holds for a pseudo-Euclidean space ��ö ¿{÷ øÈù , since the linear
formulation between square distances and inner products in both spaces is the same. Therefore, for-
mula (3.5) is valid for a pseudo-Euclidean space, where instead of

éïî � î ë , an indefinite inner productéïî � î ë ü defined by (2.1) is meant and instead of the Euclidean distance, a pseudo-Euclidean distance
(2.2) is used. This leads to the conclusion that formulas (3.7) and (3.8) remain true for a pseudo-
Euclidean space, as well. More discussion follows in section 3.3.3.

3.3 Linear embeddings of dissimilarities
Dissimilarity data can be embedded into a Euclidean space in a number of ways. Since we are inter-
ested in a faithful configuration, an embedding is found such that the distances are preserved as well
as possible. Here, linear embeddings are considered, first isometric ones and then their approximate
variants. Since it is not always possible to isometrically embed the data into a Euclidean space, a
pseudo-Euclidean space will be considered. From such a perspective, any finite premetric space can
be isometrically embedded into a pseudo-Euclidean space.

3.3.1 Euclidean embedding

Given a set 15658 . : � . < � ����� � .&>@? of
*

objects5 and a Euclidean distance matrix
" 476 "gf 1 � 1 h x � > ¾ >

between them, a distance preserving linear mapping into a Euclidean space can be found. Such a
projection is known as classical scaling (CS) [37, 72, 425]. This means that the dimensionality)

,
) É * and a configuration

I x � > ¾
«

have to be determined such that the (squared) Euclidean
distances are preserved. Note that having found one configuration, another one can be created by a
rotation or a translation. Without loss of generality, the mapping is constructed such that the origin
coincides with the mean of the configuration

I
.

To define
I

, the relations between the Euclidean distances and inner products are used. We know
from section 3.2.1 that

" J < 6 l · ¹ à · l ¹ ý � � , where
�

is the Gram matrix of the underlying
configuration

I
,
� 6 IEI ¹ , and

l 6 diag
f � h . � can also be expressed as

� 6 ý :< 9 "�J < 9 , where
9

is
the centering matrix

9 6 ( ý :> ·&· ¹ x � > ¾ > .
9

projects6 the data such that the final configuration has
a zero mean. Then, the factorization of

�
by its eigendecomposition can be found as

� 6 3 W 3 ¹ � (3.9)

5 The set i is a collection of objects. The objects may not be yet represented for the use of computer algorithms,
therefore, you may think of i as of an index of objects. � , on the contrary, is a representation of the objects from i in
a Euclidean (pseudo-Euclidean) space � Ç . Hence, it can be described by the vectors ±>j � �kj � ���������@jæ�8¹ .6 A more general projection can be achieved imposing that a weighted mean of � becomes zero; see also section
3.2.1. Then, lñ«@±'+nmpo�� , where o is such that o��:mM«5¸ and ��«�+ �� l'< � � læ� . By choosing a proper o , any arbitrary
point of � can be projected at the origin, as well.
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where
W

is a diagonal matrix whose diagonal consists of nonnegative eigenvalues (
�

is positive
definite by Theorem 3.32) ranked in descending order and followed by the zero values, and

3
is an

orthogonal matrix of the corresponding eigenvectors; see Theorem 3.35. As a matrix of inner prod-
ucts,

�
can be expressed as

� 6 I9I ¹ . Hence, for
)

(
) É * ) non-zero eigenvalues, a

)
-dimensional

representation
I

can be then determined as
I 6 3 « W :
Ø�<« �

where
3 « x � > ¾

« �ûW :+ØÈ<« x �
« ¾ « �

(3.10)

where
3 «

is the matrix of the
)

leading eigenvectors (i.e. corresponding to the largest eigenvalues)
and

W :+ØÈ<« contains the square roots of the corresponding eigenvalues. This is the result of classical
scaling. Note that

I
determined in this way is unique up to rotation (the centroid is now fixed),

since for any orthogonal matrix
2

,
I9I ¹ 6 f�I92 h f�Ig2 h ¹ . Also the features of

I
are uncorrelated,

since the columns of
3 «

are orthonormal. The estimated covariance matrix of
I

becomes then
 6 j* ý j

I ¹ I 6 j* ý j
W :
Ø�<« 3 ¹ « 3 « W :+ØÈ<« 6 j* ý j

W « � (3.11)

This means that the vector configuration
I

obtained in this way is equivalent to a Principal Compo-
nent Analysis (PCA) result [97, 138]7. Moreover, the eigenvalues of

�
play a key role here as they

linearly scale the features and by this they decide which of them are significant and which not. Note
that such an uncorrelated vector representation is obtained for

9 6 f ( ý :> ·&· ¹qh , which corresponds
to


 6 :> · . Only then the vector mean of
I

is set to the origin. This justifies why this particular



is in favor. Note also that
�

can be seen as a reproducing kernel for the Euclidean space �
«

; see
also section 2.3.1. This also means that the embedding procedure can be performed directly starting
from a positive definite matrix

�
, hence a kernel, which can be treated as a similarity matrix.

3.3.2 Correction of non-Euclidean dissimilarities

The matrix of inner products,
� 6 ý :< 9 " J < 9 , is positive (semi)definite if the dissimilarity matrix" x � > ¾ > is Euclidean; see Theorem 3.32 and Observation 3.33. Therefore, a finite quasimetric

space described by a non-Euclidean
"

has a Gram matrix
�

which is not psd. Since
�

has negative
eigenvalues, then a Euclidean representation

I
cannot be constructed by formula (3.10) as it relies

on the square roots of the eigenvalues. However,
"

can be corrected such that the corresponding
�

becomes psd. Some possible approaches to address this issue are:S Only . positive eigenvalues are taken into account, resulting in a . -dimensional Euclidean
configuration

I 6 3 ¿ W :
Ø�<¿ (.Í  )
). Since the actual dissimilarities

"
are nonnegative, the

magnitude of the smallest negative eigenvalue of
�

is smaller than the largest positive one.
Also the sum of the positive eigenvalues is larger than the sum of magnitudes of the negative
ones. Hence, after neglecting the negative contributions, the resulting Euclidean distances are
overestimated. This might be a justified approach if the negative eigenvalues are relatively
small with respect to the positive ones; see section 3.3.6, where the issue of noise influence is
discussed. We argue that the distances which are directly measured may be noisy and, there-
fore, not perfectly Euclidean. This will result in small negative eigenvalues of

�
. Therefore,

by disregarding them, noise is diminished.
7 Assume a configuration � in a Euclidean space � Ç and the Euclidean distance matrix </£³�Û�¯�o� . Let the mean of� lie at the origin. Then, the PCA projection based on the estimated covariance matrix of � , ÞJq7�8£©�o�U« �� N � �@�x� ,

gives the classical scaling result (3.10). To observe it, let ( r Ä �ts Ä ) be an eigen-pair of �$«��$��� (computed of course as+ �� l;< � � l ). Then, �$���us Ä «�r Ä s Ä and further by the multiplication by �� N � �@� , one obtains �� N � £³�@�U�o�x£©�@�;s Ä ��«vxw� N � £³� � s Ä � . It is straightforward to check that the vectors szy;{}|Ä ´�«�� � s Ä�~"� r Ä , i=1,2,...,n, are orthonormal. This
means that (

v w� N � �@s y;{}|Ä ) is an eigen-pair of Þ�q7�8£©�o� . The solution of the PCA projection, j y;{z|Ä is given as j y;{}|Ä «��s y;{z|Ä «o�/�@�;s Ä�~"� r Ä , which is equivalent to j yz{z|Ä « � r Ä s Ä . In the matrix notation, � y;{z| «	� Ç � � Ç , which is
the classical scaling result.
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Fig. 3.4: Eigenvalues resulting from the embedding of a j�k£k � j�k£k modified Hausdorff dissimilarity repre-
sentation

"
of the NIST-38 digit data (see section A) and the corrected representations

" Ø - and
" X . The

eigenvalues are sorted with respect to their magnitudes. Remember that +¡476 � V ä o Ý � , where
V ä o Ý is the small-

est eigenvalue. Adding �$+ to the off-diagonal elements of
" � Ø is equivalent to adding + to all the original

eigenvalues (hence the smallest one becomes now zero). Eigenvectors remain the same. The relation between
original eigenvalues and eigenvalues of

" X is nonlinear.S There exists a positive constant + Ì ý V &'&)( , where
V &'&)( is the smallest (negative) eigenvalue of�

, such that
" < * 6 ÿ "�J < à �,+ f ·=· ¹ ý ( h � J :+ØÈ< is Euclidean; see Theorem 3.40. This means that

the corresponding
� * is pd. In practice, the eigenvectors of

�
and

� * are identical, but the
value + is added to the non-zero eigenvalues, giving rise to a new diagonal eigenvalue matrixW * 476 W « à + ( . This is equivalent to ’regularizing’ the covariance matrix of our configurationI

by
 6 :> � : f W « à + ( h and changing

I
respectively. Note that the original dissimilarities

are distorted significantly for a large + .S There exists a positive constant Z Ì V &('*) , where
V &('*)

is defined in Theorem 3.40, such that" ^�6 " à Z f ·=· ¹ ý ( h is Euclidean. After the correction of
"

, the corresponding Gram matrix� ^ yields eigenvalues and eigenvectors which are different than those of
�

.S There exists a parameter . such that the matrix
" ¿ 6 f $ f ! /7º � .@h+h is Euclidean for

$
defined as

in Def. 3.20; see also Theorem 3.22. In practice, . can be determined only by trial-and-error,
although .�  j , in general. In principle, an indication how . should be chosen is given by j ý � ,
where � is the ratio of the absolute value of the smallest negative eigenvalue to the largest
positive one. An algorithm to determine . has also been proposed in [70].

These approaches transform the original dissimilarity data such that a Euclidean configuration can
be found. This is especially useful when the negative eigenvalues are relatively small in magnitude,
which suggests that the original distance measure is close to Euclidean. In such cases, the negative
eigenvalues can be interpreted as noise contributions. If the negative eigenvalues are relatively large
(in magnitude), then by neglecting them, important information might have been neglected; see
also Fig. 3.4. There is still an open question referring to the consequences on the learning tasks
of transforming the considered problem into a Euclidean one, either by neglecting the negative
eigenvalues or by directly enlarging

" J <
by a constant.

In general, a hollow dissimilarity matrix
"

, Def. 2.38, can be corrected to have the Euclidean be-
havior. First, to make it definite, any zero dissimilarity between two different objects should change
into a small fixed value, depending on the overall distances, e.g. ki�òk�j . Next, to make it symmetric, an
operation like averaging of

! /7º and
! ºÈ/ or taking their maximum value should be performed. Since"

has become quasimetric, any of the corrections described above will make it Euclidean.

It is also possible that the corrections applied are less than required for guaranteeing the Euclidean
behavior (i.e. by adding a constant to the off-diagonal elements of

"9J <
smaller than the required

one). In such cases, the measure is simply made ’more’ Euclidean (hence, also ’more’ metric),
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since the influence of negative eigenvalues will become smaller after the discussed transformations.

3.3.3 Pseudo-Euclidean embedding

For cases where a Euclidean space is not ’large enough’ to embed the dissimilarity data (this is due
negative eigenvalues of the corresponding Gram matrix), Goldfarb [151, 152] proposed to embed

"
into a pseudo-Euclidean space. Such a procedure can be applied to any premetric finite representa-
tion. A pseudo-Euclidean space is a direct orthogonal decomposition of two Euclidean spaces, for
which the inner product operation is positive definite on the first space and negative definite on the
second one; see section 2.4 for details. To determine the embedding, the same reasoning as in the
Euclidean case is applied here. The essential difference refers to the notion of an inner product and
a distance. Now

� 6 ý :< 9 " J < 9 is the Gram matrix, but expressed as:� 6 I l ¿Çø I ¹ � (3.12)

where
l ¿Çø is the fundamental symmetry matrix in a pseudo-Euclidean space. Following [152], we

can write (compare also formula 3.9):

I l ¿Çø I ¹ 6 � 6 3 W 3 ¹ 6 3 � W � :+ØÈ< 4 l ¿�ø k 6 � W � :+ØÈ< 3 ¹ � where
l ¿Çø 6 4 ( ¿ ¾ ¿ kk ý ( ø ¾ ø 6 (3.13)

and . à ú 6 ) . W is now based on . positive and
ú

negative eigenvalues, presented in the following
order: first the positive eigenvalues with decreasing values, then the negative ones with decreasing
magnitudes followed by zeros.

I
can now be expressed in a pseudo-Euclidean space �

«
6�� ö ¿¨÷ øÈù of

the signature
f . �
ú h [151] as follows: I 6 3 « � W « � :
ØÈ< � (3.14)

where only
)

non-zero eigenvalues in
W «

are taken into account. (Otherwise, additional zero eigen-
values would describe

I
in a finite indefinite inner product space, but degenerate; see also sec-

tion 2.4). The estimated pseudo-Euclidean covariance matrix is given as [152]:
 6 j* ý j

I ¹ I l ¿Çø 6 j* ý j
� W « � l ¿Çø 6 j) ý j

W « �
(3.15)

Hence
I

is an uncorrelated representation. Although
 

is not pd in a Euclidean sense, it is k-pd,
hence pd in a pseudo-Euclidean sense; see Def. 2.63. This means that

I
is a result of a mapping

in the spirit of the PCA projection and the whole embedding procedure can also be interpreted as
a kernel-PCA [345, 351] approach, where the kernel

�
is a reproducing kernel for the pseudo-

Euclidean feature space; see also section 2.4.1. Note that, similarly to the Euclidean space, such an
uncorrelated vector representation is obtained for

9 6 f ( ý :> ·&· ¹ h , i.e.

 6 :> · only.

Computing square distances in a pseudo-Euclidean space � ö ¿¨÷ ø ù can be interpreted as computing
the square Euclidean distance in a ’positive’ space � ¿ and subtracting the square Euclidean dis-
tance found in a ’negative’ space � ø . The distances computed only in the ’positive’ space are
overestimated, therefore, the purpose of the ’negative’ space is to correct them, i.e. make them be
non-Euclidean. Since the pseudo-Euclidean spaces that we are going to consider will result from
the embedding process of nonnegative dissimilarities, the contribution of the ’negative’ space � ø to
the overall distances is smaller than of the space � ¿ . In such a case, due to the construction of

I
, in

� ø , I takes values (much) smaller than in space � ¿ . Practice confirms that many summation-based
measures are close to the Euclidean distance, giving rise to relatively small negative eigenvalues in
the embedding. On the contrary, measures based on operations like minimum or maximum might
be completely different.

Note that the proposed embedding is very general. Any symmetric dissimilarity matrix can be em-
bedded in a pseudo-Euclidean space. In case of asymmetric matrices, they first need to be corrected
to the symmetric ones.
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3.3.4 Generalized average variance

In an embedded pseudo-Euclidean space
õ

, the generalized average variance of the configurationI
with the vectors 8 � : � � < � ����� � �@>@? can be defined using the trace of the covariance matrix of

I
,

i.e. the sum of variances, as follows:

�u� f�I h 6 j*
>3
º�| :

�ð� � º �ð� <ü ý �ð� � �ð� <ü (3.16)

Remember that
�ð� � �ð� ü 6 éïî � î ë+ü . Since

I
reflects the same geometry as imposed by the square distance

matrix
" J < f 1 � 1 h , based on the set 1E698 . : � . < � ����� � .&>@? , it is possible to express �z� f�I h only in terms

of such square distances. Formally, one has:

Corollary 3.45 Given the dissimilarity matrix
" 476 "gf 1 � 1 h , the generalized average variance of

the embedded pseudo-Euclidean configuration
I

is given as the average square dissimilarity:

� � f D h 6 j� * <
>3
º�| :

>3
« | :

! < f .¨º � . « h (3.17)

Proof. We will show now the equivalence of (3.17) and (3.16) by using equivalent transformations. Making
use of formula (3.8) and the facts that

· Û · 6 *
, and

· Û l 6 tr
f � h 6 z Ý~ � Ù �ð� � ~ �ð� ØI , one gets: � Ì f D h 6ÙØ Ý � z Ý~ � Ù z Ý µ � Ù ! Ø f . ~£� . µ h 6 ÙØ Ý � · Û " � Ø · 6 ÙØ Ý � ÿ · Û l · Û · à · Û · l Û · ý � · Û � · �u6 ÙØ Ý · Û l à ÙØ Ý l Û · ýÙÝ � · Û � · 6 ÙÝ · Û l ý ÙÝ � · Û � · 6 ÙÝ z Ý~ � Ù �ð� � ~ �ð� ØI ý �ð� � �ð� ØI � since

· Û � · 6 · Û I l ÜKJ I Û · 6 � Û l ÜKJ � 6 �ð� � �ð� ØI ,
for

l ÜKJ
being the matrix of inner products in the space

õ
. Since

l ÜKJ 6 ( for the Euclidean space, then the
above reasoning remains valid for a Euclidean space, i.e. if

"
is Euclidean. �

3.3.5 Projecting new points to an embedded space

Let
I x � > ¾

«
,
) 6 . à ú , be a configuration in a pseudo-Euclidean space �

«
6å� ö ¿¨÷ øÈù that preserves

all pairwise distances expressed by
"5f 1 � 1 h . (A Euclidean case is included for

ú 6 k .) Given a
matrix

" > x �  ¾ > , expressing dissimilarities between C new objects and all objects of the set 1 , new
vectors can be projected to an embedded space. Let

I > be the configuration of new objects to be
determined. First, the cross-Gram matrix

� > relating all new objects to the objects from 1 should
be found.

Corollary 3.46 Let
"5f 1 � 1 h be isometrically embedded into

f�I � �
« h , where �

«
4765� ö ¿¨÷ ø ù h . Let

" >
be a dissimilarity matrix between C novel objects and the objects of 1 . The cross-Gram matrix

� >
of indefinite inner products is given as

� > 6 ý :< ÿ " J <> 9 ý ç " J < 9 � , where
9 6 f ( ý :> ·=· ¹�h¨x � > ¾ > andç�6 : · · ¹ x �  ¾ > .

Proof. Assume that 8 � Ù �+� Ø � ����� �+�:� ? is a vector representation of new objects projected into the space � µ .
It follows from formula (3.3) that the inner product between a new vector and the original points is given byé � o � � ~ ë I 6 ý ÙØ ÿ ! ØÝ f � o � � ~ h ý ! ØÝ f � o � ¶ h ý ! Ø f � ~±� ¶ h � . Making use of formula (3.4) and the fact that the mean
coincides with the origin, the indefinite inner product becomes then

é � o � � ~ ë I 6 ý j� ÿ ! ØÝ f � o � � ~ h ý j*
Ý3 u � Ù ! ØÝ f � o � � u h ý j*

Ý3 u � Ù ! Ø f � u � � ~ h à j* Ø
Ý3Ü G u � Ù ! Ø f � Ü � � u h �

6 ý j� f ! ØÝ f � o � � ~ h ý f ! ØÝ h oN� ý ! Ø �$~ à ! Ø �9� h � (3.18)

where,
f ! ØÝ h o�� stands for the mean computed on the 0 -th row of the dissimilarity matrix

"�� ØÝ ,
! Ø �Á~ stands for

the mean computed over the ¼ -th row of the matrix
" � Ø and

! Ø �9� is the overall mean.
Let

� Ý x � � � Ý be the matrix of inner products between
C

new vectors and
*

original ones. Using elementary
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Fig. 3.5: By adding one point to the set 1 , the dimensionality
)

of the vector representation of
"5f 1 � 1 h in

a pseudo-Euclidean space might increase by more than one. The points of 1ê6 8 ( � 9 � , � Ó ? lie on a line,
but the point

\
does not (the leftmost plot). The embedding of

"5f 1 � 1 h reveals a 1D configuration (third
plot). After enlarging 1 by

\
, a pseudo-Euclidean configuration in �

t Ø G Ù v is obtained (the rightmost plot,
where the z-axis describes the ’negative’ contribution), increasing the dimensionality by � . The circles in the
rightmost plot correspond to the points I – L projected into a plane, parallel to the xy-plane, on which M lies.

matrix operations, formula (3.18) can be rewritten as:
� Ý 6 ý ÙØ f "�� ØÝ 9 ý ç "�� Ø 9 h , where

9
is the centering

matrix and ç�6 Ù � · · Û x � � � Ý . �
Consequently, the cross-Gram matrix

� > becomes now
� > 6 ý :< f " J <> 9 ý ç " J < 9 h . On the other

hand,
� > is the matrix of indefinite inner products and, thereby, it can be expressed as:

� > 6 I > l ¿Çø I ¹ with
l ¿Çø 6����� ���

( x �
« ¾ « �

if �
«

is Euclidean.� ( ¿ ¾ ¿ k
k ý ( ø ¾ øN� x � « ¾ « � if �

«
is pseudo-Euclidean.

(3.19)

Therefore,
I > can be found as the indefinite least-square solution to

I > l ¿Çø I ¹ 6 � > , i.e.
I > 6� > If�I ¹ I h � : l ¿�ø ; see Theorem 2.95, Observation 2.96 and Corollary 2.97 for justification.

Knowing that
I ¹ I 6 � W � and

I 6 3 « � W « � :
Ø�< , I > is alternatively expressed as

I > 6 � > I � W � � : l ¿Çø or
I > 6 � > 3 « � W « � � �� l ¿Çø � (3.20)

Hence, assuming that
9 ý ç " J < 9 is pre-computed, the computational complexity of determine the

cross-Gram values of
� > for a single object is � f * h . Since

I � W � � : l ¿Çø can be pre-computed as
well, then � f * ) h operations are required for a projection of a new object.

3.3.6 Reduction of dimensionality

By enlarging the set 1 by one object, in practice, one point is added to a finite pseudo-Euclidean
space, but the dimensionality

)
of the vector representation resulting from the enlarged

"
might

increase by more than one, contrary to the Euclidean case [152]; see Fig. 3.5 for an illustration. This
means that both outliers and noise can significantly contribute to the resulting dimensionality

)
. In

practice, when new points are added, they are projected into the space determined by the starting
configuration

I
. Therefore, the reliability of

I
, i.e. whether

"gf 1 � 1 h is sufficiently well sampled,
plays an essential role in the process of representing new data, and consequently, the performance
of learning algorithms applied further on.

Originally, the pseudo-Euclidean configuration
I

is found such that the distances are preserved
exactly and the dimensionality of

I
is determined by the number of non-zero eigenvalues of

�
.

However, there might be many relatively small non-zero eigenvalues as compared to the large ones.
Knowing that dissimilarities are noisy measurements, the small eigenvalues correspond to non-
significant directions of

I
. In such a framework, neglecting small eigenvalues stands for reducing
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Fig. 3.6: Noise influence on the eigenvalues of
�

. The first, leftmost plot presents a theoretical banana
data of j��Çk points, for which the Euclidean distance matrix

"
has been computed. The second plot shows

the embedding of
"

into a 2D space (note that the retrieved configuration is exact up to a rotation). The
third plot presents the projection into the first � dimensions of the j�Y�� D data obtained via embedding of the
distorted distances ^" , (where ^! o�~ 6 ! o�~ à � o�~ for 0�Ë6 ¼ and � o�~'� - f k � j h ) (taking care that ,$Ç³È ok#� ~ � � o ~ �  ,/Ç³È ok#� ~ ! o�~ , i.e. no negative distances arise), which become non-Euclidean. The average distortion is ki� L ,
while the average Euclidean distance is !{�ZY! . The rightmost plot presents the projection into the first �
dimensions of the 4D data obtained via embedding of

"gf ^1 h , where ^1 consists of the theoretical data 1 to
which � noisy features were added giving rise to the average distortion of ki�Z� . Note that the first � largest
eigenvalues, as presented in the plots, are relatively the same for the non-distorted as well as distorted data,
which practically gives the same results in all the cases. Therefore, by neglecting relatively small eigenvalues,
noise is diminished.

noise contribution (see Fig.3.6 for an illustration) or for determining a representation with the in-
trinsic dimension. In both cases, the distances will be preserved approximately. One has, however,
a control over the dimensionality of the reduced vector representation. Basically, the dimensional-
ity reduction can be achieved by the orthogonal projection, governed by the PCA. The particular
construction of

I 6 3 « � W « � :+ØÈ< and the fact that
I

is an uncorrelated vector representation, i.e. the
covariance matrix

 6 :> � : W « is a diagonal matrix, stand for
I

being given in the form of the orthog-
onal PCA projection; see formula (3.15). It means that the reduction of dimensionality is performed
in a simple way by neglecting directions corresponding to eigenvalues small in magnitude. The re-
duced representation is then determined by . b significant positive eigenvalues and

ú b
significant (in

magnitude) negative eigenvalues8. Therefore,
I w d ��x � > ¾ � , �   ) , is found as

I w d � 6 3 � � W � � :+ØÈ< ,
where � 6 . b à ú b and

W
� is a diagonal matrix of first, decreasing positive eigenvalues and then

increasing negative eigenvalues, and
3
� is the matrix of the corresponding eigenvectors.

3.3.7 Reduction of complexity

Reduction of dimensionality described above is useful for data representation, since both noise
and non-significant information are neglected. Still, the reduced configuration in �a��6t� ö ¿

a ÷ ø a ù
is

determined by all
*

objects. Yet, for the definition of an � -dimensional pseudo-Euclidean space,
only � à j objects are in principle necessary: one being the origin and � objects corresponding to
the basis vectors. The question now arises how, given

I w d � w.r.t. to the principal axes, to choose a
reduced set 1 w d � of � 6�� à j (or more) objects such that the projection defined by 1 w d � gives a good
approximation of the configuration

I w d � . To avoid an intractable search over all possible subsets,
an error measure between the reduced and approximated configurations can be defined and then
minimized, e.g. in a greedy approach. Such criteria are proposed and analyzed in an experimental
study in section 9.3.

8 Remember that � is an uncorrelated representation only if the origin coincides with the mean of � , i.e. obtained
by using the centering matrix l`«�£�±t+�m%o��r� with op« �� m in formula (3.7); see also Theorem 3.32. If some other o is
used, then the PCA should be performed in a pseudo-Euclidean space.
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3.3.8 Spherical embeddings

Nonlinear projection methods can rely on the geodesic distance, i.e. the shortest path between two
points on a manifold; see e.g. [241, 242, 393]. Euclidean distance is the geodesic distance on
a hyperplane. Since there exists a natural connection between the spherical geodesic distance and
a linear Euclidean embedding, also spherical embeddings are here considered.

Def. 3.47 (Spherical distance) Let
v �w Ð � � p : be an � -dimensional spherical space, such that

z � p :/}| :�~ </ 6 � < . We assume that the center of the sphere lies at the origin. The spherical distance! s between two vectors � �+� x v �w is
! s f � �+� h 6��M.$�J�N� º ¿ � � �w � . This is the geodesic distance on the

sphere, which coincides with the angle between the vectors.

Given an
* �³*

dissimilarity matrix
"

and a positive � , a question arises whether there exist points:
8 � : � � < � ����� � � > ? on a sphere

v �w such that the spherical distance
! s f �@/ � �&º±h 6 ! /7º .

Theorem 3.48 (Schoenberg) Let
"

be an
* �³*

dissimilarity matrix.
"

can be embedded into a
spherical space

v �w for a positive � iff
! /7º�É¡  � for all 0 � ¼ 6Ûj � � � ����� �+* and

� 6 f � º ¿ f ! /7º ��� h+h is psd
[342]. Then the smallest � such that

"
embeds into a spherical space

v �w is � 6 rank
f � h ý j . The

solution is undefined for rank
f � h 65j .

Proof. Although the proof can be found in [342], we present it here since a problem of the embedding of"
into the spherical space

v äÕ can be transformed into the problem of embedding of some matrix into a
Euclidean space. The requirement of

! o�~ É¢  � is obvious, since no distance on the sphere with the radius
� can exceed   � . Suppose that 8 � Ù � ����� � � Ý ? lie on a sphere

v äÕ . Let � � be the center of
v äÕ . Then, all � o

form an
*

-simplex in � ä a Ù , whose edges have the lengths:9 _ � o 476 � � � o 69� and _ o ~ 476 � o � ~ 6Õ� � f ¿+Ç³È Ì � �Ø Õ h
for 0 � ¼ 6 6 j � ����� �+* . Consequently, we have to prove that the distance matrix

"	£ 6 f _ o�~ h is Euclidean (or
equivalently, that

" £
embeds into a Euclidean space). Based on Theorems 3.32 and 3.35,

" £
is Euclidean ifB 6 ý ÙØ f ( ý ·�
 Û h " � Ø£ f ( ý 
Ã· Û h for


 Û · 6Íj is psd. Since in our case, � � should become the origin (i.e. the
center of the sphere), then we choose


 6 ¸ Ù . Since
" � Ø£ ¸ Ù 6Î� Ø f · ý ¸ Ù h , then after straightforward basic

transformations we get
B 6í� Ø f+f · ý ¸ Ù h · Û ý ÙØ "	� Ø£ h . Since � � 476 ¶ , it is, therefore, sufficient to consider a

matrix
�

which is
B

without the first row and the first column. Then,
� 6t� Ø f · · Û ý ��¿+Ç©È Ø f ! o�~ � f ��� h+h 6

� Ø f � º ¿ f ! o�~ ��� h+h . The condition that
B

is psd, imposes also that
�

should be psd, which finishes the proof. �
Consequently, we have also proved the following:

Theorem 3.49 An
* ��*

dissimilarity matrix
"

can be embedded into a spherical space iff
"¥¤ 6f _Ã/7º±h , 0 � ¼ 6�k � j � ����� �+* , with _ r º 6�� and _{/7º 6ã� � f ¿+Ç³È f ! /7º � f ��� h+h , 0 65j � ����� * is Euclidean.

Note that the embedded points are found by applying Theorem 3.35 (with 
 6 ¸ : ) to
" ¤

.

Corollary 3.50 Spherical distances
f v �w � ! s h are ñ : -embeddable.

Sketch of proof. Based on Theorem 3.9, it is sufficient to show the existence of a nonnegative measure

sd 
(x

,y
)

sd (x,y)

d (x,y)
s

y
x

space such that
! u is the measure of the symmetric difference. Let

v äÙ be an
� -dimensional sphere with the radius ��6§j . Define the measure X on

v äÙ as
the fraction of � -dimensional hypervolume such that X f � h 476 mJ¦¨§ ty�rvm>¦t§ tª©¬«Í v x ÿ k � j��for

� ã v äÙ . Consequently,
f v äÙ � ¥ � X;h for ¥ being a collection of sub-

sets of
v äÙ is a probability space. Consider further a hemisphere } äÙ f � h 4768 � x v äÙ 4 ! u f � �+� hÍÉ ÙØ ? centered at ~ . Then, X f } äÙ f �;h � } äÙ f � h+h 6� ÙmJ¦¨§ t©�«Í vh®¨¯±°f°k²D³ t � � � vØ¨´ C 1 ñ f v äÙ h 6 Ù´ ! u f � �+� h . On the pictorial illustration on the

right, X f } äÙ f �;h � } äÙ f � h+h is the volume of the shaded regions. Based on The-
orem 3.9, the space

f v äÙ � ! u h is ñ Ù -embeddable.

9 From geometry µ �ÄòÅ «nµ �B Ä �¶µ �B Å +	·�µ B Ä µ B Å¹¸ ä /º w)»¼ , which after basic transformation gives µ ÄòÅ «½·@¾¿Àº wZ»� ¼ .
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3.4 Spatial representation of dissimilarities
Given dissimilarity data10 "5f 1 � 1 h , a spatial representation of

"
is a configuration of points rep-

resenting the objects in a space. Usually, a Euclidean (pseudo-Euclidean) space is considered or,
alternatively, � � equipped with an ñ7¿ metric. Spatial representations are in fact approximate em-
beddings, which should reflect the dissimilarity relations between the objects. Hence, they are often
used as a visualization tool. Such spatial representations are visually appealing and often allow for
a better interpretation of the data. The configurations are believed to reflect significant character-
istics, as well as ’hidden structures’ of the data. Therefore, objects judged to be similar result in
points being close to each other in a low-dimensional space. The larger the dissimilarity between
two objects, the further apart they should be in the resulting map of points. More generally, spatial
representations are interpreted as (possibly reduced in complexity) feature-space configurations of
the overall dissimilarity structure in the data and they are further utilized in clustering, classification
or data-mining algorithms and techniques.

We already know from the previous section that (approximate) linear embeddings of the dissimilari-
ties are methods for obtaining spatial representations. In this section, we will discuss two more tech-
niques, namely a linear projection FastMap [122] and nonlinear multidimensional scaling (MDS);
see e.g. [37, 72, 228]. One crucial thing to realize about such spatial maps is that the axes are, in
themselves, meaningless. What is important is the relative positions of the objects. In case of a
Euclidean space, additionally, the orientation of the projection is arbitrary, since any rotation of the
configuration does not change the distances (the same is valid for pseudo-Euclidean spaces, how-
ever, in terms of a rotation defined appropriately there). See Fig.3.8 for an illustration of the basic
spatial models on a theoretical banana data.

A number of other techniques exists for obtaining spatial representations. These will be briefly
introduced in chapter 7, where also some practical aspects of spatial models are considered.

3.4.1 FastMap

r21r
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Fig. 3.7: Cosine law.

FastMap was introduced in [122] in the Data Mining commu-
nity and it is meant for vectorial data accompanied by a distance
measure. Assume that a set 1476 8 . : � ����� � .&>¬? and an

* ��*
Eu-

clidean distance matrix
"gf 1 � 1 h are given. Then, there exists an

� -dimensional Euclidean space, � É * such that the distances are
preserved perfectly; see section 3.3.1. The idea is to project the
data on � mutually orthogonal directions. This will be achieved
in an incremented manner, starting from the first dimension. The
basic principle is to orthogonally project .=/ into a line in ��� deter-
mined by two pivot objects, � : and � < . Pivot objects should be the
ones which yield the largest distance. The projection ~ / of the ob-
ject . / into this line can be determined from the cosine law of the Euclidean geometry (as illustrated
in Fig. 3.7) as:

~ / 6
! f � : � � < h < à ! f � : � C / h < ý ! f � < � C / h <� ! f � : � � <�h � (3.21)

Since the objects will lie in a Euclidean space ��� , the projection method can be extended as fol-
lows. Let } be an

f � ý j h -dimensional hyperplane perpendicular to the line defined by � : and � <
(or the remaining � � � : space). Then, after mapping all the objects on this hyperplane (or in fact

10 We assume that we have an access to a set of raw data examples i , e.g. typed words, shapes, digitized voice
excerpts, and a dissimilarity measure provided by an expert. Since the computation of dissimilarities is usually costly,
in practical applications, i can be assumed to be a relatively small set of objects e.g. chosen from a larger set É .
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Theoretical data Classical Scaling FastMap Sammon map:
B j Ù Sammon map:

B Ù
Fig. 3.8: Spatial 2D maps of �Çk£k � �Çk£k dissimilarity matrix

"
for theoretical banana data (leftmost subplot).

The dissimilarity used is the city block distance. Since
"

is non-Euclidean, Theorem 3.41, the 2D maps are
only approximations. The scale is the same for all subplots.

updating the distances appropriately), the problem to be faced is identical to the original one, but
with a dimensionality � ý j , instead. Hence, the solution can be found recursively using formula
(3.21) to determine the coordinates of the dimension of interest. Since the square Euclidean dis-
tances are additive, the distances of the objects projected into the hyperplane } become then [122]:!�1 f .&/ � .¨º±h < 6 ! f .&/ � .iº±h < ý f ~ / ý ~ º±h < . In the next step

" 476 " 1 , defining the same problem, but for
the space � � � : . Although the dimensionality � should be specified beforehand, the algorithm may
stop when the distances

!81
become practically zero. New points can be added to the existing map

in the same recursive manner, based on the distances to the pivot objects. The algorithm requires
then the computation of ��� distances, so the complexity is � f � h .
Note that the cosine law captures the same relation as the one given by formula (3.2). The Eu-
clidean embedding realized by classical scaling, as described in section 3.3.1, makes also use of the
cosine law, however, the projection is optimized for all the triplets (defining Euclidean triangles)
simultaneously, instead of in an incremental way as FastMap does. Note that for non-Euclidean
dissimilarities the derived configuration approximates the original distances, since the cosine law
(which is the foundation of FastMap) is valid for the Euclidean distances only. In the mapping
process, at some point the distances

!�1
of the objects projected into the hyperplane } may become

negative, which indicates that } exists in a pseudo-Euclidean space. Yet, the projection is always
done to a Euclidean space. Formally, if the dissimilarity data

"
can be embedded into the ��ö ¿¨÷ ø ù

space, then the dimensionality � used in FastMap should be such that � É�. , since FastMap pre-
serves, in fact, Euclidean distances corresponding to the embedding into � ¿ . In summary, FastMap
is less optimal than classical scaling w.r.t. the preservation of distances, but it is an incremental
mapping (hence a possibility to an early stopping), which makes it fast.

3.4.2 Multidimensional scaling

Multidimensional scaling (MDS) refers to a group of linear and nonlinear projection methods of
the dissimilarities. Although the theory of MDS was developed in behavioral and social sciences
[37, 72, 228], its applications were extended to pattern recognition and other related disciplines,
since the MDS methods facilitate data visualization and exploration. These projection techniques
aim to preserve all pairwise, symmetric dissimilarities between data objects, resulting in a low-
dimensional representation of the geometrical relations between the points. Such a configuration
is usually found in a Euclidean space, although any other ñ ¿ space, .ÎÌ j , can also be considered
[37, 72]. Therefore, the output of MDS is a spatial representation of the data. Most of the concepts
presented here as well as the discussion on the MDS algorithms can be found in the recent books of
Borg and Groenen [37] and Cox and Cox [72]. The latter book provides a good, concise introduction
into the subject, while the former book is meant as a thorough compendium. Our work is concerned
with Sammon mapping and it is based on our research project for Shell [297–299, 302] and our
experience gained in this area.
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Metric MDS is a description of methods which assume that both the input data and the output
configuration are metric, or rather that the dissimilarities are quantitative values. Suppose a set of*

objects with the dissimilarities, measured between all pairs of objects, is given. Our aim is to find
a possibly low-dimensional space such that the discrepancy between the original dissimilarities and
the estimated distances is minimized. Intuitively, each pairwise distance corresponds to a ’spring’
between two points in this lower-dimensional space. Then, the MDS technique tries to rearrange
the points such that the overall ’stress’ is minimized. The dissimilarities can describe the relations
between objects represented originally in a high-dimensional space or just measured (e.g. matching
costs of image patterns, road distances) or given (human judgments).

When the observed or measured dissimilarities convey qualitative instead of quantitative informa-
tion, they give rise to non-metric MDS methods. In essence, they are solved in a similar way as
metric MDS methods with the exception that the nature of dissimilarities is different, such as pref-
erences or ranks [37, 72, 227]. Since such methods are not discussed, MDS will stand for metric
MDS.

There are different ways of preserving the structure of the data, giving rise to somewhat different
techniques of MDS. Traditional classical scaling (CS) is the most simple, a linear MDS algorithm.
It has already been introduced in section 3.3, where the embeddings of pseudo-Euclidean distances
have been discussed. Also that FastMap can be considered as a linear MDS example.

Nonlinear MDS. Nonlinear MDS projections are realized via an iterative optimization process. In
such a process, a criterion is needed for deciding whether one configuration is better than another.
For that purpose, a loss function, called stress (acronym for standard residual sum of squares), is
considered, which measures the difference between the Euclidean (or ñð¿ ) distances of the present
configuration of

*
points in � � and the actual (given) dissimilarities. Here, for convenience, we

will adopt the notation used in MDS. Let
R

be the given
* �³*

dissimilarity matrix, expressing all the
pairwise relations between

*
objects, and let

"
be the distance matrix for the projected configuration

of estimated distances. For clarity, we will write
! /7º f�I h to indicate that the distances are computed

for a retrieved configuration
I

. The most elementary MDS loss function is the raw stress [37, 226]:

B w 2"Ê f�I h 6 > � :3
/}| :

>3
º�| / p :

f # f Q / ºÃh ý ! / º f�I h+h < � (3.22)

which yields, in fact, a square badness-of-fit measure for the entire representation.
#

is a continuous
parametric monotonic function, a transformation applied to the given dissimilarities

Q /7º . In many
cases,

#
is the identity function, but it may be a polynomial or logarithmic function as well. Usually,

the notation of ËQ /7º 6 # f Q /7º±h , called disparity, is adopted. In our opinion, the raw stress as an absolute
error is not an informative function to be minimized iteratively. (Yet, the raw stress is also used
in practice e.g. [37].) The differences between actual and estimated dissimilarities should rather be
expressed in relative terms to avoid that large absolute differences contribute significantly to the
error function, while small differences do not. Note that the large differences do not necessarily
indicate a bad approximation. Therefore, the stress should be normalized in a way that avoids a
scale dependency. This leads to a least squares scaling (LSS) [72, 227, 228] loss function:

B 6}Ì;Ì f�I h 6 j
z > � :/�| : z >º�| / p : P /7º ! </7º f�I h

> � :3
/}| :

>3
º�| / p :

P /7º f ËQ /7º ý ! /7º f�I h+h < � (3.23)

where P /7º are appropriately chosen weights. The purpose of the weights can be e.g. to shift the
emphasis to small dissimilarities by choosing P / º 6�j�� Q / º for non-zero

Q /7º . Concerning disparities,
some straightforward choices are e.g. a linear or logarithmic function, i.e. ËQ / º 6 K à L;Q / º or ËQ /7º 6
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K à Ê�º2» f Q / ºÃh , where K and
L

are estimated in the least square sense by modeling the perfect relation! /7º f�I h 6ÍËQ /7º . The normalization by estimated distances makes the error measure invariant under rigid
transformations, like shifts and rotations, and non-rigid transformations, like uniform stretching or
shrinking, of the derived configuration.

The problem of finding the right spatial configuration resolves itself into an optimization problem,
where a configuration yielding the minimum of the stress is sought. The stress is optimal when
all the original disparities ËQ / º are equal to the estimated distances

! /7º f�I h . Since this is unlikely to
happen,

! /7º f�I h will be a distorted representation of the relations within the data. The larger the
stress, the greater the distortion. The optimization procedure for the LSS is an iterative process of
two alternating stages: fitting ËQ / º to

! /7º for a present configuration
I

(hence
! / º are considered as

fixed for that moment) and minimization of the stress function, i.e. updating
I

, given ËQ /7º .
Since from an application point of view, one is interested in the relative positions of objects in the
spatial map, a general suggestion in the MDS area is to consider a ratio MDS [37], where ËQ /7º 6 L;Q / º
for

L Ï k . It means that the ratio of two disparities should be equal to the corresponding dissimi-
larities: ËQ / º �5ËQ «�Ò 6 Q /7º � Q «YÒ . For the

B 6}Ì;Ì
stress, the optimal

L J6}Ì;Ì can be derived analytically as the
one minimizing

B 6}ÌzÌ
, provided that

"
is fixed. By setting up the derivative of

B 65Ì;Ì
over

L
to zero,

its optimal value is found as
L J6}Ì;Ì 6 z º Î / ! </7º f�I h � z º Î / Q /7º ! /7º f�I h . Alternating the computation

of
L J65Ì;Ì with an iterative improvement to the stress provides an efficient procedure for finding the

solution to the ratio MDS.

Most of the minimization algorithms are based on gradient methods [37, 227, 228], but also other
techniques have been especially adopted for the MDS purposes, such as iterative majorization
[37, 72]. In our experience [297], this algorithm has a slow convergence. An interesting modifica-
tion for data originally supplied by points in a feature space is also studied by Webb [414, 415]. He
looks for a nonlinear transformation to the reduced space �a� in which the approximated Minkowski
distances are close to the actual Minkowski distances in terms of the weighted raw stress. The trans-
formation is defined by radial basis functions, hence the iterative majorization technique determines
its parameters. This results in a mapping that can be applied to new data.

Another way to normalize the raw stress is to use the original dissimilarities instead of the approxi-
mated ones. This leads to loss functions being variants of the Sammon mapping.

Sammon mapping. The original Sammon mapping [329] was proposed in pattern recognition by
Sammon [329] as a tool for a nonlinear projection from a high-dimensional Euclidean space to a
low-dimensional space. To our knowledge, it is not directly mentioned in books and articles devoted
to the MDS research. However, it can be considered as a method in this area, if interpreted as
a projection technique which tries to preserve the original dissimilarities. For the sake of simplicity,
we will account variants of Sammon mappings as the MDS examples. Sammon mapping is a
nonlinear projection realized by the minimization of the following loss function:

B f�I h 6 j
z > � :/}| : z >º�| / p : Q /7º

> � :3
/}| :

>3
º�| / p :

f Q /7º ý ! /7º f�I h+h <Q /7º � (3.24)

In general, the stress function can be defined in a number of ways, e.g. as studied by us in [297–299]:

B  f�I h 6 j
z > � :/}| : z >º�| / p : ËQ  p </7º > � :3

/}| :
>3

º�| / p : ËQ  /7º f ËQ /7º ý ! /7º f�I h+h < � C 6g����� ��ý � ��ý j � k � j � � � ����� (3.25)
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which results in the following measures for the identity function
#

, i.e. ËQ / º 6 # f Q /7º±h 6 Q /7º :
B � < f�I h 6 �f *�ý j h f *9ý � h

> � :3
/}| :

>3
º�| / p :�Ï Q /7º ý ! /7º f�I hQ /7º Ð < (3.26)

B � : f�I h 6 B f�I h
B
r
f�I h 6 j

z > � :/�| : z >º�| / p : Q </7º
> � :3
/�| :

>3
º�| / p :

f Q / º ý ! / º f�I h+h <

B : f�I h 6 j
z > � :/�| : z >º�| / p : Q

X/7º > � :3
/�| :

>3
º�| / p :

Q / º f Q /7º ý ! /7º f�I h+h <

B < f�I h 6 j
z > � :/�| : z >º�| / p : Q ë/7º

> � :3
/�| :

>3
º�| / p :

Q </ º f Q /7º ý ! /7º f�I h+h <

We will refer to all of them as (variants of) Sammon mappings. Each of the loss functions mentioned
above emphasizes a different aspect of the geometric relations between points, i.e. it emphasizes,
to some extent, either smaller or larger distances, which directly influences either local or global
aspect of the method. For instance,

B � < emphasizes very small distances, i.e. it penalizes the error
in representing small dissimilarities more than the same error for large ones. Therefore,

B � < focuses
on local details, hence it is very nonlinear. On the other hand,

B < emphasizes larger distances, hence
it tends to present more global map of relations.

B
r provides a balance between large and small

distances, i.e. errors in representing small and large dissimilarities are penalized equally. Depending
on the application requirements, the loss function can be chosen appropriately.

By applying the ratio approach to the Sammon stresses, i.e. the discrepancy ËQ /7º 6 L;Q /7º , one gets

B  f�I �+L h 6 j
z /�Î º L < Q  p </7º 3

/�Î º Q  /7º f L Q /7º ý ! /7º f�I h+h < � C 6g����� ��ý � ��ý j � k � j � � � ����� (3.27)

Note also that the scaling of
Q /7º by

L
is equivalent to scaling of

! /7º f�I h by j�� L , which is further
equivalent to scaling of

I
by j�� L , i.e.

B  f�I �+L h 6 B  f j�� L I � j h . The optimal
L J

can be determined
as the point yielding minimum of

B  for the present configuration
I

(hence also
"

). By setting
the first derivative of

B  f�I �+L h w.r.t.
L

to zero, after straightforward calculations, one obtains
L J 6f z º Î / Q  /7º ! </7º f�I h+h � f z º Î / Q  p :/7º ! / º f�I h+h . After simplifications, inserting

L J
into

B  f�I �+L h yields

B  f�I �+L J h 65j ýÒÑ z º Î / Q  p :/7º ! / º f�I h
f z º Î / Q  p </ º h :
Ø�< f z º Î / Q  /7º ! </ º f�I h+h :
Ø�<2Ó < � C 6g����� ��ý � ��ý j � k � j � � � ����� (3.28)

Note that k É B  f�I �+L J h�É j by the nonnegativity of dissimilarities and the Schwartz inequality,
Theorem 2.56, since z º Î / Q  Ø�< p :/ º f Q  Ø�</7º ! /7º f�I h+h¨É f z º Î / Q  p </7º h :
Ø�< f z º Î / Q  / º ! </7º f�I h+h :+ØÈ< .
In order to compare the Sammon stress functions to the LSS loss functions (3.23), let us introduce
the variants of the

B 65Ì;Ì
in the same way as for the Sammon mappings as

B 65Ì;Ì f�I h 6 j
z /�Î º !  p </ º f�I h

3
/�Î º !  /7º f�I h f ËQ /7º ý ! /7º f�I h+h < � C 6g����� ��ý � ��ý j � k � j � � � ����� (3.29)

Then, by considering the ratio MDS, ËQ /7º 6 L;Q /7º , one can express the optimal
L

(minimizingB 6}Ì;Ì f�I �+L h ) as
L J6}Ì;Ì 6 f z º Î / Q /7º !  p :/ º f�I h+h f z º Î / Q </7º !  /7º f�I h+h . The substitution of

L J6}Ì;Ì into
B 6}Ì;Ì 
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gives then

B 65Ì;Ì f�I �+L J6}Ì;Ì h 65j ýÔÑ z º Î / Q /7º !  p :/7º f�I h
f z º Î / !  p </ º f�I h+h :+ØÈ< f z º Î / Q </7º !  /7º f�I h+h :
Ø�< Ó < � C 6g����� ��ý � ��ý j � k � j � � � �����

(3.30)
If
I J

is the optimal configuration (corresponding to a local minimum) of the Sammon error
B  ,

then the LSS stress
B 65Ì;Ì f�I J �+L J65Ì;Ì h is equal to the Sammon stress

B  f�I J �+L J h for C 6 k . This
does not hold for other C , although for C   k , the Sammon stress

B  at the local minimum of
I J

would be smaller than the corresponding
B 65Ì;Ì and the other way around for C Ï k . This can be

directly deduced from the formulations of (3.30) and (3.28), taking into account that the MDS
distances

! /7º f�I h underestimate the actual dissimilarities, which leads to the following inequalities
z º Î / Q /7ºáÏ z º Î / ! / º and z º Î / Q /7º � ! /7º�Ï j .
Note that except for the raw stress, both

B 6}Ì;Ì
r and

B
r are the loss functions traditionally applied

in MDS. Practically, they give the same (up to scaling and rotation) results. In general, due to the
normalization by the actual dissimilarities,

B  will emphasize smaller dissimilarities than
B 65Ì;Ì forC   k and the other way around for C Ï k . This is not a problem, since when needed, additional

weights can be used. This means that the Sammon stress functions can be generalized in order to
incorporate the nonnegative weights of individual pairs as

B Ê 6 j
z º Î / P / º ËQ  p </7º 3

º Î / P /7º ËQ  /7º f ËQ / º ý ! / º f�I h+h < � (3.31)

Usually, the weights are chosen to be either k or j , where k is used to accommodate for missing
dissimilarities. However, the weights can also be set to j�� Q /7º or j�� Q </7º for non-zero

Q /7º . For instance,
in the latter case, the weighted stress

B Ê
r becomes the unweighted stress

B � < .
Classical scaling Sammon map

B �
Fig. 3.9: 2D spatial maps of the Euclidean
representation of M±k£k points uniformly dis-
tributed in a j�k " space. The scale is pre-
served.

Since the optimization of the Sammon stress functions can
be easier defined in the gradient terms, we give prefer-
ence to Sammon mappings. To find a Sammon represen-
tation, one starts from the initial configuration of points

I
(e.g. randomly chosen or from the classical scaling result)
in � � for which all the pairwise distances are computed.
Next, the points are adjusted so that the stress decreases.
In an iterative process, the configuration is improved by
shifting around all points to approximate better and better
the model relation ËQ /7º 6 ! /7º for 0 � ¼ 6Êj � � � ����� �+* , until a (lo-
cal) minimum of the stress is reached. In such a procedure,
a steepest descent, Newton-Raphson algorithm [308], iter-
ative majorization [37, 193], conjugate gradients [308] or
scaled conjugate gradients (SCG) [272] can be used to search for the minimum. In our experiments
with artificial and real data [297–299], we found out that concerning the convergence rate, the scaled
conjugate gradients and Newton-Raphson techniques are preferable. The SCG algorithms allows for
large improvements in the first iterations, but it approaches the minimum slowly later on. Therefore,
a hybrid algorithm can be considered, which switches to the Newton-Raphson minimization after
the first iterations.

The found minimum depends on the initialization. Usually, the output of classical scaling is a good
suggestion, since it is the global minimizer of the raw stress (in a linear way). However, it is useful to
compare its result to the Sammon output obtained from a random initialization, since the optimiza-
tion algorithm may get stuck in a local minimum close to the initial configuration. Recently, a ’bet-
ter’ initial configuration, i.e. a scaled version of the CS result

I = Ì
i.e. C J I = è has been suggested in
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[255, 400]. It is, however, anything new, since their C J equals z º Î / Q /7º ! /7º f�I h ��z º Î / ! </ º f�I h , which
is equivalent to j�� L J in the ratio MDS with the stress

B
r (and also

B 65Ì;Ì
r ). A good initialization is

still an open problem. From our experience is follows that Sammon mappings are less sensitive to
the starting configuration than the LSS mappings.

In summary, it is important to emphasize that the MDS techniques based on the minimization of the
normalized square differences will produce maps, where projected points will tend to be enclosed
in circular or ellipsoidal shapes. This can clearly be observed for a Euclidean distance matrix

"
computed for an artificial example of M±k£k points uniformly distributed in a j�k " hypercube. The
MDS result can be seen in Fig. 3.9. See [200] for the formal proofs referring to the raw stress based
on square Euclidean distances. To avoid this artifact, other types of error measure can be considered,
for instance in the form of

@ f�I h 6Ez º Î / � Q /7º ý ! /7º f�I h � ��z º Î / Q /7º or
@ f�I h 6�z º Î / � Q /7º ý ! /7º f�I h � � Q /7º .

The measures based on absolute values are, however, difficult to optimize (due to discontinuous
derivatives). Another MDS technique, which is more robust against outliers can also be designed
by considering the following fit � f�I h 6 median / ÷ º�Õ| / Ì e ÄÆÅ � � ÄòÅ ö è ù Ìe ÄòÅ [72].

Two different spatial configurations can be matched by the use of Procrustes analysis. This might
be useful to compare two configurations derived from optimizations of different loss functions or
to indicate how a configuration changes when the similarity between objects changes over time (as
e.g. human preferences of some products). Basically, the configurations are matched be determining
the optimal translations, rotations and scalings; see e.g. [37, 72] for details.

3.4.3 Reduction of complexity

For
*

objects a nonlinear MDS method requires the computation of � f * < h distances in each iteration
step and the same memory storage. However, for a low, � -dimensional representation, only � *
values should be determined. This suggests that a number of constraints on distances is redundant,
so some of them could be neglected. This leads to the idea that only distances to a subset of all
objects could be preserved, for which a modified version of the MDS mapping will be considered.

Although
I

, derived from MDS, has the dimensionality � , it is determined by
* Ï � objects. In

general, a linear space can be defined by � à j linearly independent objects. If they were placed such
that one lies in the origin and the others lie on the axes, they would determine the space exactly.
Since this is unlikely, the space retrieved will be an approximation of the original one. When more
objects are used, the space becomes more filled, hence better defined. Following [65], objects
having relatively many close neighbors (lying in the areas of high density) can selected for the
representation set 1 ã D of the size � Ï � , on which the (non-)linear mapping could be based. For
a dissimilarity representation

R f D � D h , a natural way to proceed is the
)
-centers algorithm [426].

It looks for
)

center objects, i.e. examples that minimize the maximum of the distances over all
objects to their nearest neighbors; see also section 7.1.2. It uses a forward search strategy, starting
from a random initialization. Note that the

)
-means algorithm [97] cannot be used since no feature

representation is assumed, only the dissimilarities
R

.

For a chosen set 1 , the linear mapping (based on
R f 1 � 1 h ) into an � -dimensional space is defined

by formulas (3.7)–(3.14). The remaining objects
R f D \ 1 � 1 h can then be added to the map by the

use of Corollary 3.46 and formula (3.20).

In case of the Sammon mapping, a modified version should be defined, which generalizes to new
objects. Following [65], first the Sammon mapping of

R f 1 � 1 h into the space � � is performed,
yielding the configuration

I J; . The remaining objects can be mapped to this space, while preserving
the dissimilarities to the set 1 , i.e.

R b 6 R f D \ 1 � 1 h . This can be done via an iterative minimization



3.5 Summary 71

procedure of the modified stress
\  , using the found representation

I J; as:

\  6 j
z >/}| : z wº�| : # f Q b/ º h  p <

>3
/�| :

w3
º�| :×Ö # f Q b/7º h  f # f Q b/ º h ý ! / º f Þq� I J; h+h < Ø � C 6g����� ��ý � ��ý j � k � j � � � �����

(3.32)
Equivalently, the modified loss functions of the LSS and non-metric MDS can be defined as follows:

\ 6}Ì;Ì 6 j
z >/}| : z wº�| : !  p </7º f Þq� I J; h

>3
/}| :

w3
º�| :×Ö !  / º f Þq� I J; h f # f Q b/7º h ý ! /7º f Þa� I J; h+h <"Ø � (3.33)

Thanks to these procedures, new objects can be added to an existing map. Their complexity reduces
from � f � * < h , computing � f * < h distances in the � � space, to � f * ��� à * � < h in each iteration step.
Another possibility to define a Sammon mapping is by the use of neural networks, as studied in
[260, 316].

3.5 Summary
This chapter presents some ways of characterizing dissimilarity measures, especially if they are
represented as finite generalized metric spaces. The basic concern is whether a dissimilarity mea-
sure is metric or not, which can be easily checked for a finite representation. Also transformations
preserving the metric properties are considered. Usually, such transformations can also make a
non-Euclidean dissimilarity ’more’ Euclidean. A more essential question, however, is whether a
dissimilarity measure is Euclidean or city block. The importance of the Euclidean distance comes
from the fact that a Euclidean space is both metric and an inner product space. Hence, there exists a
natural connection between the traditional inner product and Euclidean distance, which allows one
to embed any Euclidean distance matrix in a finite Euclidean space. Both isometric and approxi-
mate, linear and nonlinear embeddings are presented here, as well as their generalizations, which
enable the projection of new examples. These are the multidimensional scaling techniques.

If a measure is non-Euclidean, no isometric projection into a Euclidean space exists. Some solutions
are presented, where either the dissimilarity is corrected to become Euclidean or the projection
is carried out into a pseudo-Euclidean space. Any premetric non-Euclidean measure (satisfying
the definiteness and symmetry constraints) can be formalized in such an indefinite inner product
space. This builds a general framework, where any symmetric dissimilarity representation can be
explained.

On the other hand, the significance of the city block distance comes through its additivity property.
Finite generalized metric spaces can also be represented by weighted, fully connected graphs, where
the weights correspond to given dissimilarity values. A city block distance can be perfectly struc-
tured by an additive tree model, where the distance is understood in terms of the shortest path. Other
dissimilarity measures can also be interpreted via such tree models, however, only approximately.
See also chapter 7 for more discussion.

In brief, this chapter deals with the characterization of generalized metric spaces, especially finite
spaces represented by

* �³*
dissimilarity matrices. It introduces useful tools for checking metric

or Euclidean properties and finding the dependencies in the family of Minkowski dissimilarities.
In particular, this chapter discusses the issue of (approximate) embeddings into pseudo-Euclidean
spaces which can be carried out for any symmetric dissimilarity measures. In this way, the founda-
tion has been established for designing learning algorithms on spatial representations in Euclidean
and pseudo-Euclidean spaces, as to be seen in chapter 4. Also the process of data exploration is sup-
ported either by visualization of � -dimensional spatial maps or by the inference of the organization
of objects, i.e. understanding of the underlying structure between them, given by a tree model.





4. Learning approaches
The learning and knowledge that we have, is, at the most, but little compared with that
of which we are ignorant.

PLATO

In this thesis, although objects may have various intermediate representations, as given by relative
graphs or numerical features, ultimately we will describe them by dissimilarities. Given such a nu-
merical representation of classes of objects, for instance, learning paradigms are set up in some
spaces, where the dissimilarity values can be interpreted. This leads to the use of statistical learning
methods, which are briefly described in section 4.1.

By now we have established a ground for introducing the learning methodologies. First of all,
various spaces and the relations between them have been characterized in chapter 2. They prepare
mathematical frameworks, in which dissimilarities can be explained. Next, basic properties and
transformations of dissimilarity matrices as representations of finite generalized metric spaces have
been discussed in chapter 3, especially in the context of metric or Euclidean distances. Also general
embedding issues have been described there. Finally, statistical learning aspects are recapitulated
for the feature-based representations.

In section 4.2, we will formally introduce dissimilarity representations and explain their unify-
ing role for the statistical and structural approaches to learning from examples. This section also
mentions a possible extension of dissimilarity representations as the ones based on the ’true’ induc-
tive learning, as illuminated by Goldfarb [153, 156, 160, 161]. This is, however, left for further
research. Next, three main dissimilarity-based learning approaches are presented. In fact, they re-
fer to three interpretations of such representations in some spaces, for which particular statistical
learning methodology can be adapted. In the first approach, the dissimilarity values are interpreted
directly, hence they can be characterized in (pre)topological spaces. The second approach serves for
the definition of dissimilarity spaces, where each dimension corresponds to a dissimilarity to a cho-
sen object. The third approach finds a spatial representation, i.e. an embedded (pseudo-)Euclidean
configuration such that the dissimilarities are preserved as well as possible. More details on these
methodologies is given in the sections 4.3 - 4.5. This chapter ends up with some additional remarks
on generalized kernels as well as some insights on the connections between dissimilarity spaces and
the underlying pseudo-Euclidean spaces, as given in section 4.6.

Although some of this material is extracted from our publications [293, 301, 304, 305], there are
many new insights and observations presented here. Also the perspective from which it is discussed,
is new. So, a significant part of this chapter is our contribution to the pattern recognition field. Even
a description of statistical learning, section 4.1.2, aims at establishing the context, where learning
from dissimilarities will take place. The purpose of this chapter is not only educational, but presents
the ideas behind the learning from dissimilarity representations and explains the basic methods.

4.1 Traditional learning
Learning from examples is a process where patterns present in the data are discovered, distin-
guished, detected or described. It relies on both extraction and representation of information from
the collected measurements in order to understand the process (phenomenon) that created them. The
result of learning is that the knowledge already captured in some mathematical terms is used to de-
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scribe the present independences such that the relations between patterns are better understood or it
is a formalization of some concept, e.g. of a class, such that it can be applied to unseen examples of
the same domain. The latter means that data objects should obey the same deduction process, hence,
a process of (simple) reasoning is imitated. Note that the word ’pattern’ refers to both, a property of
an individual object (i.e. its structural or mathematical representation) and a property of the entire
set of objects given by their characteristics.

4.1.1 Data bias and model bias

In pattern recognition one is usually concerned with learning of a concept from a set of examples.
Here, a concept is a general notion of an entity serving to designate a class of instances or other type
of relations. More practically, an abstract or real set of all possible examples of the concept to be
learned is a domain. For instance, if one wants to learn a concept of a dutch tulip (in fact of a tulip
class), then a domain consists of all types of tulips ever grown in The Netherlands. So, a domain is a
complete representation of the concept considered. In practical applications, due to the complexity
of the domains, costs of the collection process, physical limitations of both measuring and storing
devices and the measurement costs, the domains in their entirety cannot be studied. Consequently,
domains are sampled. This means that only some examples are provided to represent a domain,
and, as a result, only a limited amount of data is available for learning purposes. (Although there
are problems, where the collection of data is either a relatively easy or cheap process, like gathering
of web documents or scanning of handwritten digits, there are also problems where the collection
of measurements is a mundane and costly task, for instance in medical diagnostics.) Consequently,
data represent information and knowledge that one has available for a particular domain.

A (concept of a) class1 is represented by a finite collection of instances, but it is not yet by this
described. The description of a class has to be based on the description of each single instance in
the measurement process, where each instance is characterized by a set measurements and additional
knowledge that one has on the class. Measurements, in general, refer to the outputs of measuring
tools, algorithms or procedures and they can be performed directly on the objects or inferred from
raw measurements. Raw measurements refer to the raw outputs of sensors or devices which record
signals, images, hyper-spectra images etc. All such outputs can serve for a definition of relational
descriptions, features or a proximity measure. On the other hand, an abstract domain might be
represented by some example structures, order in the data or inference rules, provided from outside.
In such cases, the standard measurement process may not play a direct role, instead, the support
is given by structural representations. It is often difficult, if possible, to define numerical features.
Still, a proximity measure can be usually constructed.

Data introduce a bias (’a systematic error introduced in sampling or testing by selecting or encour-
aging one outcome over others’ [416]) of the domain we wish to learn. We have a bias with respect
to the chosen representation and to the chosen model such as a learning approach. The latter is
caused by a dissonance between the learning procedure imposed on the data and the validity of the
assumptions. Such a model bias is related to some error measuring the discrepancy between the as-
sumed and learned values, so it is related to a bias of an estimator of an ideal model; see also section
4.1.2. Data bias refers to both domain and data description. The first one, sampling bias, comes
by assuming that data examples are representative for the domain. Since it is often impossible to
supply instances describing all the domain variety, a finite sample gives rise to the sampling bias.
The representation bias results from a selection of characteristic features, proximity measure or
a structural representation. Taking into account the efficiency concerning both data representation

1 A class is either a natural category, i.e. present in reality, like a class of tomatoes or mugs, or an abstract category
consisting of objects or instances sharing some common properties considered for the application’s need, e.g. articles
on sport, human silhouettes, people with a particular disease, etc.
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and learning algorithms, as well as the resolution of measuring devices, it is impossible to consider
an infinite set of features, infinitesimally precise proximity measure or complex and detailed struc-
tural information. The necessary simplification or redundancy of the data representation introduces
the representation bias.

Data bias has important implications regarding the learning algorithms. It strongly contributes to
the model bias; if the data examples are a poor representation of the domain, then the selected
model, optimized by using the given examples, does not describe the reality well. Data are well
described if similar objects are close in their representations (e.g. two similar objects are represented
by two vectors, which lie close in a vector space), the so-called compactness hypothesis [4, 98, 102]
and, two close descriptions correspond to the objects that resemble each other, the so-called true
representation [323]. The basic principle is that the objects do not posses random descriptions, on
the contrary, the neighbors of a particular object in the representation are similar to it in reality.
Note that true representation implies that distinct objects lie far away (with respect to the chosen
dissimilarity) in the representation. This means that the measurements contain sufficient information
to both support the resembling objects and tell them apart from distinct objects. Moreover, data are
well sampled if all instances in the domain are somehow described in data or, in other words, if
adding new instances will not change this description significantly.

Given a lot of data relevant to the problem at hand (actually with respect to a model; see also
footnote 5 on page 78), the learning task becomes relatively easy (in the methodological sense; the
computational cost may increase), since the data bias becomes smaller. Consequently, if the data
are representative and well sampled, there is enough support and information in the data to model
their functional dependencies, hence the model bias becomes smaller, as well. Only such data will
assure a good generalization of a learning algorithm. The problematic situations are these where the
amount of data is small or when there are many unlabeled examples (sometimes the collection of
the data can be automated, while the labeling process is slow and expensive since it should be done
by humans).

Conventionally, data are described by features. For instance, the class (concept) of apples (domain)
can be represented by features (obtained in the measurement process) such as weight, size and color.
A feature-based representation of a concept relies on selecting

*
instances to represent the domain

and on defining, say, � features for the description. So, we can think of vertical and horizontal
samplings, where these samplings coincide with the choice of objects and features, respectively.
Such data are often expressed as an

* � � matrix
�

, where
�

is interpreted as a configuration of*
points (feature vectors) in an � -dimensional feature space � � , usually Euclidean. This repre-

sentation is mainly used in statistical pattern recognition [97, 138], where it is assumed that the
distribution of pattern classes can be derived from a representative set of such points (a training set)
with a sufficient accuracy. This often requires (strict) additional assumptions on the distribution
characteristics.

4.1.2 Statistical learning

Statistical learning2 is usually understood as a process of determining an unknown dependency
between some inputs and outputs given a limited number of observations, i.e. training examples.
A probabilistic framework is often considered for this task, as mathematically appealing for han-
dling uncertainty. Input vectors ~ x � , usually

� 476�� � , are assumed to be drawn independently
from a fixed, but unknown probability density function . f ~ h . The functional dependency between
outputs � x Þ and inputs ~ is given as a fixed conditional density . f � � ~ h , which is also unknown. De-

2 For a more elaborate introduction to statistical learning, see the books of Fukunaga [138], Stork et al. [97], Hastie
et al. [191], Vapnik [402, 403] and Schölkopf et al. [352].
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pending on the domain of
Þ

, different learning problems can be presented. If
Þ

is discrete, then one
deals with a classification problem, while for continuous

Þ
, a regression problem is obtained. The

training examples D > 476 8 f ~ / � � /ïh 4 0 6Íj � ����� �+* ? are considered to be iid (independent and identically
distributed) according to the joint probability density3 . f ~ � � h 6 . f ~ hu. f � � ~ h . The difficulty relies on
determining the relationship between

�
and

Þ
, based on D > only.

We are often interested in prediction and, therefore, in modeling the conditional probability of ob-
serving a particular � given a specific ~ . By Bayes rule, one can write . f � � ~ h 6 ¿ ö

æ Ì ��ù ¿ ö ��ù¿ ö
æ ù . Assuming

that the quantity . f � � ~ h can be computed, the most appealing approach for assigning an output to
a new ~ is the value of � which yields the maximum a posterior probability . f � � ~ h . This is known
as a theoretical optimal Bayes rule. In practice, since the true distributions are unknown, the Bayes
rule cannot be found. One, therefore, tries to estimate this ideal by a function

$ f ~ h coming from
a general hypothesis space of functions

m 476Û8 $ 4 � ² Þ b ? , where
Þ b

is e.g. � : , 8uk � j ? or 8 ý j � j ? ,
depending on the task. The goal of learning is then formulated as a selection of

$ J x m which best
approximates the outputs � . To measure the discrepancy (hence define the best fit) between the
estimated outcome

$ f ~ h and the original output � for a given ~ , a loss function
Ó 4 Þ��EÞ b ² ÿ k � \ �

is needed. A single output
Ó�f $ f ~ h � � h , however, is not very informative over a particular function$

. Rather the overall expected loss should be used to infer about
$
. This is the true loss of the

hypothesis
$
, given by the error or risk functional as

õ f $ h 6�Ù ï ¾ h Ó�f � �%$ f ~ h+hu. f ~ � � h ! ~ ! � � (4.1)

Ideally, the learning is a process of estimating
$ J x m which minimizes the error

õ f $ h . This requires
the integration over the complete probability distribution of all possible inputs ~ and outputs � .
Since . f ~ � � h is unknown and the only information is a set of available training examples D > that
is available, the learning problem is ill-posed. To make the learning task feasible, one usually
considers a specified class of functions 8 $Ú ? (e.g. polynomials), where K are parameters indexing
the functions (e.g. polynomial degrees). Then

$ Ú J x m minimizes the error
õ f $ Ú h . Note that the true,

optimal Bayes solution
$ J does not necessarily belong to 8 $ Ú ? . To tackle such a learning problem,

an empirical error (or risk) is minimized. It is expressed as:
õ d � ¿ f $$Ú³� D > h 6 j*

>3
/}| :

Ó�f � / �%$$Ú f ~ / h+h � (4.2)

For a given finite training set D > there might be infinitely many functions minimizing the empiri-
cal error, since they need to behave identically only for the training examples. Therefore, by the
selection of a class of functions 8 $ Ú ? , i.e. narrowing the scope of interest, the learning task is bet-
ter formulated. Note, however, that this is purely a choice made to be able to tackle the learning
problem, unless some other prior knowledge exists.

Depending on the loss function, basic learning problems such as classification, regression, density
estimation and clustering can be set up in this statistical framework. Since knowing . f ~ � � h would
allow one to solve any learning problem expressed by the minimization of the risk, the density
estimation is the most general (hence most difficult) problem. Here, we will focus on predictive
learning such as classification and regression.

Classification. A general multi-class classification problem can be decomposed into a number of
two-class problems [138]. Hence, a two-class problem is considered as the basic one. Assume
a set of training examples 8 f ~ / � � /ïh�? >/}| : , with the corresponding labels � / x 8uk � j ? (sometimes also

3 All these assumptions, although general, are in fact strong. They actually assume a fixed (stationary) distribution
from which the examples are sampled. This is often violated in practical applications, e.g. when the data are collected
in various conditions or even by differently calibrated sensors.
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� /@x 8 ý j � j ? ). The hypothesis space becomes then a set of indicator functions. The most common
loss function is then

Ó�f � �%$�Ú f ~ h+h 6 e�f � Ë6 $%Ú f ~ h+h . The corresponding risk or the true error � ¹ 476 õ f $$Ú h
denotes the probability of misclassification (given equal costs). The empirical error, also called the
training or apparent error, becomes then � i 476 õ d � ¿ f $ Ú � D >=h 6 :> z >/}| : e�f � /yË6 $ Ú f ~ /ïh+h . As a result,
the learning can be simplified to finding a classifier

$7ÛÚ J f ~ h that minimizes the empirical error.

Regression. Regression is based on estimating a functional dependence
#

between inputs ~ and
outputs � in the form of ��6 # f ~ h à � , where � is such that

@ f � � ~ h 476 Õ h ��. f � � ~ h ! ��6Êk , i.e. random
noise with a zero mean.

#
is then seen as the expectation of the output conditional probability# f ~ h 6 Õ � . f � � ~ h ! � . The risk measures the dissonance between the actual outputs and the expected

predictions with the common loss function being
Ó�f � �%$ Ú f ~ h+h 6 f � ý5$ Ú f ~ h+h < . Under the assumption

of a zero mean noise and based on the fact that � ýû$ Ú f ~ h 6ê� ý # f ~ h à # f ~ h ý $ Ú f ~ h , the risk (4.1) can
be decomposed4 as a sum of two contributions, noise variance and approximation accuracy as:

õ f $ Ú h 6�Ù f � ý # f ~ h+h < . f ~ � � h ! ~ ! � à Ù f # f ~ h ý�$ Ú f ~ h+h < . f ~ h ! ~ 6 "
r à Ù f # f ~ h ý�$ Ú f ~ h+h < . f ~ h ! ~ � (4.3)

where
"
r is a fixed value, since it does not depend on

$�Ú
. So, learning can be now stated as deter-

mining
$ Ú J x m that best approximates the (unknown)

#
. The empirical risk with respect to the set

of functions 8 $ Ú ? is expressed as
õ d � ¿ f $ Ú � D >=h 6 :> z >/}| : f � / ý5$ Ú f ~ /ïh+h < .

4.1.3 Inductive principles

Predictive learning such as regression or classification consists of two steps: the process of learning,
i.e. the estimation of an (unknown) dependence between inputs and outputs, and the process of gen-
eralization, i.e. prediction of outcomes for newly coming examples based on the discovered concept.
In practice, the first step is closely related to induction (’inference of a generalized conclusion from
particular instances’ [416]), while the second step refers to deduction (’derivation of a conclusion
by reasoning’ [416]). In a general form, however, the deduction is much simplified; it involves only
the computation of outcomes based on the derived parameters in the learning stage. Probably, that
is why such a process is called an inductive learning paradigm. The minimization of the expected
risk relies on this principle. Hence, the entire problem is put the framework of a global function
estimation.

Another approach is based on estimating the risk functional by using the training set at the moment,
when a new example appears. This requires a reformulation of the learning problem such that ad-
ditional unlabeled examples are treated in the context of the given training set. So, the dependence
between the training data and test examples is estimated when required and may differ from in-
stance to instance. This approach is called transductive inference [403]. Such an inference might
be applied locally (the unknown examples are related to the objects in local neighborhoods), but
not necessarily. If it is applied globally, the computational burden might become high (under the
inductive paradigm, only one final functional dependence is estimated). Examples of this approach
are the cases of learning from partially labeled sets or designing linear classifiers in local neigh-
borhoods. This inference can also be reduced to the deduction step only, like in the

)
-NN rule for

a fixed
)
. A schematic illustration of the inductive and transductive learning principles is shown in

Fig. 4.1.

Statistical learning theory is mostly developed for inductive principles. This is somewhat surpris-

4 One has: �xÜ �Ý £��¯+³Ý ÞU£³²8�¯� � ��²¿�	��« �xÜ �Ý £��¯+�¦r£©²8��� � ÜG£³²������2�Y²¿��� � �NÜ ��Ý £¬¦r£©²8�Ê+³Ý Þ�£³²8�¯� � Ü�£©²������2�Y²¿�	���·_�xÜ �Ý £���+ ¦r£³²8�¯�x£¬¦r£©²8�_+ Ý Þ £©²8�¯��Ü�£©²����â����²¿�	� . Note that the latter term equals zero: �NÜ �Ý %�£¬¦r£³²��z+Ý Þ £³²����7ÜG£��!ª ²8��ÜG£³²��2��²¥��� « �aÜ £¬¦r£³²���+Ý Þ £³²����$ßÁ� Ý %�ÜG£��!ª ²����	�%à�Ü�£³²��2�Y² « � , since % is a random noise with a zero
mean. Note also that �aÜ �Ý £��'+ñ¦r£©²8�¯� � ÜG£³²������2�Y²¿����« �xÜ £��R+ñ¦r£³²8�¯� � Ü�£³²��2�Y² .
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Fig. 4.1: Inductive (left) and transductive (right) learning paradigms. A priori assumptions are here under-
stood in terms of the specified assumptions on a set of learning algorithms and related parameters.

ing, since in a general context of inference from small sample size training data5, only restricted
information is available. Vapnik [403] formulated the main learning principle as: ’If you posses
a restricted amount of information for solving some problem, try to solve the problem directly and
never solve a more general problem as an intermediate step.’ Following this rule, we conclude
that not only a predictive learning problem should be approached directly (instead of e.g. estimating
the probability density function first as usual parametric methods do), but, more importantly, that
it should be solved only for the points of interest, instead of estimating a single function globally
at the entire domain. This means that the learning problem is solved ’at the spot’. Consequently,
the application of this principle naturally leads to a transductive learning. This type of learning has
not yet evoked sufficient interest of researches, probably due to the expected computational cost in
a testing stage. Yet, it becomes one of the open issues for further research.

In this dissertation, we will focus on inductive learning methods. These provide a general pre-
scription for handling the data vectors and the assumptions on the approximating functions in the
learning process. Here, the empirical risk minimization and a few paradigms based on the Occam’s
razor principle are considered within the framework of inductive principles.

4.1.3.1 Empirical risk minimization (ERM)
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Fig. 4.2: Curse of dimensionality.

In this paradigm, a function
$,ÛÚ J is sought such that the

empirical error, i.e. the training error � i 476 õ d � ¿ f $%Ú�� D > h 6:> z >/}| : Ó�f � / �%$ Ú f ~ / h+h is minimized. The training error is a
rough (biased) approximation of the (unknown) true error. We
assume that an optimal function

$ J (hence the Bayes rule) ex-
ists in

m
, although the class of functions 8 $ Ú ?�x m might not

contain it. In classification, the actual risk
õ f $ J h is the mini-

mal risk ever possible, called also the Bayes error.

Depending on a loss function and a set of chosen
$Ú

, the ERM
can be employed in a number of ways, e.g. based on the max-
imum likelihood estimators or linear regression. Usually, this principle is used in the parametric
methods, where a model is specified first (e.g. a normal density-based linear classifier assuming nor-
mal distributions) and then the parameters are estimated from the training data. This works well,
provided that the number of training examples is large with respect to the model complexity (Vap-
nik’s approach: related to the VC dimension, see section 4.1.3.2; classical approach: related to the

5 In the classical sense, a small sample size problem is understood as an inference from ) data vectors for an estima-
tion of ø free parameters of the approximating function used, where ) ~ ø is small, e.g. · or even ·-¸ . Vapnik [403]
defines it with respect to a class of approximating functions of the VC dimensionality á � ¨ as a problem, where ) ~ á � ¨
is small, such as ¸�� . See section 4.1.3.2 for more details.
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(b)  Test set(a)  Training set

Fig. 4.3: Overtraining. (a) A zero-error classifier. (b) This classifier is overtrained, since it yields a high error
on an independent test set and its boundary is too complex for such a small training set.

number of free parameters, which agrees with the Vapnik’s approach for polynomial classifiers).
Such models do not have enough flexibility, hence they can result in a large bias (see below).

The difficulty of applying the ERM for limited training data is that it does not yet guarantee a small
expected risk, i.e. the true error. In the classification case it means that a small error on the training
set does not imply a small error on an independent test set. The phenomenon that

$hÛÚ J yields a small
empirical risk, but still shows a large true error on an independent test set is called overtraining or
overfitting. A sufficiently flexible function can perfectly fit the training data, completely adapting
to all the information available there, reaching a zero empirical error. As a result, this function
can describe structures (due to the noise) which in fact are not present in the data; see Fig. 4.3.
Hence, to avoid overtraining for fixed and small sample sizes, simple models are preferred to the
complex ones. The problem is much more pronounced when the number of features, hence the
dimensionality � , is very large with respect to the number of data vectors. From the classical
point of view, by adding new features while having a fixed number of objects, worse results can be
obtained for an independent test set. This is caused by a poor estimation of the function parameters
due to insufficient amount of the data vectors. This is called the curse of dimensionality [208, 210].
See also Fig. 4.2. There exist some solutions to the curse of dimensionality, e.g. feature selection
[86] or feature extraction [97] techniques. The first ones find the best few features, while the latter
construct new features functionally depending on the old ones, e.g. as their linear combination. Still,
such procedures might not be sufficient to guarantee a good generalization for complex functions.

Bias-variance dilemma. The empirical risk depends on training examples, hence different training
sets will yield different models

$pÛÚ J f D >=h . Consequently, the loss function is also a function of
a training set. This dependency can be removed by averaging over training sets of a fixed size.
Then, the expected empirical risk with respect to all the training sets of cardinality

*
becomes@ > ÿ õ d � ¿ f $ Ú � D >=h � , where

@ > ÿ î � denotes the expectation. In the case of regression, there is a clear de-
composition of the latter quantity into a (squared) bias term5, measuring ’the accuracy or a quality of
the match’ of the learning algorithm to the problem [97] and a variance term, measuring ’the preci-
sion or specificity of the match’ [97]. Additionally, there is an irreducible term

"
r , independent from

the training sets as derived from formula (4.3) by using a summation instead of an integral. Hence,
we have that

@ > ÿ õ d � ¿ f $%Ú³� D > h ��476 " r à @ >�â :> z / f $$Ú f ~ / h ý # f ~ / h+h <�ã à @ >¹â :> z / f $$Ú f ~ / h ýo@ > ÿ $$Ú f ~ / h � h < ã .
This decomposition indicates that there exists a bias-variance trade-off, which is a fundamental
problem while fitting a model to the data [145]. The practical implication of such a trade-off is that
a flexible function

$�Ú
, i.e. a function which is able to model the irregularities well, will have a high

variance since it will tend to fit the desired outputs well (yielding a smaller bias). Consequently, it
will vary dramatically between various training sets. Conversely, an inflexible model will tend to
behave similarly with respect to the training sets, yielding small variance, but its inflexibility might
cause a high bias [186].

5 Here, bias is understood as a bias of an estimator. If ä is a random variable, then the estimator åä is biased if the biasÚ8´ «�¾0�fåäj�Ê+�ä , where ¾0��� � is the expectation, is non-zero.
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A bias-variance decomposition becomes more complicated for the zero-one loss in the classifica-
tion case. Although it is possible to extend the reasoning behind the square loss to a classification
problem [97, 145], there is no clear interpretation of this phenomenon. A unified bias-variance
decomposition was proposed by Domingos [91], of which the zero-one loss is a special case. Ac-
cording to him, the variance contribution is additive for unbiased examples (i.e. examples wrongly
classified) and subtractive, otherwise. This means that the zero-one loss allows for a larger tolerance
of a learning algorithm with respect to variance than in case of the square loss. This follows from
the offset contribution to the averaged loss (i.e. empirical error) by the biased examples. This expla-
nation is logical, since in the end, the classification problem directly focuses on a proper assignment
of objects to classes and not on a proper estimation of probability functions. See [90, 91] for details.
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Fig. 4.4: Consistency of the ERM.

Consistency. To assure that a small empirical error guaran-
tees a small true error, a consistency between the true and
empirical risks is needed. For a fixed function

$ Ú
, the em-

pirical error (4.2) will converge to the true risk
õ f $ Ú h (4.1)

by the law of large numbers. But this is not enough, since
it should hold for any

$�Ú
. Let

$$Ú J minimize the true er-
ror, i.e.

$ Ú J 6 .$� » ,$Ç©È�æ Þ ç � õ f $ Ú h and let
$pÛÚ J minimize the

empirical risk (hence it depends on D > ). Then, the consis-
tency of the ERM principle requires that

Ê Ç³, >�Ë ¯ õ f $ ÛÚ J h 6Ê Ç³, >�Ë ¯ õ d � ¿ f $ ÛÚ J � D >=h 6 õ f $ Ú J h holds in probability. This
requires a one-sided uniform convergence of the empirical
risk to the actual risk in probability [403], which is the necessary and sufficient condition for such
a convergence: © �<å

r
Ê Ç©,>�Ë ¯ 2¥ç ¿+À �æ Þ ç � f õ f $ Ú h ý õ d � ¿ f $ Ú � D >=h+h¨Ï���è 6êki� (4.4)

This is illustrated in Fig. 4.4. Note that the asymptotic error might differ from the Bayes error.

4.1.3.2 Principles based on Occam’s razor

Some statistical approaches have been developed to assure this convergence. These often rely on
the Occam’s razor principle. Assume a learning problem and a set of functions 8 $ Ú ? , depending
on the parameters K , analyzed to find a solution. The learning problem is now complex since it
relies on the estimation of both: the model structure or complexity (the degree of a polynomial),
called the model selection of the parameters (coefficients) in some optimization procedure. Such
methods are put in paradigms more general than the ERM. It is assumed that the best prediction
is achieved for a model of the right complexity, found by applying the Occam’s razor principle.
This principle states that one should not presume more things than the required minimum; in the
selection process, among otherwise equivalent models, it advocates to choose the simplest one. The
Occam’s razor principle can be implemented in a number of ways, taking into account that there is a
trade-off between the model complexity (e.g. the number of free parameters) and the model fit to the
training data. The most typical examples are: structural risk minimization, regularization principle,
Bayesian inference and minimum description length. We will focus on the first two principles.

Structural Risk Minimization (SRM). The approximating functions are ordered according to their
complexity (like ordering polynomials by the degree) such that a nested structure is formed. The
complexity of functions linear in parameters is related to the number of parameters. In general,
it is estimated by the so-called Vapnik-Chervonenkis (VC) dimension

' Ð Ý
[403], which describes

the capacity of a set of functions 8 $�Ú ?�x m . In case of a binary classification,
' Ð Ý

is equivalent to
the maximal number of points

-
which can be separated into two classes in all � F ways by using

functions from the considered set 8 $ Ú ? . It means that for each possible labeling of
-

points into two
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classes, there exists a function from 8 $ Ú ? which takes j for examples coming from one class and
ý j

(or k ) for examples from the other class. An analytic upper-bound based on the VC dimension is
provided by Vapnik [403] to estimate the expected risk. Given

*
training points, with the probability

at least j ýÃÅ , the bound below remains true:
õ f $ Ú h¡É õ d � ¿ f $ Ú � D >=h à ' Ð Ý f Ê�º2» < >� � ¨ à j h ý Ê�º2»né ë* � (4.5)

The estimate above is used for the model selection of the optimal complexity in the following way.
For

*
training examples, the expected risk is controlled by two quantities: the empirical risk, which

depends on the chosen function for particular K and the VC dimension
' Ð Ý

of the considered set of
functions. Therefore, in order to control

' Ð Ý
, the approximating functions are ordered according to

their complexity such that if
m « 6Û8 $ Ú 4 Kgx � « ? , where

� «
is a set of parameters, and

m : Ð m < Ðm X Ð ����� , the corresponding VC dimensions fulfill
' � �Ð Ý É ' � �Ð Ý É ' � ?Ð Ý É ����� . The SRM principle chooses

the function from a subset
m «

for which the bound yields minimum. Note that the bound derivation
is based on the worst-case scenario, since the VC dimension considers all possible labellings of an
arbitrary configuration of points. The importance of this bound, however, is that it guarantees the
uniform convergence of

õ d � ¿ to the actual risk, formula (4.4), for a finite
' Ð Ý

(which is a necessary
and sufficient condition) [121, 403] and for the indicator functions (hence a classification problem).
It might not be true for other functions [121].

Regularization principle. This principle assumes a flexible set of approximating functions 8 $ Ú ? , but
the restriction in the solution results from an additional term capturing the complexity of the function$ Ú

. So, a penalized risk is minimized:
õ ¿ d > f $ Ú � D >=h 6 õ d � ¿ f K � D >=h à V�Z f $ Ú f ~ h+h � (4.6)

where
Z

is a nonnegative functional and the nonnegative
V
, independent of the training data, controls

the strength of the regularization. For
V 6åk , the penalized risk reduces to the empirical risk, while

for a large
V
, a simple solution is obtained, mostly ignoring the training examples. Hence, the model

estimate is described as a trade-off between fitting the data and a priori knowledge on the function’s
complexity (regularization term). The

Z
functional can be selected in many ways. The simplest

method counts the number of free parameters in the function, while a more sophisticated method
uses the ñ < norm of the parameters K or the curvature estimator of

$ Ú
. See also [147] for the relation

between this principle and the SRM.

In statistical learning, data are assumed to be represented by vectors in bounded regions in a feature
space, so the learned function should change smoothly over the space, avoiding high oscillations.
The smoother the function, the lower its complexity. So, functions of lower complexity are preferred
for finite sample sizes (the regularization term is meant to penalize complex functions more). In
the limit (when the number of training examples grows to infinity) complex functions offer better
solutions (the bias is small). In the case of classification, this phenomenon is illustrated in Fig. 4.5.

Bayesian inference. This principle assumes that a model
\

, e.g. a particular
$ Ú

, has been selected
adequately to describe the problem. The parameters K of the model

\
are assumed to be drawn

from a theoretical parameter distribution. So, a prior distribution over these unknown parameters K
is specified to capture our beliefs about the problem before seeing the data. The inference is then
based on the Bayes formula for updating the priors given the evidence from the data as

2�f \ � ! � C �ih 6f 2�f ! � C � � \ h 2�f \ h+h � 2�f ! � C ��h , where
2�f \ h (or in fact

2�f K h ) is the prior probability,
2ôf ! � C ��h is the

probability of observing the data,
2�f ! � C � � \ h is the likelihood, i.e. the probability that the data are

generated by the model
\

and
2ôf \ � ! � C �ih is the posterior probability of a model

\
given the data.

Hence, one tries to find a complete density function for the parameters K , e.g. specifying a Gaussian
density. As a result, all possible parameter values, although in different degree, play some role.
A preference for more simple models is encoded by encouraging particular prior distributions.
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Fig. 4.5: Complexity of classifiers vs. cardinality of the training set.

Minimum description length (MDL). This principle is based on the information-theoretic basis and
the concept of algorithmic complexity characterizing the randomness of the data. Briefly, it is
related to the shortest binary code describing the output data. The output is split into two parts:
model and noise contributions, which are encoded separately. The model is assumed to describe the
regularities in the data and it should contain a few easily encoded parameters. For some relations
between the MDL and the SRM, see [402].

4.1.4 Why is the statistical approach not good enough for learning from objects?

Even after such a brief review on statistical learning theory, the reader can be convinced that the
methods developed in a proper framework guarantee good solutions. The answer is affirmative,
provided that the problems to be solved are originally generated as points in a vector space, such
as Euclidean. There is a missing link between a collection of real or abstract objects to be learned
from and their proper representations to be used as a basis in a learning paradigm. In the statis-
tical approach, the description of objects is dramatically reduced to points in a vector space. The
analysis starts at this level, often neglecting the (one-way) correspondence between the objects and
the points. Also such a simplification of an object to a numerical description only (i.e. without any
structural information) precludes any inverse mapping, i.e. to retrieve the object itself (this is partly
possible in the structural representation of objects, e.g. from the skeleton of an object in an image,
its shape can be retrieved well enough). The objects are simply treated as if they have already been
generated as points in the space. Note that these assumptions are very strong. Since the connection
between the points and the objects is forgotten, any learning in such a framework is in fact learning
with respect to the assumed distributions realized by a sample in the space �a� . Hence, this learning
is in a purely mathematical sense. Besides the guarantees on providing good learning solutions,
one should be concerned with the guarantees that the representation of objects by points enables to
achieve that. For all these reasons, Goldfarb and his colleagues [153, 155–157, 160, 161] strongly
oppose the statistical approach to learning, separated from the ’real’ objects themselves.

Real objects possess their internal structure, organization or ’interconnectivity’, as e.g. observed
in their shapes. This property can be reflected by the connectivity of neighboring samples in the
sensory data, like in an image. However, in the traditional feature space representation, all the con-
tinuity of an object, all the structure is lost [59, 154, 156]. The structure information may partially
be encoded in some feature values, e.g. when features are defined as the responses of several im-
age (signal) filters, but in the representation itself it is not available anymore. This also holds for
the pixel representation of images, in which each pixel defines a separate dimension in a feature
space. The complete image resides there, but the fact that some pixels are neighboring and others
are remote is not expressed in the representation6. In fact, the Euclidean feature space assumes in-

6 The fact that consecutive features correspond to neighboring pixels in an image cannot be used in the feature-
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dependent feature contributions and, therefore, it precludes the possibility of reflecting the structure
of an image. The structure may be rediscovered to some extent by computing correlations between
pixel-features from a set of images or by trying to find a low-dimensional manifold on which the set
of images, represented as points, lies. Still, this is not the original structure. Moreover, the necessity
of learning them in such a way is disputable if the primary structure of an image, reflected by the
connectivity of neighboring pixels, is already given.

Structural representations, on the other hand, are specified in terms of instance’s components and
their interconnections. For a real object, it might be its structure. The structure, however, should be
regular enough to be described by a relatively small number of primitives, i.e. fundamental structural
elements, such as strokes, corners or other shape elements. For instance, shapes can be represented
as their skeletons, contours by their string representations, where each character in the string cor-
responds to some kind of a stroke. Also more abstract instances, such as articles in a database can
be represented structurally. An article might be organized in a hierarchical way, expressing the fact
that it is composed of a title, an introduction, body, conclusions and references. The body might
be e.g. an interview, a comment, a letter, a speech or a general writing. In turn, an interview can
be made with a famous artist, actor, writer, scientist, etc. In this way, the detailed information on
articles can be represented by trees. Other type of phenomena, e.g. a financial condition of a family,
might be captured by graphs, expressing the relations between all the important factors, such as
incomes of the family members, mortgage, loans, the number of children and their age, etc.

In general, structural PR [137] assumes that there exists sufficient and suitably formulated knowl-
edge to build a structural description of objects and classes. This knowledge is defined and encoded
either explicitly by an expert or implicitly by a set of (training) examples. In order to relate new
objects to the described classes, a (dis)similarity measure between objects and the structural de-
scription of objects and/or classes is needed. Like in the statistical approach, the demands here
are strong: suitable knowledge should be available to build the structural model and an informative
dissimilarity measure should be defined between the model and real-world observations.

The research of pattern recognition is meant to establish a link between object representations,
derived from their (sensor) measurements of objects or structural descriptions, and a learning algo-
rithm; see also [110] for some perspectives. In the statistical learning theory, the bounds ensuring
a good generalization (in classification: a small test error, given a small training error) are based
on the notion of a classifier’s complexity, which can be related to the VC dimension. For a binary
classification problem, this notion is derived for the worst configuration of

*
(training) points and

considering all � > labellings of them. This is a possible scenario to consider if the association to the
(real or abstract) objects one started from is neglected. From the PR point of view, this is completely
unrealistic to postulate a class of (similar) objects being described by arbitrarily labeled points. If
this had been the case, one would have chosen another representation. Basically, the representation
of objects is not accidental, it should be such that similar objects are close in their representations
(of course, one should also define what the closeness mean). This is the compactness hypothesis
[4, 98, 102]. (Ideally, also the true representation hypothesis [323] should hold, i.e. two close object
representations correspond to objects that resemble each other). Note that in order to solve a real
pattern recognition problem, such a subjective hypothesis is necessary to complement the available
objective information. For that reason, the bounds derived by Vapnik are strongly over-pessimistic.

In summary, the answer to the question of this section is: Suitable representations of objects should
be considered first before using or adapting the developed learning methodology. Such represen-
tations should possibly embody a priori knowledge on the class of objects as well as their possible

based representation. Features can be permuted and, in a Euclidean space, the configuration of points (representing the
images) is the same up to the rotation, while the structure of an image is completely lost by shuffling the pixels.
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Fig. 4.6: Proximity as unifying statistical and structural approaches to learning [323]. This dissertation
focuses on optimized dissimilarity representations.

structural information. There might be hybrid representations as well. Our work is concerned with
an example representation based on the notion of (dis)similarity and by this relying on the compact-
ness hypothesis. It is pioneering, not directly in the following methodology, but in the statement of
the learning problem and resulting adaptations.

4.2 The role of dissimilarity representations
Pattern recognition relies on the description of regularities in observations of classes of objects.
A class is a set of similar objects (e.g. sharing similar characteristics). This implies that the notion
of ’similarity’ is more fundamental than of a ’feature’ or a ’class’, since it is the similarity which
serves for grouping objects together and, thereby, it should play a crucial role in class constitution
[113, 115, 116]. Such a proximity should be possibly modeled such that a class has an efficient and
compact description. In applications, however, features often come before proximity is taken into
account. Using the notion of proximity (instead of features) as a primary concept renews the area of
statistical learning in one of its foundations, i.e. the representation of objects [109, 180, 275, 276].
Conceptually, it is a novel approach, but some other researchers are conscious of the essential role
that proximity plays for the class description [47, 113, 115, 151, 153, 160, 161, 206, 275, 276,
382]. Proximity measures can capture both the statistical and structural information of patterns and,
thereby, they form a natural bridge between these approaches. Two main types of representations
can be here considered: the ones which are learned and the ones which are fixed or optimized. This
dissertation builds some foundations for the latter, called simply proximity representations. Learned
representations remain an issue for further research.

Proximity representations can be divided into relative and conceptual representations. In the relative
representation, pairs of objects are related and compared by measuring proximity between them.
Consequently, each object is described by a set of proximities to other objects [106, 109, 293,
301]. They may be defined on a feature-based representation, see Fig.4.6, by using the distances
between feature vectors, but also on the structural representation by distances between graphs or
other structural models, or directly on the raw data, e.g. by similarities between shapes in images.
So, proximity representations become very general as they combine all types of approaches. They
describe the sampled domain in a relative way, based on the comparison of objects. Remember
that an object is meant as a general notion of a real object, any entity process, phenomenon or any
abstract instance. The basic principle is to be able to relate them to each other.

Proximity representations can be extended to depict a relation of one entity to a number of them
or of a model to the whole concept. Such representations are called conceptual representations.
Examples are a resemblance of a particular mug to a class of mugs, hence a similarity of an object
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Fig. 4.7: A dissimilarity representation
"gf D � 1 h . Here, the representation objects come from the set D .

to a (sampled) domain, a similarity of a language to a group of European languages, a growth
and development of a child to a model development or an image query serving the purpose of
retrieving similar images, in a process of redefining the query. Also, in the statistical sense, the
posterior probabilities of an object ~ (or in fact its feature-based representation) with respect to 

classes, form a similarity conceptual representation
ÿ 2�f ~ � class 1 h � ����� � 2�f ~ � class C h � . Conceptual

representations will appear in chapter 8, where one-class classifiers are built based on a proximity
of an object to a class, and in chapter 10 in the context of classifier combining techniques. Now, we
discuss relative representations, where our main focus is on dissimilarity representations.

Def. 4.1 (Dissimilarity representation) Assume a collection of objects 1 476 8 . : � . < � ����� � . > ? ,
called a representation set, and a dissimilarity7 measure

!
. The dissimilarity

!
is computed or

derived from the objects directly, their sensor representations, or some other intermediate repre-
sentations. To maintain generality, a notation of

! f . / � . º h is used, instead of
! f # f . / h � # f . º h+h , where# f . / h corresponds to some possible intermediate representation of . / . A dissimilarity representation

(DR) of an object ~ is a set of dissimilarities between ~ and the objects of 1 expressed as a vector"gf ~ � 1 h 6 ÿ ! f ~ � . : h � ! f ~ � . < h � ����� � ! f ~ � . >¬h � . Consequently, for a collection of objects D , it extends to
a dissimilarity matrix

"5f D � 1 h . The idea of a representation set is that 1 is a relatively small set
of representative objects for the domain considered. The most simple DR is then

"gf 1 � 1 h , hence
a square dissimilarity matrix with a zero diagonal. In general, 1 might be a subset of D ( 1 ã D ) or
they might be completely distinct sets. See also Fig. 4.7.

Although in a matrix notion, there exists some resemblance between dissimilarity and feature-based
representations, yet, the meaning is completely different; see Fig. 4.8 for details.

Dissimilarity representations are meant to be used in (statistical) learning. An important question
refers to the characteristics of informative dissimilarity measures. For instance, for a robust real-
world object description, a measure should incorporate the necessary invariance, like translation,
rotation, scale and illumination invariance. Essentially, the measure should be such that the com-
pactness hypothesis [98, 102] holds, i.e. representations of similar objects are similar. This means
that a small variation of an object should impose only a small change of a proximity value, hence the
natural variation of objects of the same class should be captured there. Many dissimilarity measures
are constructed by solving object matching problems, often defined in terms of the minimization
of the mean square error or mean absolute error by the use of affine transformations. This often
corresponds to the Euclidean or city block distance, which may not fully integrate the mentioned
invariances. Such computed distances can not directly capture the structural information of the ob-

7 If � is a similarity (or a proximity) measure, the corresponding representation is called appropriately. � is expected
to capture the notion of closeness between two objects, however it might be non-metric. In general, we require that � is
nonnegative and obeys the reflexivity condition; see Def. 2.30.
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� f D � c h (left) vs a dissimilarity representation

"gf D � 1 h (right).
Assume DÛ476ê8 C Ù � ����� � C Ý ? is a set of training objects and

c 6�8 # Ù � ����� � # ä ? are the features. An object
C o

is then represented as a vector of its feature values � f C o � # ~ h i.e.
� f C oï� c h 6 ÿ � f C o%� # Ù h � ����� � � f C o%� # ä h � . The

feature
# ~

is represented as a vector
� f D � # ~ h . Hence, features correspond to dimensions in a (Euclidean)

vector space, where objects become points. A dissimilarity representation describes the relations between
objects, hence additionally, a collection of representatives 1Î476¢8 . Ù � ����� � . Õ ? is needed. In the most simple
case, 15476ôD and for a quasimetric measure, the resulting

"gf 1 � 1 h is a symmetric matrix with a zero diagonal.
1 might be a subset of D or a distinct set. An object

C o
is represented by a vector of its dissimilarities

! f C o%� . ~ h
to the objects from 1 , i.e.

"gf C o � 1 h 476 ÿ ! f C o � . Ù h � ����� � ! f C o � . Õ h � . "gf D � . ~ h 476 ÿ ! f C Ù � . ~ h � ����� � ! f C Ý � . ~ h � Û refers
to dissimilarities to a particular object . ~ . Any entry in

�
is a feature value for a particular object, while any

entry in
"

is a similarity value between two objects.

jects since they are based on sums of (weighted) independent contributions (referring only to some
object properties). On the other hand, non-Euclidean or non-metric measures have become more
popular, e.g. for measuring shape distances [93, 207] or others [115, 180, 206, 334].

For some reasons, such as measurement noise present in the sensory data there might be a necessity
to improve the resulting dissimilarity measures. Noise can be reduced either in a pre-processing
stage of the raw data or, if the measures are just given or directly result from an earlier analysis,
by the use of (non-)linear transformations. Such transformations may be also applied to impose
a more compact class description, e.g. by making large distances smaller, or (if required) by impos-
ing particular characteristics of distances, e.g. a Euclidean behavior. Some of such transformations
are described in section 3.1.

Since different proximity measures, as defined in feature spaces, between graphs and on the raw
sensor data may reflect various aspects of data characteristics, as well as various kinds of expert
knowledge, their combination might be beneficial. They can be considered either jointly or ex-
clusively, or they might form a new proximity representation. The possibility of a combination
makes a dissimilarity representation a more universal representation due to the increased flexibility.
Now, a complex problem can be described by a number of DRs between their different aspects or
characteristics; see also chapter 10. For instance, an article in a database can be represented (in
intermediate stages) as a point in a feature space, where each feature corresponds to the frequency
of the specified keyword, but also as a tree organization of a title, an introduction, body, conclusions
and references, etc. Next, two different dissimilarity measures can be designed in the statistical
and structural approaches, yielding two distinct DRs, which can be further combined. Combining
proximity measures (or their transformed versions) [292] is closely related to the area of combining
classifiers [217].

Another fundamental question refers to the learning paradigms, especially those which deal either
with non-metric or non-Euclidean measures. Basically, they take place in spaces, already introduced
in chapter 2. More precisely, they built on methods of linear algebra and functional analysis, as well
as statistical learning [97, 191, 402], kernel methods [74, 352, 403] and approximate embeddings in
pseudo-Euclidean spaces [103, 152, 295, 301], as presented in chapter 3. Further on, the usefulness
of pretopological spaces, offering poorer axioms than Euclidean spaces, can also be studied. The
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compactness hypothesis may serve as a basic demand for building pretopological spaces from more
general neighborhood relations. The learning approaches are discussed in the next section.

Learned proximity representations. We realize that the developed framework for dissimilarity repre-
sentations is only a first step in the direction of integrating both statistical and structural approaches,
the problem of constructing an informative representation and proper learning methodologies. For
dissimilarity representations, the measure itself is assumed to be given. To some extent, it can be
optimized with respect to a set of objects, but rather in a limited way, like the specification of some
parameters. The next step is to investigate how dissimilarity measures can be learned from a set
of examples. For this purpose, a learned representation can be considered, primarily based on the
structure present in real objects. Some proposals in this direction have been made by Goldfarb and
his colleagues; see e.g. [154, 159–161].

Two possibilities can be now considered: to learn a relative representation or to learn a conceptual
representation. The first focuses on defining a dissimilarity measure and a set of prototypes to
which other objects will refer. Such a representation is used further for learning. The conceptual
representation describes a dissimilarity of an object to a class. Such a dissimilarity is related to the
costs (weights of transformations) of generating an object from a set of primitives (basic descriptors)
in the context of other objects within a class, as well as objects outside this class. This is an attempt
of a truly inductive way of learning [161], where not only the essential transformations and the
weights are learned, but primitives as well. Such a formulation is close to the one-class classification
[386, 390]. How to learn such measures is open for future research.

Another simpler approach is to combine the strengths of the structural and statistical frameworks on
the level of a relative representation. Assume that one deals with objects that possess such a struc-
ture, such as spectra, time-signal, images or text documents. The first step is to define a small
collection of fundamental structural detectors, yet general enough to be applicable in many prob-
lems, independent of a specific expert knowledge of the application. This means that such detec-
tors are defined for the given measurement domain, e.g. spectra or images. The useful subpatterns
should be then identified by the detectors when applied to the consecutive measurement values. The
inter-relationships between the subpatterns should be captured in some relational intermediate rep-
resentation (e.g. by a graph or by a string). These would be the basis for the matching process and
the derivation of the final dissimilarity. The learning relies then on the learning of proper weights
(contributions) assigned to the identified subpatterns such that the specified dissimilarity is optimal
for the discrimination between the classes. The most simple example is the edit-distance between
string descriptions of objects, however, more general approaches are needed to be developed. Note
that one may also consider statistical feature extractors (such as wavelets or Gabor filters), which
work on the consecutive measurements, to be the building blocks of the learned dissimilarity. How
to learn such measures is open for research.

4.2.1 Dissimilarity representations: learning

Statistical learning approaches are adapted here for dissimilarity representations. The added value
of a dissimilarity-based framework lies not directly in the following methodology, but in the repre-
sentation itself. As we discussed in the previous section, a dissimilarity representation can include
both the statistical and structural properties of data. Hence, instead of a single representation of a
problem, one may also consider either a complex representation, as one built from many dissimi-
larity representations or a hybrid representation, where different aspects of the data are described in
various ways such as by features, dissimilarities, and inference rules. Then, one needs to face the
task of combining the expertise [266, 267]; see also section 10.

We will concentrate here on the classification task. Given a training set of
,

classes, a classifier
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Fig. 4.9: An illustration of a classification process in dissimilarity spaces.

tries to model a functional dependence between the data representation and the class indicators (la-
bels) such that a new object can be assigned to a specific class. The goal is the minimization of
(the cost of) misclassification such that novel examples are possibly correctly labeled. The prob-
lem to be faced in establishing classification methodologies for dissimilarities is that the measures
used in practice are often non-Euclidean or even non-metric. Nevertheless, they may perform well
and it remains of practical interest to study their properties fundamentally. Since DRs encode the
information on objects dissimilarities in a numerical way, the nature of learning is unavoidably nu-
merical, which leads to the use of spaces. In general, we can distinguish three main approaches to
dissimilarity representations, where all of them are interpreted in the context of some spaces.

Assume a dissimilarity representation
"gf D � 1 h , where 1 is a representation set and D is a train-

ing set. The measure
!

is general, our basic requirements are only the nonnegativity and reflexivity,
Def.2.30. In the first pretopological approach, making use (directly or not) of pretopological spaces,
the dissimilarities between the objects are interpreted directly. This means that a dissimilarity rep-
resentation describes an abstract space6, where the neighborhoods or closure operators play a key
role; see also section 2.1. These are defined based on the dissimilarities to the objects from 1 . An
example classifier is the

)
-nearest neighbor rule (

)
-NN).

The second dissimilarity space approach addresses a dissimilarity representation as a data-
dependent mapping specified by the representation set 1 . A mapping

"gf ��� 1 h 4 � ² � > is defined
as
"5f ��� 1 h 6 ÿ ! f ��� . : h ! f � � . < h ����� ! f ��� .&>=h � . Note that

�
expresses either objects themselves, or an

original or intermediate feature space of objects, which might not be given explicitly. The dimen-
sionality of such a space is controlled by the cardinality of 1 . Using this formulation, classifiers can
be constructed directly on the DRs, as in a dissimilarity space, where each dimension corresponds
to a dissimilarity to a representative, say

! fïî � .¬/%h . Since dissimilarities are nonnegative, all the data
are mapped as points to a nonnegative part of the complete space. Many traditional classifiers can
be applied there [290, 293, 301]. See also Fig. 4.9 and section 4.4.

The third embedding approach relies on a DR, where 1 ã D . First, a spatial representation of
the symmetric

"5f 1 � 1 h is found (a space � where the objects are mapped as points such that their
distances reflect the actual dissimilarities; see section 3.4) and then, the remaining objects D � 1 ,
if exist, are projected there. Note that

"5f 1 � 1 h should be a symmetric matrix. Next, a classifier,
e.g. a linear classifier built in feature vector spaces, is trained in the determined space. New data

B
,

described as
"5f B � 1 h , are first projected to the space � and then the classifier is applied. See also

Fig. 4.10. Further details can be found in section 4.5.

In summary, to construct a classifier for dissimilarity representations, the training set D of
-

objects

6 This is an abstract space in the sense that it is not explicitly given. It is defined by a set of available objects,
performed measurements and the number of factors, such as camera positions or lighting conditions, playing role in the
measurement process. So, this abstract space might be seen as a measurement space.
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Fig. 4.10: An illustration of a classification process in the embedding approach.

and the representation set 1 [99] of
*

objects are used. 1 is a set of prototypes, possibly covering
all the present classes. 1 is usually considered to be a subset of D ( 1 ã D ), although 1 and D might
be disjunct for the first two approaches. In the former case, 1 might be chosen from D randomly or
in a systematic way, starting from 1Í476ED and the complete representation

"5f D � D h . For instance,
*

objects can be chosen such that the minimum distance between any of them is maximized. Another
possibility is based on a greedy approach. Starting from a randomly chosen object, in an iterative
procedure, an object is added which is the most dissimilar to all objects already chosen. It might be
done globally or for each class separately. In the case when the most dissimilar objects are chosen,
they are likely to be outliers or positioned between the classes. Some of the selection methods will
be discussed in chapter 9. In the learning process, a classifier is constructed by making use of the-��g* "5f D � 1 h , relating all training objects to all the prototypes. The information on a set D s of A
new objects is provided by their dissimilarities to 1 , i.e. an A ��* matrix

"§f D s � 1 h .
4.3 Classification in generalized topological spaces
Let

I
be either a finite set or a vector space. Consider a generalized metric space

f�I � _ih with
a dissimilarity measure _ 4 I � I ² �arp such that _ f ~ � ~ h 6�k . Let

	`e f ~ h 47698�� x I 4 _ f ~ � � h¨  Q ? be a
Q
-

ball for
Q Ï k . For each ~ x I define its minimal neighborhood as

	 e �K� f ~ h 476 8�� x I 4 _ f ~ � � h   Q >±> ? ,
where

Q >±> 6§jÇ�òk£k£k£k�j î _ f ~ �+*@* f ~ h+h and _ f ~ �+*@* f ~ h+h is the dissimilarity of ~ to its nearest neighbor*@* f ~ h . By the reflexivity property of _ , ~ x 	 e �K� f ~ h . A growth function gr is now defined on the
power set

��f�I h as a generalized closure operator such that for every
� ã�I

(1) gr
fµ´ h 6 ´ �

(2) gr
f ~ h 6 ~ s 	 e ��� f ~ h 6 	 e �K� f ~ h �

(3) gr
f � h 6�® æ{ç8i gr

f ~ h , where
� x I .

It is straightforward to check that this growth function fulfills the axioms (1) – (4) of Def. 2.9, hencef�I �
gr h is a pretopological space. Such a closure operator describes the

Q >±> -neighbors pretopology.
Imagine now that

Q >±> does not depend on ~ , hence
Q >±> 476 � Ï k . If � is chosen as ,$Ç³È æ{ç{è _ f ~ �+*@* f ~ h+h ,

then the growth of ~ becomes gr
f ~ h 6 	�� f ~ h .

If
I

is a Hilbert vector space, then due to the property of convex neighborhoods for a metric distance_ , gr
< f ~ h 476 gr

f
gr
f ~ h+h 6 	 < � f ~ h and, more generally, gr � f ~ h 6 	 �

� f ~ h for � x�ð . For a non-metric
measure _ , this is not true, in general. Still it may happen that

	
�
� f ~ h ã gr � f ~ h from below7. See

7 We will show that
· �¹¸ £³²�� « gr

� £³²8� for a metric dissimilarity µ . Note that
· �¹¸ £©²8� «é±�=
´7µ�£�=���²��¶.1·j%X¹ and

gr
� £³²���«»º½¼¿¾ _ÁÀ  $à ¢ · ¸ £�����«$±X£�=������m´Nµ�£�=������p.z%ÃÂ µ8£����¯²8�p.z%m¹ .
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x

2εgr(gr(x)) = B  (x)gr(x) = B (x)ε gr(gr(x))gr(x) = B (x)ε

x

Fig. 4.11: Assume a vector space
I

with the additional dissimilarity _ (it might be for instance a mea-
surement space). Example growth operators gr

f ~ h 6 	�Á f ~ h with a fixed �ôÏ k are shown, when _ is a
metric distance (left) or when _ is a non-metric dissimilarity (right). In the non-metric case, gr

f
gr
f ~ h+h is not

necessarily identical to
	 Ø Á f ~ h , as in this metric case.

also Fig. 4.11 for an illustration.

Alternatively, one can define the
)
-nearest neighbor pretopology, where the growth of ~ is given

as gr
f ~ h 6 8��ô4�� belongs to a set of

)
-th nearest neighbors of ~ ? , satisfying gr

fµ´ h 6 ´ and gr
f � h 6

® æ{ç8i gr
f ~ h . It is then straightforward to check that gr fulfills the axioms of pretopology, Def. 2.9.

Another possibility is to use neighborhoods to define the neighborhood basis at ~ . Let
	 � f ~ h 476

8�� x I 4 _ f ~ � � h� ��£? be an � -ball for a positive � . Then, the neighborhood basis is defined aso � f ~ h 6�8 	 � f ~ h 4 � 6 jÇ�òk£k£k£k�j î _ f ~ �+*@* «=f ~ h+h � ) 6tj � � � ����� ? , where
*@* « f ~ h is the

)
-th neighbor of ~ .

Consequently,
f�I � o � h describes a pretopological space.

Consider now a training set D and a dissimilarity representation
"5f D � 1 h . A generalized closure

(growth) operator or neighborhood basis can be defined for every class
d / based on

"gf D / � 1 / h , where
D / Ð D and 1 / Ð 1 correspond to the objects from

d / . So,
	�� Ä is the neighborhood basis for the

class
d / . An unknown object is assigned to the class

d «
if it belongs to a generalized closure or a

neighborhood of one or more objects from the class
d «

only. If no single class exists, then the sets	
�
� Ä for � x$ð can be used instead as an approximation of the successive growth by a repetitive

use of the generalized closure (in Hilbert vector space with a growth function defined by a metric
distance,

	
�
� f ~ h ã gr � f ~ h holds). If an object belongs to the intersection of neighborhoods (or

closures) of two (or more) classes, then the final decision should be made by looking at the majority
of objects from a particular class within the neighborhoods.

It means that the decision rules built on the dissimilarities directly can be interpreted as classifiers
in pretopological spaces. Examples are variants of the nearest neighbor rules. A classifier based on
the repetitive closure operators in pretopological spaces (hence based on growing neighborhoods)
was also discussed in [134, 240], which we discovered just in the moment of writing this thesis.

Nearest neighbor (NN) rule. A straightforward approach to dissimilarities leads to the nearest neigh-
bor rule [71, 138] or, more generally, to the instance-based learning [2]. In its simplest form, the
j -NN rule assigns a new object to the class of its nearest neighbor from the representation set 1 by
finding minimal in the rows of

"§f D s � 1 h , where D s is a test set. (Originally, 1 476�D is assumed.)
The

)
-NN rule is based on majority voting, i.e. an unknown object becomes a member of the class

the most frequently occurring among the
)

nearest neighbors. Usually,
)

is assumed to be odd to
avoid ties (for two-class problems). Note that when

)
is fixed, no training is involved. Traditionally,

the
)
-NN rule is applied for the data represented as vectors in a feature space, often based on the

Euclidean or city block metrics (which means that indirectly the corresponding dissimilarity repre-
Ä Let =ù · ¸ £©²8�ÆÅ µ�£�=���²��,. ·j% . In a Hilbert vector space with the metric µ , there exist a unique middle point

such that µ8£D=Ê�¯²8�8« µ�£�=�������� µ�£����¯²8� . Hence, µ�£�=�������.�% and µ�£�����²���.�% . It follows that =�ù gr
� £³²�� and consequently,· �¹¸ £³²��ÈÇ gr

� £³²8� .É Let =�ù gr
� £©²8�ÊÅ µ�£�=������¯.<%ËÂ µ8£����¯²8�¿.<% . Since µ is nonnegative, then µ8£D=Ê����� � µ8£�����²8�¿. ·7% . By the

triangle inequality, µ8£©²��/=X��. µ8£D=Ê���â� � µ8£����¯²8� . Hence, µ8£©²���=m��·<% . It follows that =�ù · �¹¸ £³²�� and, consequently,
gr
� £³²��ÈÇ · �Ì¸ £³²8� . .
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sentation is used). Yet, its principles can be extended to other (non-metric) dissimilarity measures,
obeying the compactness hypothesis; see also section 4.1.

The
)
-NN classifier is attractive, since it is simple, intuitively appealing and no prior knowledge of

the data distributions is required. It can estimate complex boundaries locally and differently for each
new instance (hence its adaptations can be seen as an example of transductive learning). Moreover, it
is known [87, 97] that for the

)
-NN rule

# « F�F , the empirical risk
õ d � ¿ f # « F�F h converges uniformly

to the actual risk
õ « F�F with increasing

*
, see also equation (4.4), such that

õ f # J h×É ����� É õ < Ò p : F�F Éõ < Ò � : F�F É ����� õ X F�F É õ : F�F É õ f # J h f � ý óó � : õ f # J h+h , where
õ f # J h is the Bayes error and

,
is the

number of classes. This means that the
)
-NN rule is asymptotically at most twice as bad as the

Bayes rule; see also the book of Devroye et al. [87] for other bounds. In practice, when one deals
with finite sample sizes, the asymptotic inequalities will not hold. The

)
-NN rule is expected to

perform well, provided that the domain of a problem, hence the data are well sampled. In cases,
where at least one of the classes is undersampled or badly sampled, the

)
-NN rule deteriorates.

The
)
-NN rule can also be interpreted as the one which locally tries to estimate the posterior prob-

abilities. These estimates rely in fact on a neighborhood determined by the
)
-furthest neighbor.

For small
)
, the nearest neighbors might often lie further away due to the data sparseness or the

estimates might be poor due to noisy examples. Increasing
)

allows one to reduce the noise influ-
ence, however, the nearest neighbors with large dissimilarities in the voting scheme may lead to
an unnecessary error. Therefore, a weighted voting [87] might be an option, where the neighbor
contributions are weighted accordingly to their dissimilarities to a particular object.

Edited and condensed nearest neighbor rules. Despite the simplicity and good performance of the)
-NN rule, the criticism points at both the space requirement to store the entire training set and the

computational expense of computing dissimilarity to all training examples. Consequently, there has
been an interest in condensing the training set in order to reduce its size; see e.g. [77, 187, 422]. In
our terminology this is equivalent to a selection of a proper representation set 1 out of the training
set D , hence it might be called a prototype selection, as well. Also editing [86] is considered, which
goal is to increase the accuracy of the

)
-NN predictions, given noise in the training data. A basic

editing algorithm removes noisy instances as well as close border cases, leaving smoother decision
boundaries. It also retains all ’internal’ points; i.e. it does not reduce the number of objects as much
as most other reduction algorithms. More on condensing can be found in in section 9.2.

Many variants of the NN-rule, taking into account the local structure of the data or weighting the
neighbor contributions appropriately, have been invented or adopted for feature based represen-
tations, see section 5.5 for a brief information. The question on how such measures should be
constructed is beyond the scope of this dissertation.

4.4 Classification in dissimilarity spaces

The novelty of our approach relies on interpreting
"gf D � 1 h as a representation of a vector space,

called a dissimilarity space, where each dimension corresponds to the dissimilarity to an object
from the set 1 .

"gf � � 1 h defines then a vector8 consisting of
*

dissimilarities found between the
object

�
and all the objects from 1 . see also Def. 4.1 and Fig. 4.9. Therefore,

"5fïî � 1 h is seen
as a data-dependent mapping onto an

*
-dimensional dissimilarity space. The advantage of such

a representation is that any traditional classifier operating in vector spaces can be used.

8 Here, <$£D=Ê�ti�� is a row vector, however, to avoid extra complications, <$£�=��@i�� is silently assumed to be a column
vector, if necessary. Hence <$£�=��@i��m´�«�<$£�=��@i���� .
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Fig. 4.12: Metric 2D dissimi-
larity space.

If the dissimilarity measure
!

is a metric, then all vectors
"gf � � 1 h

lie in an
*

-dimensional prism, bounded from below by a hyperplane
on which the objects from 1 are and which is bounded from above
in case of bounded dissimilarities. Consider a 2D representation"5f ��� 1 h , where 1 6 ÿ . / � . º � . For brevity, denote that

! / º 476 ! f . / � . º h
and ~ 476 ! f ��� . / h , and �¡476 ! f ��� . º h for an object

�
. Then, for a metric

!
,

the following triangle inequalities should hold: ~¡à � Ì ! /7º , ! /7º à�~ Ì �
and

! /7º à � Ì ~ . Depending on ~ and � , a prism is formed as denoted in
Fig. 4.12. Note that in higher-dimensional spaces, the prism is asym-
metric and the vertices of its base do not lie on the axes (e.g. in a 3D
space the vertices lie in the ~ � , � � and ~ � planes). In principle,

�
may

be placed anywhere in a dissimilarity space
"gfïî � 1 h only if the triangle inequality is completely vio-

lated. This is, however, not possible from the practical point of view, because then the compactness
hypothesis will not be fulfilled. Consequently, this would mean that

!
has lost its discriminating

properties of being (relatively) small for similar objects. Therefore, the measure
!
, if not metric, it

has to be sufficiently close to a metric and, thereby,
"5f ��� 1 h will still lie either in the prism or in its

relatively close neighborhood9. See Fig. 4.13 to get some intuition.

A justification for the construction of classifiers in dissimilarity spaces is as follows. The property
that dissimilarities should be small for similar objects, i.e. belonging to the same class, and large
for distinct objects, gives a possibility for a discrimination. Thereby,

"5fïî � .@/ïh defined by the dis-
similarities to the representative .=/ can be interpreted as a ’feature’. If .=/ is a characteristic object
of a particular class, then the discrimination power of

"5fïî � . / h can be large. If . / is a drastically
atypical object of its class, then

"5fïî � . / h may not be informative. However, the strength lies in using
all dissimilarity values

"gfïî � 1 h . Another reasoning relies on the fact that if the objects ~ and � are
similar in reality and the dissimilarity

! f ~ � � h is small, then for some other objects
�
, the dissimilari-

ties
! f ~ �
� h and

! f � �
� h might not express similar values if the measure is non-metric. However, is the
dissimilarities of ~ and � to a given set of prototypes 1 are inspected, one can expect that, although
the individual values may differ, in their entirety, the vectors

"5f ~ � 1 h and
"5f ��� 1 h are correlated. If

so, then the representations
"gf ~ � 1 h and

"5f ��� 1 h are close in a dissimilarity space. Consequently,
the dissimilarity space approach should be useful for non-metric measures.

An important point can be made for metric distances. A max-norm dissimilarity space is in fact the
result of an embedding of a metric distance representation

"
, as presented in Lemma 3.7. In other

words, this means that the max-norm distance in a dissimilarity space
"gfïî � 1 h ! ¯

f ! f . / � 1 h � ! f . º � 1 h+h
is equal to the original distance

! f .=/ � .¨º±h . This justifies the construction of a dissimilarity space for
a metric distance.

One may wonder what the added value of such a representation over a feature-based representation
is, if the traditional classifiers designed for vectors spaces may be applied in the end. First of
all, the strength of a dissimilarity representation relies on its flexibility to encode both statistical
and structural characteristics of the data, so it is a representation, where object properties can be
captured more adequately. Hence, more emphasis and knowledge is put to a class of similar objects.
Since a DR is a numerical description, its interpretation will take place in some space. The choice
of a vector space

"5fïî � 1 h is in agreement with its mathematical concept in the following way. The
dimensions of such a space are now dissimilarities to the prototypes which are derived according
to a specified measure. Hence, they convey homogeneous type of information. In that sense, the
dimensions are equally important. This is not valid for a general feature-based representation, where

9 This is not always true. If one considers a power transformation of e.g. a metric, which as a monotonic transfor-
mation preserves the order of dissimilarities, then a large deviation from the triangle inequality can be expected. For
instance, this happens for � ´�«�� �ê � for � ê taking values in � ���ìë7� .
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Fig. 4.13: Examples of 2D dissimilarity spaces and linear classifiers for a subset of handwritten digits O
and

L
. Two dissimilarity representations

"5f D � 1 h are shown based on the Euclidean distance (metric) be-
tween blurred images and the modified Hausdorff distance (non-metric) between image contours; see also
section 5.4. 1 is randomly chosen and consist of two examples, one for each digit.

features have different character and range, as for instance weight or length. Another advantage of
a DR is that since a dissimilarity measure already possibly encodes the object structure and/or other
characteristics, the designed classifiers might be chosen as to be simple, e.g. linear models.

Defining a well-discriminating dissimilarity measure for a non-trivial learning problem is difficult.
Designing such a measure is equivalent to defining good features in a traditional feature-based
classification problem. If a good measure can be found and a training set is representative, then the)

-NN rule is expected to perform well. The decision of the
)
-NN is based on local neighborhoods

and it is, in general, sensitive to noise. It means that
)

nearest neighbors found might not be the best
representatives for making a decision to which class an object should be assigned. In cases of small
or non-representative training sets, a better generalization can be achieved by a classifier built in a
dissimilarity space.

For instance, a linear classifier in a dissimilarity space is a weighted linear combination of dis-
similarities between an object and the representation examples. The weights are optimized on the
training set and large weights (in magnitude) emphasize objects which essentially influence the final
decision. By doing this, a more global classifier can be built, by which its sensitivity to noisy repre-
sentative examples is reduced. Our experience confirms that a linear or quadratic classifier can often
generalize better than the

)
-NN rule, especially for a small representation set 1 ; see also [291].

4.4.1 Classifiers"gf ~ � 1 h is now considered as an
- � j vector.

"gf D � 1 h describes an
- �å*

dissimilarity matrix.
A linear classifier built in a dissimilarity space

"5fïî � 1 h is, in general, expressed as

# f "5f ~ � 1 h+h 6
>3
º�| : P º ! f ~ � .¨ºÃh à�P r 6 H ¹ "gf ~ � 1 h à�P r � (4.7)

In fact,
#

written above is just a linear function. In the training process, it is designed to be the
boundary between the classes. The classifier is a function returning the class assignments. Usually,
one assumes that the equation

# f "gf ~ � 1 h+h 6�k defines a classifier, hence for a two-class problem, the
sign of

# f "5f ��� 1 h+h determines which class
�

will belong to. For simplicity, we will only discuss the
form of

#
in our further considerations.
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Classifiers originally defined in feature vector spaces can be applied to dissimilarity representations.
Some of them are briefly described here; see [97, 138, 191, 317] for a more elaborate introduction.
In all the descriptions below, we will distinguish

,
classes, usually two, since each multi-class

classification problem can be decomposed into a number of two-class problems. The
)
-th class with

cardinality
* «

is denoted by
d «

,
) 6 j � ����� � , , and its prior probability by . f d « h . The class mean

vectors found in the space
"gfïî � 1 h are denoted by í / and the overall mean is given by í . When

classifiers are described in features spaces, for simplicity, the training pairs 8 f �³/ � � /ïh�? >/�| : , where � /
is a vector and � / 698 ý j � j ? is a label, are considered.

Normal density based linear/quadratic classifiers (NLC/NQC). Most of the commonly-used dissimi-
larity measures, like Euclidean, city block or Hamming distance, are based on sums of differences
between measurements. The central limit theorem states that the sum of iid random variables tends
to be normally distributed in the limit, provided that none of the variances of the sum’s components
dominates (otherwise, the distribution is î < ). An approximation can already be good for a relatively
small number of variables, e.g. such as j�k . Practice shows that summation-based distances which
are built from many components of similar variances are often approximately normally distributed
(in fact, this is a clipped distribution due to the nonnegativity of dissimilarities). This suggests that
the (regularized) linear/quadratic normal density based classifiers [317], which assume normal class
distributions, should be of use in dissimilarity spaces. For a two-class problem, the NLC based on
the set 1 is given by:

# f "gf ~ � 1 h+h 6 ÿ "gf ~ � 1 h ý j� f í : à í < h � ¹  � : f í : ý í < h à Ê�º2» . f d : h. f d <Çh � (4.8)

and the NQC is given by

# f "gf ~ � 1 h+h 6
<3
/}| :

f ý j h / f "gf ~ � 1 h ý í / h ¹  � :/ f "5f ~ � 1 h ý í / h à � Ê�º2» . f d :uh. f d <Çh à Ê�º2» �  : ��  < � � (4.9)

where
 : and

 < are the estimated class covariance matrices and
 476 f  : à  <�h �m� is the sample

covariance matrix, determined in a dissimilarity space. The value of
f "5f ~ � 1 h ý í / h ¹  � :/ f "5f ~ � 1 h ý

í / h is the square Mahalanobis distance between
"5f ~ � 1 h and the class mean í / ; see a paragraph on

quantitative data in section 5.1.

When
 

(
 : or

 < ) becomes singular, its inverse cannot be computed. A solution is offered by using
a regularized version instead [317] as

 
reg 6 f j ý V h  à V ( , where

(
is the identity matrix. Since it

is hard to choose a proper
V
, in our implementations we make use of the following regularization: �w d æ 6 f j ý � V h  à V

diag
f  h à �> trace

f  h ( (
* 6 � 1 � ). The regularization term is now expressed

relatively to the variances, so it can be determined more easily. In practice,
V

equals ki�òkY , ki�òk�j or
less. The resulting regularized classifiers are called appropriately and denoted by the RNLC and
RNQC8.

Strongly reqularized quadratic classifiers (SRQC). This classifier is similar to the NQC defined
above, but with a difference in the used regularization which is expressed by diminishing the in-
fluence of covariances with respect to variances. This means that each class covariance matrix is
estimated as

 ^/ 476 f j ý Z h  / à Z . f d /%h diag
f  /%h , where Z x ÿ k � j�� . If Za6�k , then the classifier reduces

to the NQC, while if Z�6 j , then the classifier becomes the scaled nearest mean linear classifier
[138, 367]. So, the variation of Z corresponds to a change between these two extremes. We often
use Za6�ki� � or ki� L , where we become closer to one of the extreme cases.

8 Although the NLC and NQC classifiers rely on the ERM principle, their regularized equivalents, the RNLC and
RQNC, as well as the SRQC are based on the regularization of the covariance matrices. This, in turn, allows for finding
their bounded inverses, which implies that the classifier’s weights are bounded as well. So, this is an indirect attempt
for the use of the regularization principle; see section 4.1.3.2.
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Fisher and pseudo-Fisher linear discriminants (FLD and PFLD). The Fisher linear discriminant is
a linear decision rule obtained by maximizing the Fisher criterion, i.e. ,/. � H H � = _ HH � =ðï H , where

 � 6
z
ó« | : * «&f í « ý í h f í « ý í h ¹ is the between-class scatter and

 òñ
is the within-class scatter (sum

of the class covariance matrices) [97, 138]. It is known that for a two-class problem with equally
probable classes, the FLD is equivalent to the NLC. For a dissimilarity representation

"gf D � 1 h , the
FLD [138] is constructed as:

# f "5f ~ � 1 h+h 6 f í : ý í < h ¹  � :ñ "gf ~ � 1 h ý j� f í : à í < h ¹  � :ñ f í : ý í < h à Ê�º2» . f d :uh. f d <Çh � (4.10)

If the estimated covariance matrix
 ñ

becomes singular, a pseudo-inverse operation is proposed
instead, yielding the pseudo-Fisher linear discriminant [314]. The pseudo-inverse relies on the
singular value decomposition of the matrix

 ñ
. It is computed as the inverse of

 ñ
, but in the sub-

space spanned by the eigenvectors corresponding to � largest non-zero eigenvalues. The classifier
is found in this subspace, being orthogonal to it in the remaining

f *�ý � h directions. The PFLD is
reached in the limit of the RNLC if the regularization

V
goes to zero [314].

Support vector classifier (SVM). Let
*

training pairs 8 � / � � / ? >/}| : be given in a Euclidean (Hilbert)
space. Each point � / belongs to one of two classes as described by the corresponding label � /°x
8 ý j � j ? . The support vector machine is the hyperplane

# f �;h 6 H ¹�� à P r maximizing the margin��� �ð� H �ð� < [52, 403] between two separable classes (or, alternatively, minimizing the norm
�ð� H �ð� <

). In
case of an overlap, a soft-margin hyperplane is introduced, which handles the misclassified objects.
The linear SVM is expressed as

# f �;h 6 z >/}| : K / � / é � � � / ëqà K r , where
é � � � / ë 476 � ¹ �@/ is the dot

product operation and K;/ are nonnegative values determined by maximizing the (soft) margin. Note
also that

H 6 z >/}| : K / � / � / . Since many K / appear to be zero, only the objects corresponding to
non-zero weights, the support vectors (SV), contribute to the classifier.

The SVM is an elegant implementation of the SRM principle in practice (hence its importance),
section 4.1.3.2, by combining the theory of the largest margin with the control over the VC dimen-
sion of a class of linear functions. We will briefly recapitulate this fact here, see e.g. [345, 402, 403]
for details. Assume separable classes. Let

m �
be a subclass of all hyperplanes in a space � w ,

i.e.
m � 476Î8 $ 4 $ f �³h 6 é H9� � ë³à P r ? . The VC dimension of

m �
is
' Ð Ý 6í� à j , which means that the

maximal number of arbitrary labeled points in � w separated by hyperplanes into two classes is
* à j .

Since
' Ð Ý

is finite, the Vapnik’s bound (4.5) holds. Still, we need to introduce the nested structure
of function classes for the SRM principle to be true. This turns out to be possible by bounding the
linear functions in

m �
. Denote

m �� 476�8 $ 4 $ f �³h 6 é HE� � ë³à½P r � �ð� H �ð� < É V ? . Clearly, if
V :   V < , thenm �� � ã m �� � . To ensure that the same inequality follows for the corresponding VC dimensions, one

should require that the hyperplanes are selected as the largest margin hyperplanes for a given labeled
set of data points. It was then shown [345] that the VC dimension for

m �� can be then effectively
bounded as

' Ð Ý É ,$Ç³È=8 V < 1 < à j � � à j ? for
�ð� H �ð� < É V

, where 1 is the radius of the smallest sphere
enclosing the data points.

An extension to a nonlinear decision function is obtained by a mapping
\

of the input data to
a high-dimensional Hilbert space and finding a linear classifier there. This is expressed as [403]:# f � h 6 z >/ | : K / � / é \ f � h ��\ f � / h ëià K r . The dot product can then be replaced by its generalized version,�f � � �@/ïh 6 é \ f � h ��\ f � / h ë , a reproducing kernel

,
; see also Def. 2.63 and section 2.3.1. Since in a

high-dimensional space, the SVM is based on inner products of vectors and support vectors only,
the kernel operator can be defined explicitly instead of the map

\
. The kernel can be any symmetric

and positive definite (pd) function9 [403], see also Theorem 2.66. Hence, in a general formulation,

9 Actually, any conditionally positive definite (cpd) kernel óþ can be used. (Note also that any pd kernel is also
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where the (non-)linearity of
,

determines the nonlinearity of
#

, the SVM is defined as

# f �;h 6 3Ú Ä å r K / � / ,�f � � � / h à K r � (4.11)

According to definitions from section 2.3.1, the kernel
,

is a reproducing kernel, hence it defines
a reproducing kernel Hilbert space (RKHS)

d�ó
on the functions

' f � h 69z / K / � / , f � � �@/ïh .
For linearly non-separable classes, nonnegative slack variables ô / are introduced, accounting for
classification errors. The soft margin SVM [52, 403] is found as the primal solution of the quadratic
programming (QP) procedure:

Minimize
:< H ¹ H à S z >/}| : ô /

s.t. � / f H ¹ \ f �@/ h àÞP r h�Ì j ý ô / � 0 65j � � � ����� �+*
ô / Ì k

(4.12)

The term z >/ | : ô / is an upper bound on the misclassification of the training samples and S can be
regarded as a regularization parameter, a trade-off between the number of errors and the width of
the margin. For an

* �³*
kernel matrix

,
,
, /7º 6 é \ f � / h ��\ f � º±h ë , the dual formulation becomes:

Maximize
ý :< N ¹ diag

f � h , diag
f � h N à N ¹ ·

s.t. N ¹ � 6�k
k ÉÎK /qÉíS � 0 65j � � � ����� �+* (4.13)

Note that the norm of
'

in
d�ó

is computed as
�ð� ' �ð� ò(ó 6 é z / K / � / ,�f � � �@/%h � z º K º � º ,�f � � � º±h ë¯ò(ó 6N ¹ diag

f � h , diag
f � h N due to the reproducing property of the kernel; see also section 2.3.1. Min-

imizing the latter quantity, which is equivalent to maximizing
ý �ð� ' �ð� ò(ó in the dual formulation

above, corresponds then to bounding a class of hyperplanes
'

in the regularization principle, men-
tioned in section 4.1.3.2.

To introduce an SVM in a dissimilarity space, one needs to build it on
"5f D � 1 h . It is then a straight-

forward implementation. In the most simple, linear case, it leads to the kernel
,

consisting of the
elements

, /7º 6 é "gf ~ / � 1 h � "5f ~ º � 1 h ë . Therefore, in the formulation of a linear SVM, in the training
stage,

,
becomes

, 6 "Î" ¹ , which is pd by construction. Also other positive definite kernels can
be used as well. In such a case, however, a sparse solution, provided by the method, is obtained in
the complete dissimilarity space

"5fïî � 1 h . It means that for the evaluation of new objects, still the
dissimilarities to all representative objects from 1 should be computed, since our SVM is in the
form of (4.7).

Linear programming machines (LP). Given a properly defined objective function and constraints,
a separating hyperplane can be obtained by solving a linear programming (LP) task, making the
optimization problem easier. Assume

-
training pairs

f "5f ~ / � 1 h � � /ïh , 0 6Íj � ����� �
- , � / 6 8Ãj ��ý j ? , and
a two-class problem, with the classes

d : and
d < of cardinalities

* : and
* < , respectively

- 6 * : à * < .
Let

#
be a separating hyperplane built for the representation set 1 , i.e.

# f "gf ~ � 1 h+h 6 H ¹ "5f ~ � 1 h à$P r .
Then, a simple optimization problem minimizing the number of misclassification errors ô º can be

a cpd kernel. This is trivial, since for a pd real kernel õp��þöõ�&�� for any õ , hence also for õ such that õN�:m�«½� ,
which defines a cpd kernel. The vice versa formulation does not hold.) Let þ « �� £�±+1m o����Êóþ¡£D±0+�o"m � � , whereo��3mÃ«½¸ . It is known [346] that þ is pd iff óþ is cpd; see also Theorems 3.31, 3.32 and 3.38. It follows from the
above theorems that an )ø÷') matrix óþ is a matrix of negative square Euclidean distances, i.e. óþû´�« +�< � � . Thenóþ « ·pþ + diag £©þo�um � + m diag £©þ ��� . By the use of equivalent algebraic transformations one can check that
the function + ��úù � diag £üûG� óþ diag £üûr� ù � ù �3m , which has to be maximized in the formulation (4.13) reduces to+ �� ù � diag £üûr�·pþ diag £ýûG� ù � ù �:m thanks to the condition that ù �þû «�� . This is a proper SVM optimization.
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defined as:
Minimize z

F/}| : � / ô /
s.t. � / # f "gf ~ / � 1 h+h¡Ì j ý ô / � 0 65j � ����� �
-

ô / Ì k �
(4.14)

where either � / 6 j for 0 6 j � ����� �
- or � / 6 :> � if � / 6 j and � / 6 :> � , otherwise. It is argued in
[19] that the latter formulation guarantees a nontrivial solution. This LP task can be solved by
standard optimization methods, such as the simplex algorithm or interior-point methods [19]. Since
no other constraints are included, the hyperplane is constructed in an

*
-dimensional dissimilarity

space
"5fïî � 1 h . A sparse solution can be, however, imposed by minimizing the ñ : -norm of the weight

vector
H

,
�ð� H �ð� : 6 z >º�| : � P º � , of the hyperplane (4.7). To formulate such a minimization task in

terms of an LP problem (i.e. to eliminate the absolute value
� P º � from the objective function), P º

is expressed by nonnegative variables K º and
L º as P º 6 K º ý�L º . (When the pairs ( K º �+L º h are

determined, then at least one of them is zero.) Similarly to the SVM formulation, nonnegative slack
variables ô / , accounting for classification errors, and a regularization parameter S are introduced.
The minimization problem becomes then:

Minimize z
F/}| : f K / à L / h à S z

F/}| : ô /
s.t. � / # f "gf �@/ � 1 h+h×Ì j ý ô / � 0 65j � ����� �
-K / ��L / � ô / Ì ki�

(4.15)

A more flexible formulation of a classification problem has been proposed by Graepel et al. [173].
Now, the problem is to minimize

�ð� H �ð� : ý X�_ , which basically means that the margin _ becomes a
variable of the optimization problem. Note that _ 65j for the formulation (4.15). By imposing

�ð� H �ð� :
to be constant, the modified version of (4.15) can be introduced as:

Minimize
:> z

F/}| : ô / ý X�_
s.t. z

F/}| : f K / à L /ïh 65j
� / # f "5f � / � 1 h+h¡Ì j ý ô / � 0 65j � ����� �
-
ô / � K / � L / � _�Ì ki�

(4.16)

In this approach, a sparse solution
H

is obtained, which means that important objects are selected (by
non-zero weights) from the original representation set 1 , resulting in a reduced set 1 s Ñ . Therefore,
this classifier can also be used for the selection of the representative objects, starting from 1�476åD .
This solution is similar to an adaptation of the SVM for feature representations defined with the LP
machines [355, 369]. From the computational point of view, such an LP classifier is advantageous
for two-class problems, since for new objects, only the dissimilarities to the objects from 1 s Ñ have
to be determined. Since multi-class problems are tackled by a number of two-class problems, in
such cases, the reduction of 1 to 1 s Ñ might be insignificant for the combined results.

Nearest neighbor classifier. The
)
-NN method constructed in a dissimilarity space relies on comput-

ing new dissimilarities (e.g. Minkowski distances) between object representations
"gf ~ � 1 h in such

a space. This means that indirectly an another dissimilarity representation is built over the given
one.

Parzen classifier. The Parzen classifier models the class conditional probabilities
2�f "5fïî � 1 h � d /%h by

density kernel estimation, here, the normal density function. Let ¤ / be the smoothing parameter in
the 0 -th dimension. The posterior probability of the class

d º is estimated as:

2�f "5f ~ � 1 h � d ºÃh 6 j* º
> Å3
/}| :

j× �   ÿ « ¤ «
" � �� � Ä ö Æ ö æ ÷ ; ù � Æ ö æ Ä ÷ ; ùµù ö Æ ö æ ÷ ; ù � Æ ö æ Ä ÷ ; ùµù � � (4.17)
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4.5 Classification in pseudo-Euclidean spaces
Assume that 1 and D are identical. A symmetric dissimilarity

"gf 1 � 1 h can be seen as a description
of an underlying, lower-dimensional vector configuration

I
, which can be determined by a linear

embedding of
"

as described in section 3.3. Remember that this procedure relies on the embedding
of the Gram matrix

, 476 � , derived from
" J <

by formula (3.7), which can be seen as a Hermitian
(symmetric) kernel in a Euclidean or pseudo-Euclidean space. So, one can, in fact, directly start
from a similarity representation given by

,
. If

"5f 1 � 1 h is asymmetric, then two symmetric DRs can
be constructed

" : 476 :< f " à " ¹ h and
" < 476 :< f " ý " ¹ h yielding two pseudo-Euclidean configurationsI : and

I < . Then, two classifiers can be built and later combined; see also section 10. So, without
loss of generality, we focus on symmetric representations. If 1 Ð D (note that the embedding
cannot be performed when

� 1 � D � É j ), then our reasoning relies on the embedding of
"5f 1 � 1 h and

projecting the remaining objects D � 1 to an embedded space as described in section 3.3.5; see also
Fig. 4.10. For simplicity of our presentation, we assume that 15476ôD .

If
I

is determined in a Euclidean space, then any traditional classifier, e.g. the ones described in
the previous section, can be used. If

I
happens to be a pseudo-Euclidean representation, then the

conventional classifiers should be adapted. Here, we limit ourselves to simple linear and quadratic
decision rules, since they naturally rely on the pseudo-Euclidean inner products. See also section
2.4 for details on pseudo-Euclidean spaces.

Let
õ 476�� � 6��¡ö ¿¨÷ øÈù , �Î6 . à ú , be a pseudo-Euclidean space. A linear function in

õ
becomes then

# f �;h 6 é G � � ë ü à C r 6 G ¹ l ¿�ø � à C r � l ¿Çø 6:4 ( ¿ ¾ ¿ k
k ý ( ø ¾ ø � 6 � (4.18)

This decision rule can also be interpreted as
# f �;h 6 H ¹�� à C r , where

H 6 G l ¿Çø in the associated
Euclidean space

� õ � 476Î� ¿ p ø . (Remember that
õ

is constructed by replacing the negative definite
inner product in � ø by a positive definite one.) Analogous to the Euclidean case (i.e. from the
Euclidean perspective), one can require that a signed distance of a point � to the hyperplane. That
means that

c H ÷ � e�� p Ð BÌ Ì G Ì�Ì �� 6 G ��� % Q � p Ð BG � � % Q G is positive for objects � which lie on the same side of the
hyperplane, where G is pointing to. Note that in order to satisfy this condition one should require
that

�ð� G �ð� <ü Ï k , otherwise the ambiguity arises if
�ð� G �ð� <ü can have any sign12. In practice that means

that the Euclidean norm of G in � ¿ should be larger than its Euclidean norm in � ø . Since we
start from positive dissimilarities, in practical cases the data are embedded such that the negative
contribution is much smaller than the positive one. Hence, we will always have the case that the
pseudo-norm of G is positive. Moreover,

�ð� � �ð� <ü Ï k for any ��x � ö ¿{÷ øÈù coming from the embedding
of
"

. Note that this is not any longer guaranteed when one starts from an arbitrary symmetric (in
a pseudo-Euclidean sense) kernel. Then, the negative contribution might be dominant, as e.g. for
the kernel

,�f � �+� h 6 ~ : � : ý z �/}| : ~ / � / . An illustration of possible and impossible linear classifiers is
presented in Fig. 4.14. Note that such a situation can never result from an embedding of nonnegative
dissimilarities. By the embedding of dissimilarities, spaces of higher dimensionality are obtained,
hence it is actually hard to construct an example, which yields 1 ö : ÷ : ù as the solution; see also
Fig. 4.15.

Generalized nearest mean classifier (GNMC). The nearest mean classifier (NMC) is the simplest
linear classifier which assigns an unknown object to the class of its nearest mean. In a pseudo-

12 Imagine a simple case in �F  ��¡ ��¢ , where ¦r£ jU��«����'« �¶� j`« � and �Ã«<� �Ê� ë +�¸Y��� separates two classes of objects,
as presented in Fig. 4.14, right plot. Since ªuª � ªyª ��
	 À�� À� « +ý�Ê��� ë , then � and « �¶� ��«-� �Ê� ë(¸Y� point into different directions,
similarly as presented in Fig. 4.14, on the right. Assume that the class labeled by � Ä «-¸ lies above the hyperplane (this
is where � is pointing), while the class labeled by � Å «"+!¸ is below the hyperplane (this is where « �¶� � is pointing).
Then, j Ä «��u¸p·7��� has a label � Ä «/¸ and j Å «��u¸\+¹·7��� has a label � Å «@+!¸ . The signed distances to the hyperplane ¦ are�������+£ j Ä �¶¦x��«@+���� ��� and �������+£ j Å �ô¦x��«½· . So, the ambiguity arises.
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Fig. 4.14: A hypothetical example of a possible (left) and impossible (right) classification scheme by a lin-
ear classifier (solid line) for the data points in �

t Ù�G Ù v . Both cases will never result from the embedding of
nonnegative dissimilarities, sine there exists a number of pairs of points which yield negative square pseudo-
Euclidean distances. In the situation on the right, this also holds for pairs of objects coming from different
classes. Note also that for the situation on the left, the two hyperplanes

é G Ù � � ë I à C � 6Ek é G Ø � � ë I ý�C � 6�k ,
(marked by solid and dotted lines, respectively,) are related such that G Ø 6 l Ù�Ù G Ù . Hence

�ð� G Ù �ð� I 6 �ð� G Ø �ð� I .

Euclidean space
õ

such a decision is based on the pseudo-Euclidean distance. Given
"

, assume
a two-class problem with the classes

d : and
d < and the embedded vector representation 8 � : � ����� � � >¬? .

Let � ö / ù be the mean vector of the class
d / in

õ
. For a new object

�
represented in this space as

� æ
,

the NMC classification rule becomes:

Assign
�

to
d : � iff

! <ü f � æ � � ö : ù h¡ 
! <ü f � æ � � ö < ù h

�
and assign

�
to
d < � otherwise � (4.19)

! <ü f � �+� h 6 �ð� � ýá� �ð� <ü 6 f � ýá� h ¹ l ¿Çø f � ýá� h and
l ¿Çø is the fundamental symmetry in � ö ¿¨÷ øÈù . Here, only

the pseudo-Euclidean distances to the class mean vectors have to be computed. Such a classification
process can be carried out in a somewhat modified way without performing the exact embedding of"

(as needed in the case of (4.19)). As a result, the generalized nearest mean classifier is obtained.

Assume that the class
d / is represented by a dissimilarity matrix

"gf 1 / � 1 / h based on the set 1 / 6
8 . / : � ����� � . /> Ä ? . Let a new object

�
be represented by the dissimilarities to the set 1 / . Then, the

proximity of
�

to the class
d / is measured by the function

# / , defined as:

# / f � h 6 j* /
> Ä3
º�| :

! < f ��� . /º h ý �u� f 1 / h � where �;� f 1 / h 6 j� * </
> Ä3
º�| :

> Ä3
« | :

! < f . /º � . / « h � (4.20)

� � f 1 / h is a generalized average variance for the class
d / ; see section 3.3.4 for details. Assume

that
I /

is a pseudo-Euclidean configuration obtained from the embedding of
"5f 1 / � 1 / h . So,

I /
is

represented in
õ / 476ê� ö ¿ Ä ÷ ø Ä ù . (Note that

õ / usually differs from the space
õ

referring to the com-
plete matrix

"5f 1 � 1 h ). It follows from section 3.3.4 that
# / f � h can be equivalently formulated as# / f � h 6 �ð� � /æ ý � / �ð� <ü Ä 6 !

<ü Ä f �
/æ � � / h , where

� /æ and � / are the representations of the object
�

and a mean
vector of the entire 1 / , respectively, expressed in

õ / . Hence,
# / f � h measures the pseudo-Euclidean

square distance of
� /æ to the mean of the 0 -th class. The interesting point is that such a distance

can be computed without performing the embedding explicitly, since it operates only on the given
dissimilarities

"
, formula (4.20). As a result, a

,
-class GNMC is defined as

Assign
�

to
d º � iff # º f � h 6 ,$Ç³È/�| : ÷�è è�è ÷ ó 8 # / f � h�? � (4.21)

In summary,
�

is assigned to the class of the nearest mean, where each mean is described in an
underlying space defined by the within-class dissimilarities. Additionally, we will derive what the
average of the between-class square dissimilarities stands for.
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Corollary } 4.2 Assume an
* / �a* º submatrix

" /7º 6 "5f 1 / � 1 º h describing the between-class dissimi-
larities for the classes

d / and
d º . Let

õ /7º denote a pseudo-Euclidean space resulting from the embed-
ding of

"5f ÿ 1 / 1 º � � ÿ 1 / 1 º � h . Let
l /7º be the fundamental symmetry. Then, the average between-class

dissimilarity
! <Â f d / �+d ºÃh equals to

! <Â f d / �+d º±h 476 j* / * º
> Ä3
« | :

> Å3 Ò | : ! < f . / « � . º Ò h 6 j* /
> Ä3
« | :

�ð� � / « �ð� <ü ÄòÅ à j* º
> Å3 Ò | : �ð� � º Ò �ð� <ü ÄÆÅ ý � é � / � � º ë ü ÄòÅ � (4.22)

where � / « and � º Ò , as well as, � / and � º are represented now in the space
õ /7º .

Proof. In general,
" � Ø 6 l · Û à · l Û ý � � , where

� 6 I5l Ü�J I Û is the Gram matrix of
I

and
l 6 ! 0 � $ f � h .

Let
� o ~ 6 I o l o�~ f�I ~ h Û ,

l o 476 diag
f � o$o h and

l ~ 476 diag
f � ~/~ h . Assume that

· Ý � stands for a vector of the
length

*,o
. Then, one has

"�� Ø o�~ 6 l o · Û Ý � à · Ý � l Û~ ý � � o�~ and also,
· Û Ý � l o 6 tr

f � oÁo h 6�z Ý �µ � Ù �ð� � o µ �ð� ØI � � . Now, one
gets

! Øg f d o �+d ~ h 6 ÙÝ � Ý � · Û Ý � "�� Ø o�~ · Ý � 6 ÙÝ � Ý � ÿ · Û Ý � l o · Û Ý � · Ý � à · Û Ý � · Ý � l Û~ · Ý � ý � · Û Ý � � o�~ · Ý � �£6 ÙÝ � Ý � ÿ * ~ · Û Ý � l o à*to l Û~ · Ý � ý � · Û Ý � I o l o�~ f�I ~ h Û · Ý � �È6 ÙÝ � z Ý �µ � Ù �ð� � o µ �ð� ØI � � à ÙÝ � z Ý �§ � Ù �ð� � ~ § �ð� ØI � � ý � é � o � � ~ ë I � � ��
If we assume that the spaces

õ / , õ º and
õ /7º yield the same signatures (although this is not likely), then

based on the relations (3.16) and (3.17), one can write
! <Â f d / �+d º h 6 � � f 1 / h à � � f 1 º h à �ð� � / ý � º �ð� <ü ÄòÅ .

By this, the square pseudo-Euclidean distance between class means in
õ /7º can be expressed by the

use of the distances as:
�ð� � / ý � º �ð� <ü ÄÆÅ 6 !

<
Â f d / �+d º±h ý �u� f 1 / h ý �;� f 1 º h � (4.23)

For two classes, the above equation is the difference between the average between-class square dis-
similarities and the average within-class square dissimilarities. So, the value of

! <Â f d / �+d º h ý �;� f 1 / h ý� � f 1 º h computed in a general case, approximates the square pseudo-distance between the class
means in the embedded space.

In general, the NMC and the GNMC in a pseudo-Euclidean space are not identical classifiers. The
NMC is trained in a pseudo-Euclidean space

õ
found from a linear embedding of the complete"

. Therefore, the dimensionality of
õ

is determined by both the within-class and between-class
dissimilarities. The GNMC operates only on the within-class dissimilarities. Although the em-
bedding is not performed directly, the GNMC works in underlying feature spaces

õ / , defined for
each class separately. It may happen that the signatures of feature spaces

õ / are not the same. In
such a case, the performances of the the NMC and the GNMC differ, because the NMC unifies the
pseudo-Euclidean spaces and the signatures for all the classes, while the GNMC treats them sepa-
rately. Since the GNMC makes use of distinct signatures, its accuracy is expected to be higher for
problems in which the classes are described in different ways.

Fisher linear discriminant (FLD). To construct the Fisher linear discriminant, the notion of a pseudo-
Euclidean covariance matrix is needed. For the representation of

*
vectors, it is defined as [152]:

 ü 6 j*�ý j
� >3
/}| :

f �@/ ý �;h f � / ý �;h ¹ � l ¿�ø 6  l ¿Çø � � 6 j*
>3
/}| : � /

�

where
 

is the covariance matrix in the associated Euclidean space
� õ �

. Note that
 ü is k-pd13

(positive definite in a pseudo-Euclidean sense).
13 First, h � is self-adjoint (symmetric), Def.2.74 and Def.2.85, since h �� «�« % Q h��� « % Q «�« % Q « % Q h���« % Q «ih�« % Q «ih �

(here we made use of the fact that « % Q « % Q « ± and that h]«jh � ). Now, h � is k-pd, since « % Q h � by Def. 2.92 is
pd in an Euclidean sense. This is true, since h , as a pd matrix, can be expressed as hc´�« ¼���¼ . One, therefore,
has: « % Q h � «>« % Q h\« Q�Q «>« % Q ¼¥��¼@« Q�Q «�£�¼@« % Q ���M£�¼�« % Q � , where the latter matrix is pd in an Euclidean sense by
construction.
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Fig. 4.15: A simple illustration of the FLD decision boundary in embedded spaces. The leftmost plot presents
a 2D theoretical data. Only three points (marked by circles) are used for training, since then the data can
be perfectly embedded in � Ø . The remaining points, marked by ’+’ and ’*’, belong to the test examples,
projected on the retrieved (pseudo-)Euclidean spaces. The following plots show the embedding results of theñ Ü distance representations

" 6 f ! o�~ h , where
! o ~ 6 f z Øµ � Ù � ~ o µ ý ~ ~ µ � Ü h*Ù¯Ú Ü and . 6 8uki�Z� � ki�Z� � jÇ�ZY � � ? . For

positive .�  j , the ñ Ü distance is non-metric. In all the plots, the FLD determined by the three training points
in the original or embedded spaces is drawn. For . 6g� (the rightmost plot), the theoretical data are retrieved
up to rotation.

Following [152], the FLD,
# f �;h 6 G ¹ l ¿Çø � à C r , is obtained by maximizing (in a pseudo-Euclidean

sense) the Fisher criterion ,/. � H c H ÷ ö = _ � % Q ù H e��c H ÷ ö = ï � % Q ù H e�� .
 � l ¿Çø and

 òñ l ¿�ø are the pseudo-Euclidean
between-class and pooled within-class covariance matrices, respectively. For a two-class problem,
the FLD is determined by G 6 l ¿Çø  � :ñ f ��: ý � <�h and

C
r 6

ý :< f ��: à � <Çh ¹ l ¿Çø G à Ê�º2» ¿ ö Ý � ù¿ ö
Ý � ù , which can

be simplified to:

# f �;h 6 f � : ý � < h ¹  � :ñ � ý j� f � : à � < h ¹  � :ñ f � : ý � < h à Ê�º2» . f d : h. f d < h � (4.24)

where
 ñ

is the pooled within-class covariance matrix in the associated Euclidean space � ¿ p ø , � :
and �;< stand for the class means and . f d :uh and . f d <�h are the prior probabilities. This means that the
FLD in a pseudo-Euclidean space coincides with the FLD built in � ¿ p ø . See also Fig. 4.15.

Quadratic classifier (QC). Consider a pseudo-Euclidean space
õ 476 � ö ¿¨÷ øÈù . Then,

 ü 6  l ¿Çø is
a covariance matrix of the configuration

I
in � ö ¿¨÷ øÈù and

 
is the covariance matrix in the associated

space � ¿ p ø . Analogous to the Euclidean case, the Mahalanobis distance between a vector � and the
mean � of

I
in
õ

is given as
é+f � ý �;h �  � :ü f � ý �;h ë ü 6 f � ý �;h ¹ l ¿Çø  � :ü f � ý �;h 6 f � ý �;h ¹  � : f � ý �;h .

The latter follows from
 � :ü 6 l ¿�ø  á� : and

l ¿Çø l ¿Çø 6 ( . So, the quadratic classifier for a two-class
problem can be constructed similarly to the Euclidean case (see also section 4.4.1) as:

# f �;h 6
<3
/}| :

f ý j h / f � ý �@/ h ¹  � :/ f � ý �@/ïh à � Ê�º2» . f d : h. f d <�h à Ê�º2» �  : l ¿Çø ��  < l ¿Çø �
�

(4.25)

where
 : and

 < are the estimated class covariance matrices in � ¿ p ø , and . f d : h and . f d < h are the
class prior probabilities. So, the QC in � ö ¿¨÷ ø ù coincides with the NQC in the associated � ¿ p ø .
Support vector machine (SVM). The principles behind the SVM in Euclidean (Hilbert) spaces are
described in section 4.4.1. The SVM is presented there as

# f � h 6Êz Ú Ä å r K / � / ,�f � � � / h à K r , where,
is a (conditionally) positive definite kernel. A linear kernel can be expressed as

, 6 I I ¹ , which
is equivalent to

�
, the Gram matrix defined by formula (3.7). Since the linear SVM is based on the

inner products only and by the linear relation (3.7) between
"gJ <

and
,

(6 � ), the SVM can easily
be constructed in the underlying space without performing the embedding explicitly, provided that
the dissimilarities

" 476 "5f 1 � 1 h are Euclidean. For new objects, represented by
"5f D s � 1 h , the SVM

can immediately be tested by using
, > , the cross-Gram matrix between new objects and objects

originally embedded, as explained in Corollary 3.46. Even simpler, if you consider
, 476 ý " J <

,
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then by footnote 9 on page 96,
,

is cpd, hence it can directly be used in the SVM optimization as
given by formula (4.13). Moreover, since

"
is Euclidean, then

"gJ <
is cnd by Theorem 3.31. Then,, : 476 " ~ . f ý ¤ "�J < h and

, < 476 f ¤ à "�J < h J ö � : ù are positive semidefinite, see Corollary 4.5, hence they
can also directly be used as Mercer kernels in the SVM.

For a non-Euclidean
"

, the corresponding Gram matrix
,

is not pd, hence it refers to a pseudo-
Euclidean space. The configuration

I
is found by (3.14), i.e.

I 6 3 � W � :
Ø�<
, for which a linear

classifier is defined by (4.18). If we now assign
H ¹ 6 G ¹ l ¿Çø , then the classifier

# f �;h 6 H ¹³� à C r
can be treated in the associated Euclidean space. The operation G;¹ l ¿Çø is seen as flipping the values
of the vector G in all ’negative’ directions of the pseudo-Euclidean space. This is equivalent to
flipping the negative eigenvalues to positive ones and considering the inner product

, b 6 3 � W � 3 ¹
in the associated Euclidean space as positive definite [172]. This procedure relies on the complete
embedding of

"
.

Actually, one can try to define a SVM directly in the pseudo-Euclidean space. Consider a Hermitian
(self-adjoint) kernel

,
in a pseudo-Euclidean space, Def. 2.100 (

,
could be considered in a Kreı̆n

space, but since
,

is finite, this reduces to the pseudo-Euclidean case). Consider a linear classifier# f �;h 6 G@¹ l ¿Çø � à C r in
õ

. Analogous to the Euclidean space, the margin between two separable
classes equals ��� �ð� G �ð� <ü . The traditional SVM relies on finding a linear classifier maximizing the
margin, hence minimizing the norm of the weight vector. This would translate to the minimization
of the pseudo-Euclidean norm

:< �ð� G �ð� <ü , which is a proper formulation in a pseudo-Euclidean space.
Remember that in our case

�ð� G �ð� <ü Ï k is required, by our discussion in the first paragraph of this
section, so the pseudo-Euclidean norm of G is bounded by zero from below. To require that the
stationary point G s (of a constrained problem) is taken as the minimum, one should require, by
analogy to the Euclidean case, that in the neighborhood of G s the Hessian } of � f G�h 6 :< �ð� G �ð� <ü ,
interpreted as the Hessian }§6 l ¿Çø of

:< G ¹ l ¿Çø G is k-pd in
� õ � 476g� ¿ p ø . This is equivalent to stating

that G ¹ l ¿Çø G should be positive, which is true thanks to our requirement
�ð� G �ð� <ü Ï k . So, the primal

formulation of a ’soft margin’ indefinite SVM can be solved by a non-convex QP as10:

Minimize
:< G@¹ l ¿Çø G à S z >/�| : ô /

s.t. � / f G ¹ l ¿Çø � / à�P r h�Ì j ý ô / � 0 6åj � � � ����� �+*
ô /qÌ ki�

(4.26)

The term z >/ | : ô / is an upper bound on the misclassification of the training samples and S is a reg-
ularization parameter. Note that the indefinite SVM is not unique. For instance if G is the found
solution such that

�ð� G �ð� <ü 6 ��Ï k , then for G b 6 l ¿Çø G , we have
�ð� G b �ð� <ü 6 G ¹ l ¿Çø l ¿Çø l ¿Çø G 6 � , which

means that G b provides also a solution; see Fig. 4.14 for a simple illustration.

Let
,

be the Gram matrix determined in the embedding process of
"

. Then, the dual formulation
becomes the same as (4.13), but for non cpd

,
:

Maximize
ý :< N ¹ diag

f � h , diag
f � h N à N ¹ ·

s.t. N ¹ � 6�k �
k ÉÎK / ÉíS � 0 65j � � � ����� �+* � (4.27)

The SVM becomes then
# f �;h 69z Ú Ä å r K / � / , f � � � / h à K r .

Analogous to a Hilbertian kernel, based on the definitions from section 2.4.1,
,

is a reproduc-
ing kernel, hence it defines a reproducing kernel pseudo-Euclidean space

n ó
on linear func-

tions
' f � h 6 z / K / � / ,�f � � � / h . Note that the pseudo-norm of

'
in
n ó

is computed as
�ð� ' �ð� þ ó 6é z / K / � / , f � � � / h � z º K=º � º , f � � �&º±h ë þ ó 6 N ¹ diag

f � h , diag
f � h N due to the reproducing property

10 Although « % Q , k'&Ã� , is not pd in a Euclidean sense, the optimized criterion is pd at the sought minimum.
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of the kernel. Minimizing the latter quantity (or maximizing
ý �ð� ' �ð� þ ó ) in the dual formulation

above, corresponds then to bounding a class of hyperplanes
'

in the regularization principle, sec-
tion 4.1.3.2. Hence, an indefinite SVM with a positive pseudo-norm

�ð� ' �ð� þ ó is a proper statistical
learning algorithm. Note also that instead of a kernel

,
, directly

ý "9J <
can be used in the opti-

mization (4.27). For proofs and the connection between the SVM and separation of convex hulls in
pseudo-Euclidean spaces, see [182].

In summary, given a dissimilarity representation
"5f 1 � 1 h , the SVM classifier can be built in the

underlying feature space as follows. First, the matrix
, 476 � is computed according to (3.7). If,

is not pd, then either the problem is treated in a Euclidean space by considering the pd kernel, b 6 3 � W � 3 ¹ and using it to construct the SVM according to (4.11), or an indefinite SVM is built
directly on

,
by solving (4.27). The latter case can only be accepted if the found solution is such

that N ¹ diag
f � h , diag

f � h N is positive.

4.6 Generalized kernels and classifiers in dissimilarity spaces
Kernels are usually understood as symmetric (Hermitian) operators in some Hilbert space being pd
or cpd, see also Def. 2.63. Here, we will focus on real kernels. Any Mercer kernel, such as a finite
symmetric pd matrix, can be seen as a Gram operator in some Hilbert space, hence as a (nonlinear)
generalization of the similarity measure based on inner products. This holds due to the Mercer’s
condition, Theorem 2.66, which guarantees the existence of a mapping

Z 4 � ² d
from some input

space
�

(which might not be explicitly given) to a Hilbert space
d

such that
,�f ~ � � h 6 é Z f ~ h � Z f � h ë ,

where
Z f ~ h is the image of ~ x � in

d
. Assume that

,
is real. Then, based on the notion of the

norm, the squared distance in
d

is defined as
! <ò f ~ � � h 476 �ð� Z f ~ h ý Z f � h �ð� < . Thanks to the relation of,�f ~ � � h 6 é Z f ~ h � Z f � h ë , one has:

! <ò f ~ � � h 476 �ð� Z f ~ h ý Z f � h �ð� < 6 ,�f ~ � ~ h ý � ,�f ~ � � h à ,�f � � � h � (4.28)

Note that we write
! <ò f ~ � � h instead of

! <ò f Z f ~ h � Z f � h+h , since
! <ò can be determined by the kernel

values only (without knowing
Z

).

Corollary } 4.3
! <ò f ~ � � h is a cnd kernel.

Proof. Making use of Def. 2.63, it is sufficient to show that z Ýo G ~ d�oXd�~ ! Øl f ~ o%� ~ ~ h is positive for
all

* x ð and all sets 8 ~ Ù � ����� � ~UÝ ? ã �
and 8 d Ù � ����� �+d Ý ? ã U such that z Ýo � Ù d�o 6 k .

One has: z Ýo G ~ d�oXd�~ ! Øl f ~ oï� ~ ~ h 6 f z Ýo � Ù d�o h f z Ý~ � Ù d�~ ,�f ~ ~£� ~ ~ h+h à f z Ý~ � Ù d�~ h f z Ýo � Ù d�o , f ~ o%� ~ o h+h ý� z Ýo G ~ d�omdU~ ,�f ~ oï� ~ ~ h 6 ý � z Ýo G ~ d�oâd�~ ,�f ~ oï� ~ ~ h¨  k , since z Ýo � Ù d�o 6�k and
,

is pd. �
Note that

! <ò f ~ � � h is cnd only because
,

is pd. This is in agreement with our previous results dis-
cussed for finite Euclidean matrices and the corresponding Gram matrices, as presented in Theorem
3.31 and Theorem 3.38. By fixing an origin in

d
such that

,�f ~ � ~ h 476 ! <ò f ~ � k h , formula (4.28)
becomes ,�f ~ � � h 6 ý j� ÿ ! <ò f ~ � � h ý ! <ò f ~ � k h ý ! <ò f � � k h �À� (4.29)

Note, however, that in a practical case, the distances refer to the mapped vectors
Z f ~ :uh � ����� � Z f ~ >¬h

in
d

, hence the origin can only be chosen in their convex hull. So, the zero vector ¶ in
d

can be
set to a weighted mean of these vectors, i.e. ¶ 6 :> z >/}| : A / Z f ~ / h 6 Z f ~ s h 476 m s , where 
 ¹ · 6Ûj andm s stands for a weighted mean in

d
. By straightforward algebraic operations, similar to the ones in

(3.4), one can find that
! <ò f ~ / � ~ s h 6 z > « | : A « ! <ò f ~ / � ~ « h ý :< z > « | : z > Ò | : A « A Ò ! <ò f ~ « � ~ Ò h , where

Z
is

omitted. Assuming that this expresses a square distance to the origin in
d

, for
, x � > ¾ > , formula

(4.29) translates to , 6 ý j� f ( ý ·�
 ¹ h " J <ò f ( ý 
Ã· ¹ h � where 
 ¹ · 65jÇ� (4.30)
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,
is pd iff

" J <ò is cnd (or equivalently, iff
ý " J <ò is conditionally positive definite). This follows

from our considerations in section 3.2.

Some of the kernel properties can be expressed in the continuous domain and by this an additional
understanding can be gained. Now we briefly present some characteristics of the positive and con-
ditionally negative definite kernels. Then, we explain how to interpret dissimilarities as distances
from a possibly higher-dimensional space, where the mapping from an underlying abstract space is
known only by the (generalized) inner product. This part is essential for understanding of some of
our classification methods, introduced in chapter 9.

The class of pd kernels is closed under addition, multiplication by a positive constant and pointwise
limits [22]. Moreover, it is also closed under the tensor product and a direct sum. Formally, we
have:

Corollary 4.4 (Closure under the (tensor) product and the direct sum) [22, 74]
1. Let

, : � , < be Hermitian pd (psd) kernels. Then
,�f ~ � � h 6 , : f ~ � � h , < f ~ � � h is also pd (psd).

Proof: Proof follows from the Schur theorem [199] that the Hadamard product of positive definite
matrices is also positive definite [22].

2. Let
, : 4 �t��� ²äU and

, < 4on � n§²�U be Hermitian pd kernels.
Then

, :�p , � f+f ~ : �
� : h � f ~ < �
� < h+h 6 , : f ~ : � ~ < h , < f � : �
� < h is a pd kernel on
f �¢� n h � f �Î� n h .

3. Let
, : 4 �t��� ²äU and

, < 4on � n ²äU be Hermitian pd kernels.
Then

, : ß , < f+f ~ : �
� : h � f ~ < �
� < h+h 6 , : f ~ : � ~ < h à , < f � : �
� < h is a pd kernel on
f �í� n h � f �í� n h .

Corollary 4.5 (Relations between pd and cnd kernels) Let
,

and
"

be real kernels and let ¤ Ï k .
One has [22, 74]:

1. If
,

is psd, then ^, 476 " J Î ó 6 f " Î ó ÄÆÅ h is psd.
Proof: By the Taylor expansion, one gets

" �rq�s 6 ¤ f ·&· Û à , à ÙØ�t , � Ø à ÙÉ t , � É à �ð�ð� h . By Corollary
4.4,

, � Õ is psd for a positive integer � , hence their sum is psd as well.

2.
"�J <

is cnd iff ^, 476 " � J Î Æ�� � is psd.
Proof: We know that

"�� Ø 6 diag
f , h · Û à · diag

f , h Û ý � , .
"	� Ø is cnd is equivalent to

,
being pd.

Then, one has ^, 476 " j �rq ��� � 6 " j q t diag
t s v · � a · diag

t s v � j Ø s v 6 " j q diag
t s v · � " Ø qus " j q · diag

t s v � 6ç " Ø qvs ç , where ç is a diagonal matrix of positive numbers ç 476 diag
f " j qws h , hence ç is pd. Since" Ø qvs is psd by the statement above, then ^, is psd by the Schur theorem.

3.
" J <

is cnd iff ^, 476 f ¤ à " J < h J ö � : ù 6 f j�� f ¤ à ! </7º h+h is psd.
Sketch of proof: First, it is trivial to show that if

" � Ø is cnd, then
" � Ø à ¤ ·&· Û is cnd as well. Next, note

that
Õ á� " j t q a ` v ~ ! ~ 6 Ùq a ` . Then, x�Û ^, x;6yxmÛ f ¤ à " � Ø h � t j Ù v x;6 Õ á� x f " j t q a ��� � v Á f ~ ·&· Û h+h x ! ~ .

By the point above, for positive ~ , the matrix
f " j}��� � a q ·=· � h Á f ~ ·=· Û h is psd. So, ^, is psd as well.

4. If
" J <

is cnd and for all ~ , one has
" J < f ~ � ~ h Ì k , then ^, : 476 " J < w

, with � x f k � j h and^, < 476 Ê�º2» f j à " J < h are cnd.

From section 2.3.1, we know that any symmetric pd kernel defined on a compact set or an index
set D is a reproducing kernel for a Hilbert space

d�ó
consisting of bounded linear maps defined by

the evaluation map
Z 4 ~ ² ,�f ~ � î h . Hence,

d ó
contains all finite linear combinations of the form' f ~ h z « � « ,�f ~ « � ~ h . As a result,

,�f ~ � � h 6 é ,�f ~ � î h � ,�f � � î h ë¶ò(ó . If D is a set of finite cardinality,
say

*
, then the functions are evaluated only at a finite number of points. Consequently, the RKHS

becomes an
*

-dimensional space, where the functions simplify to
*

-dimensional vectors.

Now, we propose to consider generalized kernels as arbitrary symmetric countable (finite or infinite)
matrices. Such similarity matrices can be seen as kernels of the pseudo-Euclidean space

õ
(or, more

general, of a Kreı̆n space). Remember that any symmetric matrix
,

is self-adjoint in the pseudo-



4.6 Generalized kernels and classifiers in dissimilarity spaces 105

Euclidean sense, which is guaranteed by the fact that
l ¿�ø , 476 , ¹ f ( ý :> ·&· ¹�h ¿Çø ; see Def. 2.74.

Therefore, one has
,�f ~ � � h 6 é [ f ~ h �+[ f � h ë , where

[ f ~ h is the image of an object ~ in
õ

. Based
on a logically appealing extension from the positive definite inner product to the indefinite inner
product, the squared distance in

õ
is defined as

! <ü f ~ � � h 476 �ð� [ f ~ h ýê[ f � h �ð� <ü , which reduces to! <ü f ~ � � h 6 , f ~ � ~ h ý � ,�f ~ � � h à ,�f � � � h . By similar considerations as for the pd and cpd kernels, the
equivalent formulations for an indefinite

,
are obtained as:

,�f ~ � � h 6 ý j� ÿ ! <ü f ~ � � h ý ! <ü f ~ � k h ý ! <ü f � � k h � (4.31)

and also , 6 ý j� f ( ý ·�
 ¹ h " J <ü f ( ý 
Ã· ¹ h � where 
 ¹ · 65j � (4.32)

where
"�J <ü is a matrix of square pseudo-Euclidean (Kreı̆n ) distances in

õ
. Hence,

,
and

"gJ <
described above are related by linear operations. Any of them can determine the corresponding
space

õ
. Remember also that

,
is a reproducing kernel in

õ
as follows from section 2.4.1.

An asymmetric matrix
,

can uniquely be described by two symmetric matrices, i.e.
, : 476 :< f , à, ¹qh and

, < 476 :< f , ý , ¹ah , where each of them can be treated as a generalized kernel. If
,

is
nearly symmetric, then

, < contains little information, hence negligible. In such cases,
,{z , : .

Such transformations are needed for the interpretation of
,

in pseudo-Euclidean spaces. For an
asymmetric

,
, the corresponding

" J <
is defined as

" J < 6 diag
f , h · ¹ à · diag

f , h ¹ ý , ý , ¹ ,
which is symmetric. An asymmetric square dissimilarity matrix can then be considered as

" J < 6
diag

f , h · ¹ à · diag
f , h ¹ ý � , . Anyway, asymmetric

"�J <
or
,

can directly be treated for building
classifiers in a dissimilarity space.

4.6.1 Connection between dissimilarity spaces and pseudo-Euclidean spaces

The idea of building classifiers in dissimilarity spaces is general, since such classifiers can be inter-
preted as some classifiers in the underlying pseudo-Euclidean spaces. Hence, there is a connection
between these two concepts. Assume a dissimilarity representation

"5f 1 � 1 h and the corresponding
matrix

,
of inner products derived as

, 476 ý :< f ( ý :w ·&· ¹�h " J < f ( ý :w ·&· ¹�h . Let
I

be a pseudo-
Euclidean configuration in � ö ¿{÷ øÈù obtained from the embedding of

"
. (This actually means that

there exists a mapping
Z 4 .�º ² �&º , where � º 476 Z f .¨º±h .) Then,

, 476 Iål ¿�ø I ¹ . Consider now a
general linear classifier built in a dissimilarity space

" J < fïî � 1 h . Then, we have:

Proposition } 4.6 A linear classifier
# f "gf ��� 1 h+h 69z wº�| : P º ! < f ��� . º h àÃP r constructed in a dissimilar-

ity space
"�J < fïî � 1 h becomes a quadratic classifier in the underlying pseudo-Euclidean space � ö ¿¨÷ ø ù .

Proof. Let
I

result from the embedding of
"5f 1 � 1 h into �

t Ü G J v . Let the object
�

be represented in �
t Ü G J v

as a vector
�
. Based on the relations between the square distances

"�� Ø and inner products
,

, one can
write:

# f " � Ø f ��� 1 h+h 6 z Ý~ � Ù P ~ ! Ø f ��� . ~ h àéP � 6 z Ý~ � Ù P ~ ÿ ,�f ���
� h ý � ,�f ��� . ~ h à ,�f . ~Ç� . ~ h � à¡P � 6
z Ý~ � Ù P ~ ÿ � Û l Ü�J ��ý � � Û l ÜKJ � ~ à � Û~ l ÜKJ � ~ � à[P � 6 H Û · � Û l ÜKJ ��ý � H Û I�l ÜKJ � à H Û diag

f�Iål Ü�J I Û h à|P � �
The latter formulation describes a quadratic classifier in �

t Ü G J v . �
If
"

is Euclidean, then � ö ¿¨÷ ø ù simplifies to a Euclidean space � ¿ . Without loss of generality, a
similar relation holds for a dissimilarity space

"5fïî � 1 h , which can be seen as ^"�J < fïî � 1 h , where ^" 476" J :
Ø�<
. So, the linear classifier

# f "5f ��� 1 h+h is in fact a quadratic classifier in the underlying pseudo-
Euclidean space � ö ¿

a ÷ ø a ù
as determined by the embedding of

"EJ :+ØÈ<
. If

"
is Euclidean, then

"�J :+ØÈ<
is Euclidean as well, as guaranteed by Theorem 3.41. Another important observation is that the
quadratic classifier in �×ö ¿

a ÷ ø a ù
, becomes an even more nonlinear decision rule, when projected to the

� ö ¿{÷ øÈù space. In fact, any monotonically increasing nonlinear transformation of
$ f " h , such as

"5J w
,

where � x f k � j h or sigm
f " h will influence the nonlinearity of

# f $ f "5f ��� 1 h+h+h as observed in the ��ö ¿¨÷ ø ù
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Fig. 4.16: Assume � -dimensional theoretical banana data. Four dissimilarity representations are considered:" µ f D � 1 h , ) 6 j � � � O � M , based on the ñ � � | -distance (non-metric), ñ Ù -distance (metric, non-Euclidean), Eu-
clidean and square Euclidean distance, correspondingly. A linear classifier

# f " µ f ~ � 1 h+h 6 z ~ P ~ " µ f ~ � . ~ h
is trained on each

" µ f D � 1 h , where D is a training set of �Çk£k points and 1 is either a subset of D consisting
of �Çk points chosen by the

)
-centres procedure (such points minimize the maximum of the dissimilarities

over all objects to their nearest neighbors; see also section 7.1.2) or 1¢6ÊD . Formally, a (R)NLC classifier# f " µ f ~ � 1 h+h is built in a dissimilarity space of the dimensionality
� 1 � . Since the theoretical data are 2D, a

discrimination boundary can be drawn in the original 2D space. The subplots show the data points and the
projected discrimination boundaries found originally in four dissimilarity spaces

" µ fïî � 1 h . The left subplot
presents the results when 1 Ð D , where points of 1 are marked by circles. The right subplot shows the
results when 1ê476íD , hence a regularized classifier had to be used. Note that a linear classifier in a square
Euclidean dissimilarity space

" Ö f D � 1 h is quadratic in the original space, which is in agreement with our
observations made in section 4.6.1. Other classifiers are nonlinear with respect to

" � Ø µ . This example shows
that the decision boundaries in both plots look similar, so an adequate and small representation set 1 may
serve for a good discrimination.

space. Analogous to the linear case, a quadratic classifier in a dissimilarity space would translate to aM -th order polynomial in the corresponding pseudo-Euclidean space. Note also that a linear classifier
built in a similarity space

,�fïî � 1 h , i.e.
# f ,�f ��� 1 h+h 4769z º P º ,�f ��� . º h à P r 6 H ¹ I5l ¿Çø � à P r is a linear

classifier in � ö ¿¨÷ ø ù . This can also be used for any similarity kernel derived from the dissimilarities
by a monotonically decreasing transformation, e.g. ^, 476 f " � � �ÄòÅ Ø Î � h or ^, 476 f+f ! </7º à ¤ < h � : h . If

"
is

Euclidean, then based on Corollary 4.5, such transformed kernels describe relations in some Hilbert
spaces.

For a dissimilarity representation
"5f D � 1 h , where 1 Ð D , a linear classifier in dissimilarity spaces

can be approximated by a quadratic classifier in the underlying pseudo-Euclidean space correspond-
ing to the embedding of

"gf 1 � 1 h and projecting the remaining D � 1 objects there. The reason of
such an approximation is caused by the orthogonal projections of the D � 1 objects which are likely
to yield some errors. This means that the dissimilarities

"5f D � 1 � 1 h are not ideally preserved. Such
an approximation can still be very good. Fig. 4.16 should help in getting some intuition.

Proposition } 4.7 Assume a two-class classification problem described by
"5f D � 1 h and the labels

� º�x 8Ãj ��ý j ? . A linear classifier
# f "�J < f ��� 1 h+h 6 z >º�| : P º � º ! < f ��� .iºÃh à¡P r , constructed such thatH ¹ � 6gk in a dissimilarity space
"�J < fïî � 1 h is a linear classifier in the underlying pseudo-Euclidean

space � ö ¿{÷ øÈù .
Proof. Let the object

�
be represented in � t Ü G J v as a vector

�
. Following the same reasoning as

above, one has:
# f " � Ø f ��� 1 h+h 6 z Ý~ � Ù P ~ � ~ ! Ø f � � . ~ h à P � 6 H Û ��� Û l ÜKJ �5ý � H Û diag

f � h I5l ÜKJ � àH Û diag ¼ diag
f � h I5l ÜKJ I Û ¾ à P � 6 ý � H Û diag

f � h I5l ÜKJ � à H Û diag ¼ diag
f � h I5l ÜKJ I Û ¾ à P � . The

quadratic term vanishes due to the requirement
H Û � 6Ek . So, the latter formulation describes a linear classi-

fier in �
t Ü G J v . From a computational point of view, it might be useful to consider a classifier on

ý " � Ø fïî � 1 h ,
which becomes

# f ý "�� Ø f ��� 1 h+h 6�� H Û diag
f � h I5l ÜKJ ��ýåH Û diag ¼ diag

f � h I5l ÜKJ I Û ¾ àÞP � . �
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An example of such a classifier is the SVM. Note that the same reasoning as above holds for the
classifier

# f $ f "5f ��� 1 h+h+h , where
$

is a monotonically increasing nonlinear transformation.

4.7 Discussion
Since the notion of proximity underpins the description of a class as a group of similar objects, we
propose to move the emphasis from features to a proper proximity measure. This leads to represen-
tations based on this concept. Here, mainly dissimilarity representations

"5f D � 1 h are considered.
These are relative representations describing the pairwise dissimilarities between the objects from a
(training) set D and the representation set 1 . The strength of such representations comes from their
general applicability as they can be derived from any measurements or structural descriptions, such
as strings or graphs, or some other intermediate representations. Since a learning problem can be
characterized by various kinds of expert knowledge, as a result a number of dissimilarity represen-
tations can be created and combined to better describe the underlying concept. This is studied in
chapter 10.

This chapter is devoted to learning approaches, mostly classification, on dissimilarity representa-
tions. Three main strategies are distinguished, which rely on various interpretations of the dissimi-
larities:

1. The first approach focuses on the relations in local neighborhoods, defined for each object by
the dissimilarities to its neighboring objects. This is always applicable, although, in general,
a large representation set 1 is needed for a good performance.

2. The second strategy defines classifiers in a dissimilarity space, a vector space where each
dimension corresponds to a dissimilarity to a representation object. This paradigm can be
used for any dissimilarity measure. Classifiers built there rely on the dissimilarities to all
objects from 1 . Hence, this is a global approach.

3. The third methodology is applicable for symmetric measures and when 1 ã D . However,
since any square asymmetric representation

"
can be expressed as a sum of two symmetric

representations
" : 476 :< f " à " ¹ah and

" < 476 :< f " ý " ¹ah , each of them can be considered
separately and the results can be combined. The learning algorithm relies first on determining
a pseudo-Euclidean vector configuration such that the dissimilarities

"gf D � 1 h are preserved
as well as possible. Then, many traditional classifiers can be modified and applied in such
a space.

All dissimilarity-based learning approaches are designed for numerical representations, hence they
reside in some spaces. Ineluctably, they make use of the statistical methodologies already devel-
oped in vector spaces and adapt them appropriately. The innovation of our methods lies in the
acceptance of any nonnegative dissimilarity measure satisfying the reflexivity condition (hence also
non-Euclidean and non-metric). These two requirements are not only logical, but enable a clear in-
terpretation of the compactness hypothesis, where a small dissimilarity depicts a good resemblance
of the compared objects. Our algorithms can handle negative dissimilarities as well. The problem
lies, however, in an adequately found meaning of such dissimilarities.

Although our focus is put to dissimilarities, there is an algebraic relation between dissimilarity and
similarity representations. One can be derived from the other by proper linear operations. This
holds both for their interpretations in inner product and indefinite inner product spaces, namely
Euclidean (Hilbert) and pseudo-Euclidean (Kreı̆n ) spaces. Therefore, any symmetric

* �³*
similarity

matrix can be seen as a generalized inner product (Gram) matrix in the corresponding (pseudo-
)Euclidean space. Based on such an inner product, a symmetric square distance can be defined. So,
any symmetric

* �³*
square dissimilarity matrix can be understood as a matrix of square pseudo-
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Euclidean distances. Because of such relations, linear decision rules built in dissimilarity spaces
can be presented as quadratic (or linear) classifiers in the underlying pseudo-Euclidean spaces.

All these considerations refer to dissimilarity representations, comparing pairs of objects. A natural
extension is to depict a relation of one entity to a number of them or of a partial concept to the whole
concept, e.g. a resemblance of an object to a (sampled) domain, or a particular process to a model
process. This would require that a measure itself is learned from a collection of objects belonging
to a class, as well as, other non-class representatives. Such representations are still an open issue.



5. Dissimilarity measures
In physical science the first essential step in the direction of learning any subject is
to find principles of numerical reckoning and practicable methods for measuring some
quality connected with it. I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the state of Science, whatever the matter may be.

”POPULAR LECTURES AND ADDRESSES”, SIR WILLIAM THOMPSON, LORD KELVIN

Relative similarity can be defined as a relationship between two entities which are of the same
nature or possess the same characteristics, but in different measure or degree1. The larger the
similarity value, the better the resemblance between the objects. Relative dissimilarity, on the other
hand, focuses on the differences; the smaller the dissimilarity, the more alike the objects. Both
similarity and dissimilarity values express the notion of likeness between objects, but their emphasis
is different. Which is more suitable to define depends on the type of data and a problem at hand.
In general, such a proximity is a function of the observed variables or collected measurements. We
will refer to it as to a measure, although it might not be such in the classical sense of the probability
or set theory.

In this chapter, we will present a brief overview of (dis)similarity measures for various types of data,
together with their brief characteristics. Some of them are well known, while others are relatively
new. The measures defined on the features are described in section 5.1. Section 5.2 elaborates
further on probabilistic measures, i.e. dissimilarity measures between distributions. Such measures
are important when we deal with images, sets of points or representations of the data by clouds of
vectors in a vector space, since such data can be described by probability functions. In sections
5.3 and 5.4, we will move to measures, more specifically used in the pattern learning area; these
are measures created in the process of matching of two sequences, shapes or digitally represented
objects. Some more important dissimilarity measures are described more thoroughly to emphasize
their properties and a potential use. Section 5.5 finishes this chapter with a brief survey on measures
developed for particular applications, while section 5.6 presents a general summary.

5.1 Measures depending on feature types
In the statistical approach, the data objects are described by features. Although such representations
are not our main concern here, the learning methods designed for them constitute an important
basis; see section 4.4. Therefore, some attention will be devoted to features. Moreover, the use
of dissimilarities is an option for data consisting of mixed features. We distinguish the following
feature types: binary, categorical, ordinal, symbolic and quantitative, introduced in Def. 5.1. These
types might not be sufficient for the complete description, since the real-world data may suffer from
(selective) lack of information which leads to imprecise, vague, probabilistic or even missing data.

Def. 5.1 (Feature types) Let
c 6¢8 # : � # < � ����� � # � ? be a set of features, called also variables or at-

tributes, and
b�� Ä be a set of valid values for

# / . The following features
# x c can be considered:

1 The word ’relative’ emphasizes the pairwise comparisons of objects. Conceptual measures are not discussed here.
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S binary if
b �

is a set of two symbols or two numbers, e.g. k��¨j to encode the gender.S categorical if
b �

is a finite, discrete set of numbers, e.g. from j to M to encode hair color.
Here, we also include the case of a discrete feature, i.e. a feature with distinct and separate
values, which can be counted, such as the number of children.S symbolic or nominal if

b �
is a finite, discrete set of symbols; e.g. nationality. Symbolic

features represent a set of possible values, symbols or modalities. Their values can be counted,
but not ordered.S quantitative if

#
is measured on an interval and

b �
is a convex subset of � ; e.g. height, tem-

perature or the time required to reach a chosen place by car.S ordinal if
b��

is a finite, discrete set of ordered symbols, e.g. a scale from j to Y representing
the answers of ’strongly dislike’, ’dislike’, ’neutral’, ’like’ and ’strongly like’, after tasting
a particular food product. The distinction between consecutive points on the scale is not
necessarily always the same; the difference in pleasure expressed by giving a rating of �
rather than j might be much less than by giving a rating of M instead of O .

Measures for dichotomous data. Dichotomous (or binary) features have only two values possible.
They represent either the presence ( j ) or absence ( k ) of a particular characteristics or some opposite
qualities, e.g. such as large ( j ) and small ( k ). The 0 -th object is represented by a binary vector� / x~} � , where } 6�8uk � j ? . For � / � � º x~} � , �¬¹/ � º 6 z � « | : ~ / « ~ º « is the binary scalar product and· ý � is the complementary vector of � . This allows us to define the following counters:SÛ� /7º 476 �¬¹/ � º - the number of properties common to both objectsS � /7º 476 � ¹ / f · ý �&º£h - the number of properties which 0 has and ¼ lacksS d /7º 476 f · ý �@/%h ¹ �&º - the number of properties which ¼ has and 0 lacksS ! /7º 476 f · ý � / h ¹ f · ý � º h - the number of properties that both objects lack

object ¼
1 0

object 0 1 �{/7º � /7º
0

d /7º ! /7º
where �{/7º à � /7º à d /7º à ! /7º 6�� 1. For various definitions of similarity measures, a � � � contingency
table is considered for each pair of objects 0 and ¼ as given above on the right.

A number of measures has been proposed based on these values; see e.g. [12, 13, 72, 171]. Some of
them are presented in Table 5.1, where the suffices 0 and ¼ are omitted for simplicity. Such measures
are often binary equivalents of other well-known formulations. For instance, in Table 5.1, the first
measure is the binary dot product, the Jaccard measure is the similarity ratio, the Ochiai measure
refers to the cross-product ratio, while the Pearson2 measure corresponds to the binary correlation
coefficient. Gower [171] introduced also two families of binary similarity coefficients depending
on a parameter � and defined as (the suffices 0 and ¼ are dropped):

B�� 6 � à !
� à ! à � f � à d h and D � 6 �

� à � f � à d h � (5.1)

For particular values of � the above measures reduce to some of the forms presented in Table 5.1.
For instance,

B : corresponds to the simple matching similarity and D :+ØÈ< refers to the Dice similarity.
The metric and Euclidean properties of the dissimilarities j ý B�� , j ý D � and their square roots depend
on � . They are summarized below:

Theorem 5.2 (Gower) (see [171] for proofs)
1. j ý Bu� and j ý D � are metric for � Ì j . f j ý Bu� h :
Ø�< and

f j ý D � h :
Ø�< are metric for � Ì j��pO .
2. If

f j ý B � h :
ØÈ< is Euclidean, then so is
f j ý B � h :+ØÈ< for

Z Ì � . The same relation holds for D � .
3.

f j ý B � h :
Ø�< is Euclidean for � Ì j and
f j ý D � h :+ØÈ< is Euclidean for � Ì j��m� .

1 Although � is used to denote both the counter and the dissimilarity, its use is apparent from the context.
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Table 5.1: Similarity and dissimilarity measures for dichotomous features [72, 171].

Dissimilarity D
Reference Similarity S Range S psd <c« £µ¸¯+�� � ÀÃ <¡« ¸¯+y�

Metric Euclidean Metric Euclidean
Russel � Rao

éé F ç F ¨ F º � ���*¸�� Yes Yes Yes Yes No

Simple matching
é F ºé F ç F ¨ F º � ���*¸�� Yes Yes Yes Yes No

Jaccard
éé F ç F ¨ � ���*¸�� Yes Yes Yes Yes No

Dice
éé F   ç F ¨ ¢ L � � ���*¸�� Yes Yes Yes No No

Sokal � Sneath
é F ºé F   ç F ¨ ¢ L � F º � ���*¸�� No Yes No No No

Anderberg
éé F �   ç F ¨ ¢ � ���*¸�� Yes Yes Yes Yes No

Rogers � Tanimoto
é F ºé F �   ç F ¨ ¢ F º � ���*¸�� Yes Yes Yes Yes No

Kulczynski �� £ éé F ç � éé F ¨ � � ���*¸�� No No No No No

Anderberg2 �K £ éé F ç � éé F ¨ � º¨ F º � ºç F º � � ���*¸�� No No No No No

Hamman   é F º ¢ N   ç F ¨ ¢é F ç F ¨ F º ��+!¸���¸Y� Yes Yes Yes Yes No

Yule
é º N ç ¨é º F ç ¨ ��+!¸���¸Y� No No No No No

Pearson
é º�   é F ç ¢   é F ¨ ¢   ç F º ¢   ¨ F º ¢ � ���*¸�� Yes Yes Yes No No

Pearson2
é º N ç ¨�   é F ç ¢   é F ¨ ¢   ç F º ¢   ¨ F º ¢ ��+!¸���¸Y� Yes Yes Yes No No

Ochiai
é�   é F ç ¢   é F ¨ ¢ � ���*¸�� Yes Yes Yes No No

Reference Dissimilarity < Range Metric Euclidean
Binary Euclidean £hÚp�[Þ*� ÀÃ � �Ê�U¤g� Yes Yes

Hamming Úr��Þ � ���U¤g� Yes No

Variance ç F ¨K   é F ç F ¨ F º ¢ � �Ê�U¤g� Yes No

Bray-Curtis ç F ¨� é F ç F ¨ � �Ê�*¸Y� No No

Binary size difference   ç N ¨ ¢ Ã  é F ç F ¨ F º ¢ Ã � �Ê�U¤g� No No

Binary pattern difference ç ¨  é F ç F ¨ F º ¢ Ã � �Ê�*¸Y� No No

Binary shape difference   é F ç F ¨ F º ¢   ç F ¨ ¢ N   ç N ¨ ¢ Ã  é F ç F ¨ F º ¢ Ã � +¥¤"�U¤g� No No

Measures for categorical data. Let
I

be a categorical
* � � data matrix and let the feature

# «
take

values in
d «

categories such that
d 6 z � « | : d « . Dissimilarity measures defined for binary data, Table

5.1, can now be adapted for the categorical data, as well. To achieve that, one has to code each
� -dimensional data vector � / into a

d
-dimensional binary vector ^�@/ 6 ÿ ^� ö : ù ������� ^� ö � ù � . ^� ö « ù is a vector

of the length
d «

consisting of all zeros except for j at the ¼ -th position assuming that ~ / « belongs to
the ¼ -th category [118].

Measures for ordinal data. Let
I

be an ordinal
* � � data matrix such that the feature

# «
has

d «
categories and

d 6 z � « | : d « . In case of ordinal variables, the dissimilarity measure should take
into account the positions of categories in the ordering, and it should be larger for more distant
categories than for close ones. Here, a generalization of the Jaccard dissimilarity, Table 5.1, can be
used for a comparison of the objects . / and . º , as follows:

! f .&/ � .iº±h 6 z � « | : ~ / « à z � « | : ~ º « à ��z �« | : ,$Ç³È f ~ / « � ~ º « h
z � « | : ~ / « à z � « | : ~ º « ý z � « | : ,$Ç³È f ~ / « � ~ º « h � (5.2)
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Table 5.2: Dissimilarity measures for quantitative features; � �+� x � ä .

Reference D Dissimilarity ��£ j,�Ìû�� Metric Euclidean

Euclidean < ê �t< � � £ j + û�� � £ j�+ ûr� Yes Yes

City block < �  HÄ$# � ª ² Ä +�� Ä ª Yes No

Max norm < H é à ����� Ä ª ² Ä + � Ä ª Yes No� % or Minkowski < % �  HÄ�# � ª ² Ä + � Ä ª % � � L % �ÊÜ ��¸��ÊÜy�« · Yes No

Mahalanobis <�� � £ j + û�� � h N � £ j�+ ûG� ; h is psd Yes Yes

Median distance < H�� º <�� � L ��� N ¼Ué � Ç No No

Correlation-based <�¨�� ¼@¼ ���� ¸¯+ j�� û��� j ��� Ã F ��� û ��� Ã�� No No

Correlation-based < ¨�� ¼@¼ � ���� ¸¯+ j�� û��� j ��� Ã F ��� û ��� Ã N � j � û � No No

Cosine < ¨��/� �� � ¸¯+ j�� û��� j ������� û ��� � No No

Divergence < º Ä � �  �Ä�# �  �à w N ¼ w ¢ Ã �à w F ¼ w ¢ Ã No No

Bray and Curtis < _ {  �Ä$# � ª ² Ä +�� Ä ª �Ä�# � ² Ä �\� Ä No No

Soergel <��  �Ä�# � ª ² Ä + � Ä ª �Ä$# � ����� ±�² Ä ��� Ä ¹ No No

Ware and Hedges < ï��  �Ä$# � � ¸¯+ � ¾ª¿x±�² Ä ��� Ä ¹��� � ±�² Ä ��� Ä ¹¢¡ No No

Another approach relies on coding the ordinal vectors into the binary ones. The object . / can be
represented as a

d
-dimensional binary vector � J/ 6 ÿ � J ö : ù �����

� J
ö � ù � ¹ , where � J ö

« ù is a binary vector of
the length

d «
consisting of first

' «
ones, followed by

d « ýÍ' «
zeros. The observation ~ / « takes

' «
-th

of the
d «

ordered values for the feature
# «

. Now, any binary dissimilarity can be applied.

Measures for quantitative data. Many measures exist for quantitative variables, mostly constructed
in an additive way after counting the differences for each variable separately; see [37, 72, 118, 120,
171]. Some of them are presented in Table 5.2. The basic measures come from the family of ñ ¿
distances. The ñ7¿ metric, for .�Ì j is defined as

! ¿ f � �+� h 476 �ð� � ý�� �ð� ¿ 6 ÿ z �/}| : f ~ / ý � / h ¿ � :
Ø ¿ , which for. 65j becomes the city block distance and for . 6ã� , the Euclidean distance; see also Example 2.31.

A second order statistical dependence among � quantitative variables can be described by their
covariance matrix

^
. Then, the Euclidean distance can be generalized into the Mahalanobis distance! <4 f � �+� h 6 f � ýå� h ¹ ^ � : f � ý5� h � If ^ is unknown, its sample estimate

 
based on

*
objects is used. 

is then estimated either as
 6 :> � : z >/}| : f � / ý �;h f � / ý � h ¹ or, when

)
classes of the cardinalities* / are known, it becomes:

 6 :> � « z
«/}| : z > Äº�| : f � º ý � ö / ù h

f � º ý � ö / ù h ¹ , where � ö / ù is the mean for
the 0 -th class. For the transformed data with the identity covariance matrix,

! <4 becomes Euclidean.

Measures for symbolic data. Symbolic objects are described by � variables
# / , each on the domainb�� Ä and a logical statement of the form

ÿ # /±x � / � , where
� / ã�b�� Ä , e.g.

ÿ
color x 8�� " ! �%$ � "�" *�� � " ñ�ñ 1 P ? � orÿ

weight x f j�k � �Çk h � . A symbolic object ~ is expressed as the Cartesian product of the values ~ / 6 # / f ~ h
with the total event being a conjunction of all the feature events. The dissimilarity between two
objects ~ 6 ÿ # :@x � / � � ����� � ÿ # � x � � � and ��6 ÿ # :¬x¤£�/ � � ����� � ÿ # � x¤£ � � can be defined as [168]:

! f ~ � � h 6 �3
/}| :

ÿ ! ¿ f ~ / � � / h à ! s f ~ / � � / h à ! Ý f ~ / � � / h � � (5.3)
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where
! ¿ , ! s and

! Ý
, normalized to

ÿ k � j�� , denote the components due to position, span and content,
respectively. The component

! ¿ , valid for quantitative variables only, indicates the relative positions
of two variable values. By writing

� / 6 ÿ ~ Ò/ � ~ i/ � and £�/ 6 ÿ �
Ò/ � � i/ � with the lower ~

Ò/ and upper ~
i/

limits, one has
! ¿ f ~ / � � / h 6 � ~ Ò/ ý � Ò/ � � � " � Ä � , where

� " � Ä � is the range of
# / over all the objects. The

remaining two measures,
! s and

! Ý
are defined for quantitative, symbolic or ordinal attributes. The

component
! s indicates the relative sizes of the variable values without referring to the common

parts between them as
! s f ~ / � � / h 6 � ñ æ ý ñ³� � � span

f ~ / � � / h . For quantitative values, ñ æ 6 � ~ i/ ý ~ Ò/ �
and ñ³� 6 � �

i/ ý � Ò/ � , and the span, the length of the minimum interval containing both ~ / and � / ,
equals to span

f ~ / � � / h 6 � ,$. � 8 ~ i/ � � i/ ? ý ,$. � 8 ~ Ò/ � � Ò/ ? � . For other features, ñ æ 6 � � / � , ñ³� 6 � £ / � and
the span becomes

� � / s £�/ � . The component
! Ý

measures the common parts between the variables:! Ý f ~ / � � / h 6 � ñ æ à ñ³� ý � length
f � / � £�/ h � � span

f ~ / � � / h . For other dissimilarity measures for symbolic
objects, see for instance [54, 55, 202, 254].

Gower’s generalized dissimilarity coefficient. A classical measure for data of mixed types is the
Gower’s [170] dissimilarity. First, a general similarity measure for � variables is introduced as:

A /7º 6 z �
« | : P « Q /7º « A /7º «
z � « | : P « Q / º « �

(5.4)

where A /7º « 6 A f . / � .¨º±h « is the similarity between objects .=/ and .iº based on the
)
-th variable only, andQ /7º « 6Ûj if the objects considered can legitimately be compared and zero otherwise, as e.g. in case

of missing values. For the dichotomous variables,
Q /7º « 6 k if ~ / « 6 ~ º « 6Êk and

Q / º « 6tj , otherwise.
The strength of feature contributions is determined by the weights P « , which can also be omitted ifP « 65j for each

)
. The similarity A /7º « , for 0 � ¼ 65j � ����� �+* and

) 6åj � ����� � � is then defined as:

A /7º « 6 A f .&/ � .¨º±h « 6 �������� �������
j ý Ì æ Ä Ç � æ Å Ç Ìw Ç � # «

is quantitativee9f ~ / « 6 ~ º « 6§j h � # «
is dichotomouse9f ~ / « 6 ~ º « h � # «
is categorical

j ý5$ Ö Ì æ Ä Ç � æ Å Ç Ìw Ç Ø � # «
is ordinal,

(5.5)

where � « is the range of the
)
-th variable and

$
is a chosen monotonic transformation.

Let
B 0 6 f Au/7º±h , then the Gower’s dissimilarity matrix

"o0
is defined as

"/0 6 f · · ¹ ý B 0 h J :
Ø�< . The
Gower’s distance is Euclidean if no missing values occur [170].

Other heterogeneous measures. Cox and Cox [73] proposed an extension to the Gower measure,
which can be used for both mixed and non-mixed data, producing simultaneously dissimilarities
between pairs of objects and between pairs of variables. Also, many measures can be designed for
mixture types, e.g. by combining the coefficients from Tables 5.1 and 5.2, either with, or without
appropriate weighting. Some other heterogeneous distance measures are suggested in [421], which
can handle missing data and nominal variables in the case where class labels are available. There,
the performance of the j -NN rule using the scaled Euclidean distance is compared to the alterna-
tive distance measures on a number of datasets, finding out that the former can be outperformed
significantly.

A model of Tversky. A number of models studied in cognitive sciences assumes that human sim-
ilarity assessment is based on the measurement of a distance in a psychological space [37, 164–
166, 418]. Objects are treated as points in a perceptual space and their difference is expressed by
a metric. Tversky [401] argued that from a human perception’s point of view, metric requirements
are not verified in practice. He claimed that a comparison of individuals is described by different
sets of attributes. Hence, a feature contrast model was proposed, where instances are characterized



114 5 Dissimilarity measures

by sets of features, instead of interpreting them as points in a metric space. Assume feature setsc / and
c º given for the instances ~ / and ~ º , respectively. Then, the similarity between ~ / and ~ º

can be evaluated as A ¹ f ~ / � ~ º h 6
�
ö
� Ä¦¥ � Å ù�

ö
� Ä¦§ � Å ù p Ú � ö � Ä � � Å ù p�¨ � ö � Å � � Ä ù , where

#
is a non-negative func-

tion. This measure describes the contrast between the common and distinctive features. Depending
on the choice of K ,

L
and

#
, different models can be obtained. An underlying assumption is that

objects are characterized either by binary features or by features whose values correspond to the
presence or absence of some attributes. Consequently, if

c / and
c º are sets of dichotomous fea-

tures and
#

is the cardinality of a set,
# f 2 h 6 � 2 � , then the Tversky similarity can be expressed asA ¹ f ~ / � ~ º h 6 � /7º � f � /7º à f j à K³h � /7º à f j à L h d /7º h , where � /7º ��� /7º and

d /7º are the counters defined before
in the paragraph on dichotomous features. For suitable choices of K and

L
, some of the similar-

ity measures presented in Table 5.1 can be obtained. Alternatively, the Tversky similarity can be
expressed in the following form:

A ¹ f ~ / � ~ º±h 6 # f}c / � c ºÃh ý K # f}c / ý c º±h ýåL # f}c º ý c /%h � (5.6)

The feature information can also be graded. This is achieved by the use of fuzzy features [332–334],
represented as membership functions X � 4 b ² degree, where each legal value of the domain

b
has

a degree indicating to what extent this value is true. The membership functions can be subjected
to arbitrary simplifications; usually continuous functions are used such as logistic, Gaussian or
piecewise linear. Let

Z / correspond now to a set of measurements of the object ~ / and X «&f Z / h
be the

)
-th fuzzy feature. Given � feature, X f Z / h   c / 6 8 X : f Z / h � X < f Z / h � ����� � X � f Z / h

� ? . Let us
denote X « / 476 X « f Z /%h . The intersection and the difference between

c / and
c º can be then defined as:c / � c º 6 8�,$Ç³È f X « / � X « º h�? :�» « » � and

c / ý c º 6í8�,/. � f X « / ý X « º � k h�? :�» « » � . The Tversky similarity
(5.6) becomes then:

A ¹ f ~ / � ~ º±h 6 �3
« | : ,$Ç³È f X « / � X « º h ý �3

« | : K ,$. � f X « / ý X « º � k h ý �3
« | :

L ,/. � f X « º ý X « / � k h (5.7)

and the dissimilarity is given as
! ¹ f ~ / � ~ º h 6 � ý A ¹ f ~ / � ~ º h . The Tversky similarity relies on

considerations from set theory. Still, the ,$Ç©È and ,$. � operators can be approximated by smooth
functions. If

'
is the Heaviside function:

' f ~ h 6 e�f ~ Ì k h , then a logistic function
' Î f ~ h 6tj�� f j à����� f ý ¤ ~ h , approximates

'
with any desired error for any non-zero ~ (for ~ 6êk , the error is ki�ZY ,

independently of ¤ ). The ,$Ç³È and ,$. � operators can be approximated2 as A Î f ~ � � h 6 ~ ' Î f � ý ~ h à� ' Î f ~ ý � h and ñ Î f ~ � � h 6 ~ ' Î f ~ ý � h à � ' Î f � ý ~ h , respectively. So, in formula (5.7), these operators
can be replaced appropriately. This leads to the following dissimilarity

! ¹ :

! ¹ f ~ / � ~ ºÃh 6 �3
« | : K A Î f X « / ý X « º � k h à �3

« | :
L A Î f X « º ý X « / � k h ý �3

« | : ñ Î f X « / � X « º h �À� (5.8)

The Tversky’s idea can be adopted to define new dissimilarity measures for continuous features. For
instance, the similarity between two instances w.r.t. the feature

# «
can be measured as A ��Ç f ~ / � ~ º±h 6f � « ý � # / « ý # º « � h ��� « , where

# / « is the value of the
)
-th feature for the 0 -th object and � « is the range

of
# «

. If K 6 L 69k , then the original Tversky’s model simplifies to
# f}c / � c º h � # f}c / s c º h . Let

#
be

a weighted linear combination of the features, then we can define the total similarity A ¹ as:

A ¹ f ~ / � ~ º±h 6 z
� Ä ¥ � Å« | : P « A ��Ç f ~ / � ~ º h
z
� Ä�§ � Å« | : P « �

(5.9)

where P « are suitable weights assigned to the features. An asymmetric similarity can be obtained
in the same way as above, but for K 6�k and

L 6 ý j . Yet, such a similarity should express the degree
of inclusion of ~ / into ~ º by using z

� Ä« | : P « in the denominator of formula (5.9) instead.
2 This approximation is due to � ¾ª¿�£³²�������«�²�á�£��z+o²��U�\�,áU£©²0+ �â� and ��� � £³²�������«�²�á�£³²0+ ���U�[�pá�£��®+-²�� .
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5.2 Measures between populations
To analyze the differences between populations described by vectors in a feature space, a number
of dissimilarity measures can be considered. If the mean vectors are used to represent entire popu-
lations, they can be used to compute the between-group dissimilarities according to formulas from
Table 5.2. The evaluation of the inter-population dissimilarity may also rely on the description of
a population by a multivariate probability distribution function (pdf) � f � h . Then, the difference
between two populations is measured by the dissimilarity between two pdf’s � : and � < . A Kol-
mogorov metric [146] is commonly used. For two distribution functions � : and � < it is defined as

"°ó�f � : � � < h 6-¿+À �� � � : f �;h ý � < f � h � � (5.10)

For some general probability measures and their relations, see [146] and the following sections.

Normal distributions

An assumption of normally distributed data is often made in practice, hence there is a need for
proper dissimilarity measures. A classical measure between two normal distributions

o f Y : � ^ h
and

o f Y < � ^ h with the equal covariance matrices
^

is the Mahalanobis distance
" 4

between their
means: " <4 f Y : � Y < � ^ h 6 f Y : ý Y < h ¹ ^ � : f Y : ý Y < h � (5.11)

Since the true distribution parameters are hardly known, they are replaced by the sample estimates:� ö / ù 6
:> Ä z

> Äº�| : � º , 0 6Ûj � � and
 6 ö > � � : ù = � p ö > � � : ù = �> � p > � � < , where

* / denotes the sample sizes and � /
and

 / , 0 65j � � , represents the sample mean vectors and sample covariance matrices, respectively. If 6 ( or
 6 diag

f ¤ /ïh , then the
" <4 becomes the Euclidean or weighted Euclidean distance between

the mean vectors, correspondingly. Note, however, that if the Mahalanobis distance is considered
w.r.t. the space

I 6 o f X � ^ h , f�I � ! 4 h is premetric; see Example 2.39.

The Mahalanobis distance is based on the assumption of equal covariance matrices. For heteroge-
neous covariance matrices, its generalization leads to the normal information radius [212]:

! F :<; f � : � � < �  : �  < h 6 ��� �� :< Ê�º2» < �� Ì ö
= � p = � ù Ì p �K ö � � � � � ù � ö � � � � � ùÌ = � Ì � L � Ì = � Ì � L �

�
if
 : Ë6  <

:< Ê�º2» < f j à :ë " <4 f � : � � < �  h � if
    : 6  <

(5.12)

All other measures for normal distributions are presented in the next section.

Divergence measures

Many classical measures expressing the difference between two probability distributions � : and � <
with the density functions

# : and
# < are special cases of the

Z
-divergence proposed by Csiszár [76],

which is based on the likelihood ratio
V f �;h 6 # < f �;h � # : f �³h :

! � f � : � � <£h 6 @ ÿ Z f V f�I h+h �È6 Ù�© Z f V f ��h+h ! � : f �;h 6 Ù¢© Z ÿ # < f �;h � # : f � h � # : f � h ! X f �³h � (5.13)

where
Z f V h is a real, convex function defined on �ap such that

Z f j h 6 k , and X is a measure
over the domain

b
. Note that by inverting the arguments � : and � < of

! � f � : � � < h , another
Z
-

divergence is obtained, i.e.
! � f � < � � :uh becomes

! � � ö :+Ø � ù f � : � � <�h . Moreover, the symmetric diver-
gence,

! � f � : � � < h à ! � f � < � � : h , can be considered as
! � ö � ù p � � ö :+Ø � ù f � : � � < h [118].

Some well-known divergence measures [118] for continuous and univariate histogram-like distribu-
tions are presented below, together with the equivalent formulas in case of two normal distributions.
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Formulations for discrete distributions are omitted since they are straightforward generalizations of
the continuous ones. For brevity, let us denote

o / 476 o f Y / � ^ / h , for 0 6 j � � , ^ 476 ^ : 6 ^ < , for equal
covariance matrices and the square Mahalanobis distance by

" <4 . The histogram-like distributions# : and
# < are constant on disjoint intervals

( ö : ù: � ����� � ( ö : ùF � and
( ö < ù: � ����� � ( ö < ùF � , respectively such that# / f ~ h 6�z

F Ä* | : ' ö / ù* e�f ~ x ( ö / ù* h , 0 65j � � , where
' ö / ù* are positive weights.

9 s  476 ( ö : ùs � ( ö < ù stands for the
intersection of the two intervals

( ö : ùs and
( ö < ù and X f 9 s  h is the length (Lebesgue measure) of

9 s  .
Kullback-Leibler divergence. This measure, known also as information distance or relative entropy
[263], is obtained for

Z f V h 6 V�Ê�º2» f V h , V Ï k and
Z f k h 6�k :! ó 6 f � : � � < h 6 Ù © Ê�º2» f # : f � h � # < f �³h+h # : f �;h ! � � (5.14)

The usual convention is
Ê�º2» f k�� � h 6�k for all

�
and

Ê�º2» f � ��k h 6 Ù for all non-zero � . Hence,
! ó 6

yields
values in

ÿ k � Ù � . This measure is asymmetric, hence non-metric. For two � -dimensional normal
distributions,

! ó 6
becomes:

!Ãó 6 f o : � o < h 6 j� Ï " <4 f Y : � Y < � ^ : h à tr
fÀ^ � :: ^ < ý ( h à Ê�º2» � ^ : �� ^ < � Ð (5.15)

or, in case of equal covariance matrices, one gets
!�ó 6 f o : � o <�h 6 :< " <4 f Y : � Y < � ^ h .

For two histogram-like distributions,
! ó 6

equals to:

! ó 6 f � : � � < h 6
F �3s | :

F �3
 | :

Ê�º2» f ' ö < ù � ' ö : ùs h ' ö < ù X f 9 s  h �l -coefficient. For
Z f V h 6 f V ý j h Ê�º2» f V h , we get a symmetric Kullback-Leibler divergence:!�7 f � : � � <Çh 6 ! ó 6 f � : � � <£h à ! ó 6 f � < � � :uh � (5.16)

For two � -dimensional normal distributions,
!x7

becomes:
!87 f o : � o <Çh 6 j� ÿ " <4 f Y : � Y < � ^ :�h à " <4 f Y : � Y < � ^ <�h à tr

fÀ^ � :: ^ < ý ( h à tr
fÀ^ � :< ^ : ý ( h � (5.17)

or in case of equal covariance matrices,
!!7 f o : � o < h 6 " <4 f Y : � Y < � ^ h .

For two histogram-like distributions, one has:

! 7 f � : � � <�h 6
F �3s | :

F �3
 | :

Ê�º2» f ' ö < ù � ' ö : ùs h f ' ö < ù ýÍ' ö : ùs h{X f 9 s  h �
Information radius. This is a symmetric measure obtained for

Z f V h 6 ý :< f j à V h Ê�º2» f j à � < h :! :<; f � : � � < h   ! � f � : � � < h à ! � f � < � � : h � (5.18)

For two normal distributions,
! :<;

becomes the normal information radius, as given by formula
(5.12).

Hellinger coefficient. This similarity measure is obtained for
Z f V h 6 V  , where C x f k � j h :

A ö  ù1 f � : � � < h 6 Ù © # < f � h  # : f � h : �  ! � � (5.19)

For two � -dimensional normal distributions, A ö  ù becomes either

A ö  ù1 f o : � o < h 6 �����«ª ý C f j ý C h� " <4 f Y < � Y : � C ^ : à f j ý C h ^ < h à j� Ê È
� C ^ : à f j ý C h ^ < �� ^ : �  � ^ < � : �  ¬ (5.20)

or in case of equal covariance matrices: A ö  ù f o : � o < h 6 ����� ª ý C f j ý C h� " <4 f Y : � Y < � ^ h ¬ �
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Chernoff and Bhattacharyya coefficients. For C 6§j��m� , the Hellinger similarity becomes the Bhat-
tacharyya symmetric coefficient [138]. The Bhattacharyya distance is then given as:

! � 1 f � : � � <£h 6 ý Ê�º2» f A ö :
Ø�< ù1 f � : � � <Çh+h � (5.21)

For two normal distributions, it becomes:

! � 1 f o : � o <�h 6 jL " <4 f Y : � Y < � j� fÀ^ : à ^ <�h+h à j� Ê�º2» � :< fÀ^ : à ^ < h �� ^ : � :
Ø�< � ^ < � :+ØÈ< � (5.22)

The Bhattacharyya distance is a special case of the Chernoff distance [138]:

! ö  ù= 1 f � : � � <�h 6 ý Ê�º2» f A ö  ù1 f � : � � <Çh+h � (5.23)

The Chernoff and Bhattacharyya distances are important in the classification area since they provide
upper bounds on the Bayes error of two classes described by normal distributions [97, 138].

Discrete probability distributions

Let us consider
*

objects, described by � categorical variables and belonging to two groups. The
groups are then treated as separate distributions. Let .

« º/ 6 *
« º/ � * be the relative frequency, where* « º/ is the number of instances belonging to the ¼ -th category present of the

)
-th variable for the0 -th group, where 0 6 j � � . Let \ / 6 ÿ . :�:/ �ð� . :

Ý �/ . <�:/ �ð� . <
Ý �/ �ð� . �

Ý H/ � and
d «

be the number of different
categories for the

)
-th variable and

d 6 z � « | : d « . The inter-group distance can be computed as
follows:

! < f \ : � \ < h 6 �3
« | :

Ý Ç3
º�| :

f . « º: ý . « º< h <:< f . « º: à . « º< h � (5.24)

Another possibility is to extend the Mahalanobis distance by replacing the continuous variables by
the categorical ones. If

 
is a

d¬�(d
sample covariance matrix, such a measure is given by:

" <4 � Ý 2  f \ : � \ < h 6 f \ : ý \ < h ¹  � : f \ : ý \ < h � (5.25)

The affinity coefficient can be used as well. It is related to the Hellinger similarity, formula
(5.2), and it measures the resemblance between two categorical or modal features, or two his-
tograms. Let .

« º/ 6 * « º/ � * , as above. Thus, those frequencies generate a discrete probability
distribution. The affinity between two frequency distributions for the variable

# «
is expressed as� ��Ç 6�z Ý Çº�| : ¼ . « º: . « º< ¾ :+ØÈ< . This leads to the affinity dissimilarity between the groups defined as:

!
aff
f \ : � \ < h 65j ý �3

« | : P « � ��Ç (5.26)

where P « are appropriate weights.

5.3 Dissimilarity measures between sequences
Let

�
be an alphabet, i.e. a finite collection of symbols, also called letters, from which sequences or

strings are composed.Let

 6 A : A < ����� Au> be a sequence of letters from

�
. An empty word is denoted

by � and it has a null length. Such strings are used in the pattern recognition and machine learning
areas for encoding objects of relatively homogeneous structure. Here, we will describe the most
common distance measures. For a general framework, see [248] and for a universal definition in
terms of Kolmogorov complexity, see the work of Vitányi and his colleagues [18, 246].
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Hamming distance. This is one of the most simple measures: for two sequences of equal length,
it counts the symbol positions in which they differ; see also Table 5.1. Without loss of generality,
let



and  be binary sequences. Then, the Hamming distance can be expressed as

!!132
�
f 
 �  h 6

z « e�f A « Ë6 C « h . It is not a flexible measure, since it assumes sequences of a fixed length. In many
problems, however, the sequences have a variable length and, moreover, there might be no fixed
correspondence between their symbol positions. A small shift of the position in one of the two
nearly identical sequences can lead to exaggerated values in the Hamming distance.

Fuzzy Hamming distance. A fuzzy Hamming distance [36] has been proposed to make the Hamming
distance be sensitive to local neighborhoods. This is a type of an edit distance for sequences of equal
length. Edit distance relies on transforming one sequence into another by using the so-called edit
operations. The following edit operations are introduced: insertion, deletion and shift, with the
costs

d
ins
�+d

del and
d
sub assigned to them, correspondingly. The shift operation allows to transform

a j -bit in one string to the nearest j -bit in the other string at smaller costs than by both deletion
and insertion. The operations are now used to transform one string into another and the resulting
dissimilarity

! �m132
� is computed by adding up the costs of the operations such that it has a total

minimal cost. The fuzzy Hamming distance is metric [36] if
d

del 6 d ins and for the absolute size of a
shift

' Ì k , d sub
f ' h�Ì k and

d
sub
f ' h 65k iff

' 65k , d sub
f ' h increases monotonically and it is concave

on the integers.

Levenshtein distance. The most popular edit distance is the Levenshtein distance [244, 411],
expressing a local similarity between the sequences of arbitrary lengths. It is based on three edit
operations: insertion, deletion and substitution. The costs

d
ins
�+d

del and
d
sub are associated to each

of them, correspondingly, giving rise to a weighted version of this distance. In the edit distance,d
sub

Ï d
del
à d

ins, meaning that a deletion of � and an insertion of
�

are preferred to the substitution
of � by

�
. If all the costs are such that a single one is not larger than the sum of two other costs,

then
!�6

is a metric [48]. Similarly to
!��m132

� , the weighted Levenshtein distance
!�6

is determined
by the minimal total cost related to the operations transforming a sequence



into  . (Note that the

solution might not be unique). Assuming that such a transformation requires
*

sub substitutions,
*

ins
insertions and

*
del dilations,

! 6
is expressed as:

!�6 f 
 �  h 6 ,$Ç³È>
sub
÷ >

ins
÷ >

del

f *
sub

d
sub
à *

ins
d
ins
à *

del
d
del
h � (5.27)

The traditional Levenshtein distance with all the costs equal to one is often considered. However,! 6
depends on the lengths of the compared sequences. To make it independent of the lengths,

a normalization can be used, yielding the normalized weighted distance [262, 410]:

! > 6 f 
 �  h 6 !�6 f 
 �  h,$. � 8 *�� � ? � (5.28)

However, since the triangle inequality may not hold3,
! > 6 is quasimetric.

Other distance measures. Two sequences can also be considered based on the common longest
prefix, suffix or just a subsequence. Assume we are given two sequences



and  of the length

*
and � É * , respectively. Then, the distance can be defined as

! f 
 �  h 6�� à *ûý � � common
f 
 �  h � . The

problem of finding of the common longest subsequence is complementary to determining the edit
distance. It can also be solved by the use of dynamic programming. See also [380]. A survey to
approximate string matching can be found in [281].

3 Consider three sequences o � , o � and ox? of ® , ¸�� and ¸¿ë zeros, respectively. Assume all the costs equal one. Then�N��¯p£±o � �@o � ��« �� B , �	��¯p£±o � �@o ? ��« �? and �N��¯p£ o ? �to � ��« ?L . Clearly, �� B � �? . ?L , hence the triangle inequality is violated.
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5.4 Dissimilarity measures between sets
Dissimilarities can also be considered between two closed and bounded subregions of a (Euclidean)
space, sets of points or elements. Let us first formally introduce the Hausdorff distance [218, 318].

ε

B

ε

B

AA

Fig. 5.1: An illustration of the Haus-
dorff distance;

!±° f ���
	 h 6 � .

Hausdorff metric. Let
f�I � _ih be a metric space and

Ñ f�I h ãtI
be a space of nonempty, closed and bounded subsets of

I
.

Let
- � f � h 6 ® æ¨ç�i 	�� f ~ h be the cover of

� x I by open � -
balls

	�� f ~ h 6Ê8�� x I 4 _ f ~ � � h  ��£? . Since
	�� f ~ h is a neighbor-

hood of ~ , Theorem 2.33, then
-á� f � h is the neighborhood of�

according to Def. 2.4. The Hausdorff distance between
�

and
	

is defined as the smallest � -neighborhood of
�

which
covers

	
and the other way around; see also Fig. 5.1. On the

other hand, the directed Hausdorff distance between
�

and	
,
!³² 1 f � �
	 h can be expressed as the maximum taken over the

collection of minimum distances between elements of
�

and the set
	

. Then, the Hausdorff distance!�1 f ���
	 h is the maximum over the two directed distances. Formally:

Def. 5.3 (Hausdorff distance) In a (semi-)metric space
f�I � _�h , the Hausdorff distance with the

base _ is defined for all
� �
	 x Ñ f�I h in one of the following ways:

(1)
!�1 f � �
	 h 6 Ç³È
´�?å r 8 � Ð -�� f 	 h R 	 Ð - � f � h�? .

(2)
!�1 f � �
	 h 6-,$. � 8 ! ² 1 f � �
	 h � ! ² 1 f 	��
� h�? , where

! ² 1 f � �
	 h 6|¿*À �2 ç�i Ç³Èµ´Â ç � _
f � ��� h .

If the domain of
!o² 1 is restricted, then supremum becomes maximum and infinium becomes mini-

mum, namely
!¶² 1 f � �
	 h 6-,$. �2 ç8i ,$Ç©ÈÂ ç � _

f � ��� h .

Corollary 5.4 The two formulations of the Hausdorff distance given in Def. 5.3 are equivalent.

Proof. We start from definition (1) and by equivalent transformations, the formulation of definition (2)
is reached. Ç³Èµ´ Á¸· � 8 � Ð -�Á f 	 h�? 6 Ç³Èµ´ Á¹· � 8 ©»º<lX� �åx -�Á f 	 h�? 6 Ç³Èµ´ Á�· � 8 ©�º?lX� �åx ® g l Â f ~ 4 _ f ~ ��� h� ��h�? 6ÞÇ³Èµ´ Á�· � 8 ©�º?lX� Ç³Èµ´ g l Â _ f � ��� h� Ê�£? 6Î8�¿+À � º?lX� Ç³Èµ´ g l Â _ f � ��� h�? 6 !³¼° f ���
	 h . Based on this, we have:!¶° f ���
	 h 6 Ç³Èµ´ Á�· � 8 	 Ð -�Á f � h R � Ð -�Á f 	 h�? 6 ,$. � 8�Ç³È
´ Á�· � 8 	 Ð -�Á f � h�? � Ç³Èµ´ Á¹· � 8 � Ð -�Á f 	 h�?£? 6,$. � 8 ! ¼ ° f ���
	 h � ! ¼ ° f 	��
� h�? , which finishes the proof. �
Theorem 5.5 If

f�I � _ih is a metric (semimetric) space, then
!x1

is metric (semimetric).

Proof. First, we will prove that if _ is semimetric, then
!�°

is semimetric. We will make use of the second
formulation in Def. 5.3. Since for all ��x � , Ç³Èµ´ º?lm� _ f � � ��h 6Îk , then

!¢° f � �
� h 6¢k . The ,$. � operation
is symmetric, so

! °
is symmetric. Let

� �
	��  x Ñ f�I h . Let _ f � �
	 h 6�Ç³Èµ´ g l Â _ f � ��� h . If � x � , then there
exists

�
such that Ç©Èµ´ g l Â _ f � ��� hiÉ ¿+À � º?lm� _ f � �
	 h 6 !³¼° f ���
	 hiÉ !¶° f � �
	 h . Given such

�
, we can also write_ f ���  h 6 0 * #$. l Ö _ f �u�+d h&É !¶° f 	��  h . By applying the triangle inequality to _ , for each � x � the following

holds: _ f � �  h¡É _ f � �
	 h à _ f 	��+d h É !¢° f � �
	 h à !¢° f 	��  h . Since the above inequality remains true for
all �°x � , then

!¶¼° f � �  h 6½¿+À � ºBl�� _ f � �  h�É ! ° f � �
	 h à ! ° f 	��  h . Because the ordering of
�

and
 

is
arbitrary, we also know that

!¢¼° f  �
� h¨É !¶° f � �
	 h à !¶° f 	��  h . Hence,
!¢° f ���  h¨É !¶° f � �
	 h à !¶° f 	ô�  h .

To prove that
!¢°

is metric if _ is, the definiteness axiom, Def. 2.30, should be considered. Let
!�° f � �
	 h 6�k .

Then
!o¼° f � �
	 h 6 !³¼° f 	ô�
� h 65k . Consequently, for each �gx � , Ç³Èµ´ g l Â _ f � ��� h 65k . This means that every

neighborhood of � contains an element from
	

. We know that � x f j 	 h 6 	 , since
	

is a closed set. Since
this holds for all ��x � , then

� Ð 	
. By symmetry of our definition, we also get

	 Ð �
. Thus,

� 6 	 . �
The Hausdorff distance is invariant w.r.t. a transformation only if the base metric is invariant.
Thereby, every isometry in the base metric is an isometry in the Hausdorff metric. Moreover, two
sets are within the Hausdorff distance

!
from each other if any point of one set is within the distance
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!
from some point of the other set. Such a distance is sensitive to single outliers. For instance, think

of a case where a point � is at some large distance
! 2

to all points in the set
�

. Then,
!81 f � �
	 h 6 ! 2

is determined by this point. Therefore, generalizations of the Hausdorff distance have been consid-
ered, which are more robust against outliers or noise.

Variants of the Hausdorff distance. Let
f�I � _ih be a metric space (usually Euclidean) and

Ñ f�I h ãÛI
be a space of nonempty, closed and bounded subsets of

I
. Let

� �
	 x Ñ f�I h be sets of
* i

and
* �

elements, correspondingly. The distance between an element ��x � and the set
	

can be defined as:
! f � �
	 h 6 ! f 8 � ? �
	 h 6-,/Ç³ÈÂ ç � _

f � ��� h � (5.29)

The directed dissimilarities between two sets can be then found as [93]:
! ²
� / >

f ���
	 h 6 ,$Ç³È 2 ç�i ! f � �
	 h � ! ²
r è Î f ���
	 h 6 \ r è Î2 ç�i ! f � �
	 h �!o²

�
2 æ f � �
	 h 6 ,$. � 2 ç�i ! f � �
	 h � !³²

r è Ò Î f � �
	 h 6 \ r è Ò Î2 ç�i ! f � �
	 h �
!o²2<Ð w f � �
	 h 6 :> | z 2 ç�i ! f � �
	 h � !³²

r è ½ f ���
	 h 6 \ r è ½2 ç�i ! f � �
	 h � (5.30)

where
\ s2 ç�i is

)
-th ranked distance such that

) 6 A * i . For instance, for A 6�ki�ZY ,
\ r è Î2 ç�i becomes the

median of the distance sequence
! f � �
Þ h and for A 6�ki�ª!$Y , this is the upper quartile.

Since the values
!o² f � �
	 h and

!o² f 	ô�
� h are usually not identical, the symmetry is imposed by ap-
plying one of the following operators:

#
� / >

f ~ � � h 65,$Ç³È=8 ~ � � ? , # � 2 æ f ~ � � h 65,$. � 8 ~ � � ? , # 2�Ð w f ~ � � h 6:< f ~9à � h or
# Ê 2<Ð w f ~ � � h 6 :> | p > _ f * i ~9à * � � h . Combining them with the distances defined by

(5.30), �NM symmetric dissimilarity coefficients can be obtained, which all but one are non-metric.
Two of them are of a significant importance, especially for the purpose of object matching in binary
images [93], namely the Hausdorff distance (the only metric), already introduced in Def. 5.3, and
the modified Hausdorff distance. The latter, although non-metric, has been found useful [93] and
more robust against outliers. Also other variants obtained by replacing the ,$. � operation in the
Hausdorff measure by a

)
-th rank are often less noise sensitive [201].

Def. 5.6 (Modified Hausdorff) In a (semi-)metric space
f�I � _�h , the modified Hausdorff distance

with the base _ is defined for all
���
	 x Ñ f�I h as:

!84�1 f � �
	 h 6ã,$. � 8 ! ²2<Ð w f � �
	 h � ! ²2<Ð w f 	��
� h�? � where
! ²2<Ð w f � �
	 h 6 j* i 32 ç�i ,$Ç³ÈÂ ç � _

f � ��� h � (5.31)

A Hausdorff-like distance can also be defined for fuzzy sets; see [60, 61] for details.

5.5 Dissimilarity measures in applications
There is a large arsenal of various measures developed for retrieval, clustering and classification
purposes. Here, we will only mention some of them, limiting ourselves to the application areas,
where objects under considerations are represented in a feature space, by shapes or by images.

In an information-theoretic sense, a universal definition of similarity, applicable to the domains
which have a probabilistic model, was proposed by Lin [248]. It is based on the common sense
observation that the similarity between two objects is connected to their commonality and their
difference and that two identical objects reach the maximum similarity. This leads to the following
assumptions [248]:

1. The commonality between
�

and
	

is measured by
(�f

com
f ���
	 h+h , where

(
is the amount of

information, usually the negative logarithm of the probability of the event it refers to.
2. The difference between

�
and

	
is measured by

(=f
desc

f � �
	 h+h ý (=f com
f ���
	 h+h�Ì k , where

desc
f � �
	 h is a proposition that describes what

�
and

	
are.
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3. The similarity is a function
# 4��qrp � �qpì² ÿ k � j�� of commonalities and differences given as

sim
f � �
	 h 6 # f (�f com

f � �
	 h+h � (�f desc
f ���
	 h+h+h , such that

# f ~ � ~ h 65j and
# f k � � h 6k .

4. The overall similarity of two objects is a weighted average of their similarities computed from
different perspectives.

The similarity derived from these assumptions is measured as the ratio between the amount of
information needed to state the commonality of two objects and the amount of information needed
to describe them. It is given as sim

f � �
	 h 6 Ê�º2» 2¢f com
f ���
	 h � Ê�º2» 2¢f desc

f � �
	 h+h+h . In [248] Line
presents how this general definition is applied to a number of domains, resulting in a similarity
between strings, words or concepts in taxonomy.

Another universal definition of a metric between sequences was proposed by Li et al. [246]. This
measure is based on the notion of Kolmogorov complexity. For some other considerations, see [18].

Feature type data. For data represented in feature spaces, a number of distance measures have been
designed to account for the distribution of points in local neighborhoods. Such distances are then
used by the

)
-NN rule or by some variant of locally weighted learning; see Atkeson et al. [5] for a

survey of methods. We will mention a few.

Friedman [136] proposed some techniques for flexible metric construction. These methods are
based on a recursive partitioning strategy to adaptively shrink and shape rectangular neighborhoods
around the test point. Also Hastie and Tibshirani [190] developed an adaptive NN rule that uses
local discriminant information to modify the neighborhoods appropriately. The distance metric is
the square Euclidean distance weighted by a product of suitably weighted between- and within-
sum-of-squares matrices. They show that this metric approximates a chi-squared distance between
true and estimated posterior probabilities for spherical Gaussian classes. Generalizing both previ-
ous approaches, Domeniconi et al. [89] estimated a flexible metric for computing neighborhoods
based directly on the Chi-squared distance. The property of the neighborhoods is such that they are
elongated along less informative features and compact along most influential ones. Also Avesani et
al. [6] proposed two metric measures for the NN rule: a local asymmetrically weighted similarity
metric and a minimum risk metric based on a probability estimation that minimizes the risk of mis-
classification. They found experimentally that the j -NN rule based on their measures performs well.
Lowe [251] introduced a variable kernel classifier based on a similarity metric, by combining the)

-NN rule with smooth weighting defined by the Gaussian kernels. The Gaussian kernels are based
on a weighted Euclidean distance, where the weights are learned in the cross-validation procedure.

All these approaches can be encompassed by a general framework based on similarities computed
between the features, as proposed by Duch et al. [94–96]. Such a model involves the steps of
selecting distinctive features, weighting them and scaling appropriately, and computing a distance
suitable for the feature type and the problem at hand.

Text. Many of the information retrieval models make use of statistical properties of text [259]. For
a collection of text documents, a vocabulary set is often chosen for the indexing purposes. Text
documents are then represented as vectors of term weights for every term from the vocabulary
set. The term weight is often proportional to the frequency of occurrence within the document
and inversely proportional then number of documents the term occurs in. The similarity measure
between the documents is often an appropriately weighted variant of a cosine similarity which
measures the cosine of the angle between the document vectors or an ñ ¿ distance [385]. Many
weighting schemes can be used, as well as binary measures focusing on the word occurrences
see proceeding of the SIGIR conferences [364]. Another possibility are also information theoretic
measures as described in [18, 246, 248]. When document collections are described by graphs,
various graph dissimilarity related to the maximum common subgraph [50, 51] as well as to the
graph union or minimum common supergraph [340], can be used.
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Shapes. In computer vision, image processing and pattern recognition areas, many shape descrip-
tion techniques have been developed for both quantitative and qualitative measurements. Such
descriptions mostly rely either on segmentation followed by external characteristics of the resulting
binary shape defined by spatial arrangements of elements such as edges and junctions, or on inter-
nal shape characteristics, as texture or intensity-based features, in the given grey-level image. For
a general introduction into shape description methods, see the book by Costa and Cesar [69].

Here, we are interested in the comparison of objects, hence in measures of their similarity. Many
such measures exist, both general and application-specific, mostly developed for solving pattern
matching problems. A typical example of a dissimilarity-oriented pattern matching relies on find-
ing geometric transformations (from a specified class) of one pattern (shape, contour, image) into
another one such that a predefined cost is minimized. For a survey of shape matching approaches,
see [408] and for some similarity measures and algorithms, see [407].

For the purpose of matching of binary images (hence also contours), variants of Hausdorff distances
can be used, as described in section 5.4. For some practical considerations, see [93, 201]. Since
these measures are in fact measures between sets of points, some further extensions can be found
in [117]. Also mathematical expressions for the distance between 2D point sets with known corre-
spondences were suggested in [417]. They are invariant to either affine transformations or similarity
transformations of the sets. First, images are normalized and aligned by the use of affine transfor-
mations and next, the square Euclidean distances between the points in images are computed. To
our judgment, this is similar in formulation to the Procrustes analysis [37, 72].

A more general metric distance measure, the so-called absolute difference was introduced by Hage-
doorn and Veltkamp [183]. This measure is invariant under affine transformations and deals well
with objects having multiple connected components. It is robust against perturbation and occlusion.

Basri et al. [9–11] tried to capture human judgments of similarity. For instance, in [10], the dissim-
ilarity between image contours is studied as a cost of matching by summing up the costs of local
deformations that reflect the differences between two contours. A cost function is proposed which
depends on the local curvature and obeys the constraints of continuity, metric properties and invari-
ance under some classes of transformations. The cost function should also grow with the increase
of bending or stretching, but bending should be less costly at a point of high curvature.

Some other ideas of curve matching can be found in [144], the definition of elastic distance is
considered in [423, 424] and the use of deformable templates for handwritten digits in [207].

Belongie et al. [16, 17, 274] developed a shape descriptor, the shape context, along with a framework
for deformable matching. The shape context at a particular point location on the shape is defined by
the histogram of the relative log-polar coordinates of all other points. Since corresponding points of
two different shapes have similar characteristics, the alignment of shapes is simplified. The overall
distance is given as the weighted average of three contributions: sum of the best shape matching
costs, appearance distance due to the brightness differences and the bending energy.

Recently, Sebastian, Klein and Kimia [361] have proposed a novel approach to the alignment be-
tween two curves, which further serves for the definition of the dissimilarity between them. They
reported that this method is robust under a variety of affine transformations, as well as viewpoint
variations and small deformation and that it can be applied to object recognition problems. Algo-
rithmically, the alignment is solved by the dynamical programming [15].

Another possibility of comparing two binary shapes is by the use of a distance transformation. It is
the operation on a binary image which transforms it into a gray-level image, a distance map, where
non-object pixels have a value corresponding to the distance to the nearest object pixel. Objects can
be shapes, but also curves, edges or points. Matching relies on positioning the template shape at
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Fig. 5.2: Chain code representation. (a) Result of resampling. (b) Chain code based on the
L
-connectivity.

various locations of the distance map. The matching cost, hence the dissimilarity between the object
shape and the template, is determined by the pixel values of the distance map which lie under the
data pixels of the template. The target is considered as detected when e.g. the average distance value
is below a chosen threshold. The most common distance is Euclidean, but due to its computational
cost, often chamfer distance, as its best approximation, is used; see the work of Borgefors [38]. An
example of shape matching using chamfer distance transform can be found in [142, 143]. It covers
the detection of arbitrary-shaped objects, either parametrized or not, like pedestrian contours.

Recently, Thayananthan et al. [395] have compared the methods of shape context and chamfer
matching for the purpose of object detection as described by a contour. They found out that in
case of cluttered scenes chamfer matching, based on a number of templates, is more robust than the
shape context approach.

Shapes can also be described from the structural point of view. Then, a chain code [133] represents
a digital boundary as a sequence of direction vectors based on the M - or

L
-connectivity principle;

see Fig.5.2. In general, it is not unique, since it depends on the starting point. However, given a
starting point, it reconstructs a shape perfectly. Unfortunately, chain codes become very long for
complex objects, but more importantly, they reflect all the noise present on the boundary e.g. due
to small disturbances. Still, for a comparison of two shapes, their chained codes can be compared.
Since their starting points can be arbitrary, the matching should be performed between all their
cyclic permutations. Let 
 and  be the chain codes of the two contours. Let

B
and D represent

sets of all cyclic permutations of 
 and  , respectively. Then, the comparison of two chain codes is
based on the weighted Levenshtein distance as follows:

!
chain

f 
 �  h 6[,$Ç©È�8 ! ²�f 
 �  h � ! ²�f  � 
 h�? , where! ²if 
 �  h 6 ,$Ç©È 
 J x B �  J x D !�Ê 6 f 
 J �  J h is a directed distance. In this way,
!

chain is robust against
rotation of shapes, however, not against scaling.

Alternatively, a contour can be represented as a sequence of points A 6 f ~ : � � : h ����� f ~ �
� � � h in a� -dimensional space, resampled if necessary such that the distances between any consecutive pair

of points are identical. Then, a string
� 6 � : ����� � � , describing a contour, is derived such that

� / is
the direction vector pointing from

f ~ / � � /ïh to
f ~ / p : � � / p : h . The distance between the strings is an edit

distance with fixed insertion and deletion costs and some substitution cost. Different substitution
costs, e.g. based on an angle or the Euclidean distance between vectors lead to different distance
measures; see [47, 48]. It is claimed [48] that such an approach has a number of advantages such as
higher angular resolution, robustness to shape distortion under rotation and invariance under scaling.

Also Fourier descriptors [307, 428] for closed contours can be found for which some distance mea-
sures can be defined, such as a Minkowski distance.

A structural description of complete shapes is based on a coarse description of the geometric re-
lations between the parts that compose them. Similarity between the shapes can be, therefore,
evaluated as a metric edit distance between shock graphs representing the shapes as advocated by
Kimia and his colleagues [218, 359, 360, 362]. This measure is computed as the optimal cost of
the deformation path between two curves and it is robust against small deformations, occlusions
and boundary disturbances. Also, a comparison between retrieval based on shock graphs (structural
approach) and curve matching (metric approach) is presented by Sebastian and Kimia [357, 358].
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Some other approaches based on the representation of shapes by medial axes can also be found in
[249, 399, 429].

Finally, the statistical properties of the object’s shape can also be used for comparison. This means
that shape information can be encoded by moment descriptors, which describe center of mass,
elongation aspects and overall orientation. Also, other, more specific features w.r.t. the overall
shape can be found, such as: perimeter, area, boundary straightness, curvature in terms of the zero-
crossing of the curvature around the shape contour or bending energy. All these quantitative features
may be used to construct a dissimilarity measure as e.g. given in Table 5.2.

Histograms and spectra. Emission and reflectance spectra become more popular for the identifi-
cation of certain materials, e.g. types of plastics or minerals and rocks. Also autofluorescence is
emerging as a useful tool for the detection of cancer e.g. in oral cavity or in the bronchi. It relies
on the spectroscopy of the tissues of interest. The measurements are usually performed on healthy
and diseased tissues (in various stages of cancer) at several excitation wavelengths. The emission
spectra are then analyzed to support the diagnosis of a doctor.

Histograms and spectra can be interpreted in the probabilistic framework, where their normalized
versions are considered as probability distributions. This allows one to use divergence measures or
general measures between distributions, where some them are mentioned in section 5.2. Since the
structure of such data is organized by the underlying factor, such as the order of bins, wavelength or
time, it might be beneficial to incorporate such knowledge into the measure. This is somewhat pos-
sible e.g. by computing the difference, such as the ñ ¿ -distance, between the approximated derivatives
of the histograms or spectra [107, 286, 287, 305]. For instance, the distance between the first-order
derivatives emphasizes the difference in positions between the local minima and maxima of the his-
tograms. Also the distance between the cumulative histograms can be used as well e.g. as we used
for the comparison of chromosome band profiles in [293].

Images. Assume that grey-level images are represented as vectors in a space. Simard et al. [365,
366] proposed a tangent distance, which is locally invariant to any set of chosen transformation
(such as rotation and thinning) and is relatively cheap to compute. It was found to be especially
effective in the domain of handwritten digit recognition [365]. When an image is transformed
(e.g. scaled and rotated) with a transformation that depends on some parameters (like the scaling
factor and rotation angle), the set of all transformed patterns create a manifold of a dimension at
most equal to the number of free parameters in the vector space. The distance between two image
patterns can be now defined as the minimum distance between their respective manifolds and by this
invariant w.r.t. the considered transformations. Such a distance is hard to compute. The compromise
is offered by the tangent distance which is defined as the minimum distance between the tangent
subspaces that best approximates the non-linear manifolds. See [365] for details.

Since two gray-value images can be considered as fuzzy sets (by rescaling them to the range
ÿ k � j�� ),

for their comparison the fuzzy Hausdorff (or modified-Hausdorff) distance can be used. Also binary
images can be regarded as fuzzy sets in the following manner: white pixels have zero membership
values and a black pixel takes a value of

) � f , < ý j h if it has
)

black neighbors in its
, � ,

neigh-
borhood. In this way, noisy black pixels will have either zero or very small membership value. If
the binary images are converted to the fuzzy sets as described, Chaudhuri [61] has reported that the
noise has much less effect on the fuzzy Hausdorff distance than on the original Hausdorff distance
between binary images. Consequently, the fuzzy Hausdorff distance is relatively robust to noise.

On the other hand, grey-value images can be interpreted from the probabilistic point of view, e.g. as
bivariate histograms. This allows one to use various divergence measures or general measures
between distributions, see also section 5.2. Since the intensity of the images might be different,
some preprocessing of normalizing the intensities might be crucial.
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The description of images can also be simplified to univariate histograms, for instance intensity
histograms. Then, the distance between two images

�
and

	
can be computed e.g. based on the

intersection between two intensity histograms with
�

bins is
!8: f ���
	 h 6�j ý¿¾ ç N �Ä�# B &'&Z(

ö
� Ä ö i ù ÷ � Ä ö � ùµùÀ

pixels ,
where

' / f � h describes the number of pixels whose intensity equals to the value assigned in 0 -th
bin. Note that the intersection is the estimation of the Bayes error, i.e. the overlap between two
probability density functions

2�f � h and
2�f 	 h approximated by histograms. An extension of such

a measure has been proposed by Cha and Srihari [57], which takes into account similarity of both
overlapping and non-overlapping parts.

There are a number of dissimilarity measures to support the content-based image retrieval. For
a brief summary, see e.g. [404]. In the probabilistic framework, usually dissimilarities defined
between distributions such as Kullback-Leibler divergence, Bhattacharyya distance, Mahalanobis
distance, are used. For a brief analysis of their inter-relations, see [405]. Also, the earth mover’s
distance (EMD) [326] was designed to evaluate dissimilarity between two distributions based on
the so-called ground distance measure between single features. Loosely speaking, one distribution
can be interpreted as a mass of earth spread in space, while the other distribution as a collection of
holes in the same space. Then, the EMD defines the least amount of work needed to fill the holes
with earth. Computing the EMD is based on a solution to the transportation problem [326]. This
measure has been successfully applied for an evaluation of texture and color similarities in images
[324–326]. It has, however, a rigorous probabilistic interpretation, as shown by [245].

In the probabilistic framework, also Puzicha and colleagues empirically investigated some dissimi-
larity measures for the purpose of texture segmentation and image retrieval [309] and for color and
texture [311]. In both papers, images are compared by distribution-based dissimilarity measures, of
Gabor coefficients in the filtered images in the first paper, and between histograms in the latter.

An approach to incorporate human similarity assessment in the dissimilarity measure is based on
the extensions of the Tversky’s model [401] by fuzzy logic; see the work of Santini [332–334].

5.6 Discussion and conclusions
This brief overview of similarity and dissimilarity measures indicates not only their variability,
but also their different origins and the principles lying underneath them. The use of dissimilarity
(proximity) is especially popular in computer vision and pattern matching applications, informa-
tion retrieval and the evaluation of human judgments. In the pattern recognition area, it is widely
accepted to use the

)
-nearest neighbor rule (usually considered for a given feature representation),

at least as a reference method when solving a classification task. Still, more and more attention is
devoted to the assessment of dissimilarity as a natural means of comparison of objects. For instance,
in computer vision, Edelman recognized the importance of proximity by stating that ’representation
is representation of similarities’ [115]. He advocated the use of dissimilarities in [114–116] and in
his book [113].

The universality of a dissimilarity lies in the fact that it can be approached from both statistical and
structural points of view. Conventionally, one tries to develop either a measure based on statistical,
hence quantitative or metric, properties of object representations (examples are measures in feature
spaces, between sets of points and probabilistic measures) or based on structural, hence qualitative,
properties (examples are measures based on chain codes, graphs and trees). Various attempts have
been made to combine these two research lines as addressed already by Fu [137]. They are, however,
often hybrid in a sense that subproblems of a larger problem are tackled separately by either one on
the other approach and the complete system is optimized part by part. The significance of finding
new measures, unifying these two approaches was emphasized e.g. in [110, 413]. Also, a number
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of researchers made an attempt to define universal or general dissimilarity measures, as for instance
in the framework proposed by Duch [94–96], Griffiths [178], Lin [248] or Vitányi [18, 246].

Most of the dissimilarities are defined for the problem at hand. Still, there is a number of them
which allows for the existence of some free parameters, like weights of particular contributions, to
be learned (adopted) in the training (usually off-line) process. Assume that one deals with objects
that possess such a structure, such as spectra, time-signal, images or text documents. A completely
novel way of thinking, trying to unify the statistical and structural lines, has been promoted by
Goldfarb. A dissimilarity measure is determined in a process of inductive learning realized by the
so-called evolving transformation systems [153, 157, 160]. Such a system is composed of a set of
primitive structures, basic operations that transform one object into another or which generate a par-
ticular object and some composition rules which permit the construction of new operations from the
existing ones [155–157, 160, 161] (which is a structural contribution). The statistical component
is is defined by the means of a dissimilarity. Since there are costs related to the operations, the
dissimilarity is determined by the minimal total cost of transforming one object into another. In
this sense, the operations play the role of features and the dissimilarity, dynamically learned in the
training process, combines the objects into a class. How to realize that is an open issue.

A simpler approach is to first define a small set of fundamental structural detectors, yet general
enough to be applicable to many problems, independent of a specific expert knowledge of the ap-
plication. This means that such detectors work for the given measurement domain, e.g. spectra or
images. The useful subpatterns should be then identified by the detectors when applied to the con-
secutive measurement values. The inter-relationships between the subpatterns should be captured
in some relational intermediate representation (e.g. by a graph or by a string). These would be the
basis for the matching process and the derivation of the final dissimilarity. The learning relies then
on the learning of proper weights (contributions) assigned to the identified subpatterns such that the
specified dissimilarity is optimal for the discrimination between the classes. The most simple ex-
ample is the edit-distance between string descriptions of objects, however, more general approaches
are needed to be developed. Note that one may also consider statistical feature extractors (such as
wavelets or Gabor filters), which work on the consecutive measurements, to be the building blocks
of the learned dissimilarity. How to learn such measures is open for a future research.



PART II

Practice

In theory, there is no difference between theory and practice, but in practice,
there is a great deal of difference.

ANONYMOUS



Planning, observation, and conclusion
Gathering information, it behooves us.
Test and experiments bring about
True results without a doubt.
”EXPERIMENTS”, DELOIS SYKES



6. Visualization
... when you are describing
A shape, or sound, or tint,
Don’t state the matter plainly,
But put it in a hint;
And learn to look at all things
With a sort of mental squint.

”POETA FIT, NON NASCITUR”, LEWIS CARROLL

This chapter begins the experimental part, where dissimilarity data are practically analyzed. Here
and in the subsequent chapters, we would like to present a systematic approach to such an analysis,
so we start from the most basic questions concerning the data understanding. In order to gain some
insights about the data, one usually uses tools to represent the data and their relations in some visual
forms to be subjected to a human judgment. Therefore, we investigate a number of well-known
visualization techniques and their usefulness for the dissimilarity data.

The most simple display of the dissimilarity relations is achieved by plotting a dissimilarity matrix
as an intensity image, where the increase in pixel intensity corresponds to growing dissimilarity
values (starting from black). If the data items are grouped, then possible clusters can be seen by
dark rectangular areas. An example is given below:

Fig. 6.1: Intensity images of a symmetric square dissimilarity representation. On the left, the order of objects
is random, while on the right, the matrix is permuted such that the objects are grouped. This allows one to
observe some cluster tendencies. The black diagonal line corresponds to the zero dissimilarities.

The dissimilarity relations can also be represented in a lower-, usually two- or three-dimensional
space. This can be achieved by continuous spatial models, which rely on linear and nonlinear
projections of the dissimilarities such that the configuration determined in an output space preserves
most of some of the dissimilarities under the specified criterion. Usually, a Euclidean space is used,
but other ñ ¿ -normed spaces can also be considered. The basic theory of spatial representations
realized by the means of multidimensional scaling (MDS) techniques and more general models
referring to pseudo-Euclidean spaces has been discussed in section 3.4. Here, for the completeness
of the overall presentation, the basics of MDS are briefly recapitulated in section 6.1. The focus
is, however, on some illustrative examples. Other types of spatial representations are obtained by
nonlinear mappings concentrating e.g. on the preservation of dissimilarities in local neighborhoods
or by approximating geodesic distances on a manifold. These and others alternative projection
methods are briefly summarized in section 6.2.

Dissimilarity relations can also be represented by weighted, fully connected graphs, where the ver-
tices correspond to individual objects and weights coincide with the given dissimilarity values. This
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Sammon map � B LSS map with Ü �
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Fig. 6.2: The MDS maps, Sammon (left) and LSS (right), of auditory confusion measurements for letters and
numerals. For the LSS map, ËQ�o�~ 6 . Ø f Q�o�~ h , where . Ø is a second order polynomial.

can be further structured by tree models, usually understood in terms of the shortest paths between
the vertices. Here, particularly important are the additive and ultrametric trees, which are discrete
spatial models. They are widely used in data analysis, since they support the hierarchical cluster-
ing schemes and by this, they elevate the process of structuring of the data. The tree models are
presented in section 6.3. The overall summary is given in section 6.4.

This chapter partly relies on our previous work [289, 295, 297–299], however, as such the study
is mostly new (all the plots are made by us). Our contributions here refer to the presentations of
nonlinearity of various variants of Sammon mappings, the formulation of the MDS techniques for
missing data, and the explanations of generalization possibilities (adding new objects to the existing
maps) for a number of projection algorithms, including the Sammon mappings. We also considered
the use of LLE and Isomap for non-Euclidean dissimilarities and proposed to correct the local Gram
matrices by adding a suitable constant. So, this chapter serves not only for the illustrative purposes,
but tries to give some intuition on how the dissimilarity data can practically be explored.

6.1 Multidimensional scaling
Multidimensional scaling (MDS) [37, 72, 228] is a collection of techniques providing spatial rep-
resentations of the objects by representing them as points in a low-dimensional space. This is
achieved by (non)linear projections which aim to preserve all pairwise, symmetric dissimilarities
between data objects. A spatial configuration is usually found in a Euclidean space, although any
other ñ ¿ space (. Ì j ) can also be considered [37, 72]. Such a map is believed to reflect significant
characteristics, as well as ’hidden structures’ of the data. Therefore, objects judged to be similar to
one another result in points being close to each other in a projected space. The larger the dissim-
ilarity between two objects, the further apart they should be in the resulting map. In general, the
dissimilarities describe the relations between objects, originally represented in a high-dimensional
space (so, MDS is then treated as a dimension reduction technique), measured as costs of pattern
matching in a template matching procedure, similarity between text documents or road distances,
or just given, like human judgments.

Here, metric MDS methods [37] are used. They rely on quantitative dissimilarities, assuming that
both the input data and the output configuration are metric. These techniques are realized by the
linear methods of classical scaling or FastMap and the nonlinear methods of LSS and Sammon
mapping variants, as already discussed in section 3.4. In brief, the goal of a metric MDS is to find a
faithful representation

I
in a low-dimensional space such that the approximated distances

! / º , 0 � ¼ 6
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j � � � ����� * between
*

points match the disparities ËQ / º as well as possible. Disparities are functional
dependencies (e.g. continuous monotonic functions) of the original dissimilarities, i.e. ËQ /7º 6 # f Q / º h .
Depending on the way the structure of the data is preserved, somewhat different techniques arise; see
section 3.4 for details. Basically, the MDS methods, called least squares scaling (LSS) mappings,
minimize a normalized version of the raw stress z /�Î º f ËQ /7º ý ! /7º h < as:

B 6}ÌzÌ 6 j
z /�Î º !  p </7º 3

/�Î º !  /7º f�I h f ËQ / º ý ! /7º f�I h+h < � C 6g����� ��ý � ��ý j � k � j � � � �����
A similar technique is the Sammon mapping [329], originally proposed in the pattern recognition
area as a method of nonlinear projection to a lower-dimensional space by optimizing the normalized
square differences between the original and approximated distances. Assuming that ËQ /7º 6 Q / º , the
variants of the Sammon stress functions are:

B  6 j
z >/�Î º Q  p </ º 3

/�Î º Ö Q  /7º f Q /7º ý ! /7º f�I h+h <$Ø � C 6g�ð�ð� ��ý � ��ý j � k � j � � � �ð�ð�
Due to the obvious similarity to the LSS techniques, we account them as the MDS examples. Since
the optimization of the Sammon stress functions is easier to define in gradient terms, Sammon
mappings are preferred.

A standard MDS example is the reconstruction of a map of a country, given either the road or air
distances between main cities; see [37, 258]. One important thing to realize about an MDS map
is that the axes are, in themselves, meaningless. In case of a Euclidean space, additionally, the
orientation of the projection is arbitrary, since any rotation of the configuration does not change
the distances. This means that the MDS map of the cities need not be oriented such that north
is up and east is right. What is important is the relative positions of the objects; the retrieved
configuration may be mirrored or rotated. In general, MDS serves for exploration of the data,
e.g. finding possible clusters, i.e. groups of points which are close together in the represented space.
As an example, let us consider auditory confusion (dissimilarities) between ��Y letters (all excluding
’O’) and j�k Arabic numerals, computed by Lee [252]. The spatial Sammon and LSS maps obtained
by us are shown in Fig. 6.2. Although they give somewhat different results (see section 3.4.2), the
basic characteristics are the same. Clusters of similarly sounded letters or numerals can be clearly
observed. For instance, we can justify the ’closeness’ of ’I’,’5’,’1’ and ’Y’ since, when spoken,
there is an obvious resemblance between their sounds.
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swimming  

track     

boxing    

volleyball

lacrosse  
skiing    
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polo      

surfing   

wrestling 
gymnastics

agression involved

Fig. 6.3: The MDS map of human
dissimilarity judgments on sport.

Another purpose of the MDS is to find rules that would ex-
plain the observed dissimilarities and would help to describe
the data structure in simple terms. This may be especially use-
ful for data describing human judgments of similarity between
objects. In such a case, interpreting an MDS configuration
entails making a link between geometrical properties of such
a map and prior knowledge about the objects represented as
points [37]. By identifying points which are far apart, a line
between them can be drawn, defining a perceptual axis, which
describes a direction of a change between opposite or signifi-
cantly different characteristics. This involves some data-guided
speculation.

An example is based on human judgments of dissimilarities
[252] between various sports. Our MDS representation is given
in Fig. 6.3. To interpret why humans consider some sports to be
more alike than others, we distinguish one perceptual axis, the
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degree of aggression involved. The axis was added by us as a possible (not unique) interpretation,
as a help to understand the relations better. Another possibility could be to tell the difference on
the basis of whether a ball is used in a sport or not or the difference between a team sport and an
individual sport. (Note that such axes do not need to be perpendicular.) A more scientific approach
is to find a perceptual axis as a regression line in the projected space and then, given additional
knowledge, attach a meaning to it.

Illustrative examples

To understand the properties of the MDS, one needs to study various linear and nonlinear tech-
niques for dissimilarity data with some particular structure. The examples given below illustrate the
difference between the linear and nonlinear methods.

Artificial data. The data sets describe �Çk£k points lying on two circles, both of the radius of jÇ�òk , in
a 3D space. The circles are placed either on the planes parallel to the � � -plane with the distance of
j or on two perpendicular planes. The data and the (non)linear metric MDS projections onto a 2D
space are presented in Fig. 6.4. The projections are based on the �Çk£k � �Çk£k distance matrices, either
Euclidean or city block distance. If the distance is Euclidean, then the mapped result is identical to
the principal component projection (PCA) in the original 3D space [72]; see also section 3.3.1. If
the ñ : distance is used, the output Euclidean distances approximate the original ñ : distances in a 3D
space. Therefore, the 3D spatial representations are only shown for the ñ : distances, since for the
Euclidean distances, the retrieved configurations are rotations of the original data. Note that since
the ñ : distances have larger values than the Euclidean ones, the projected circles are also larger.

In case of classical scaling, two corresponding points from two parallel circles are mapped onto
a single point in � " . It seems, therefore, that the data describe one circle. In case of perpendicular
circles, one of them is reduced to a line. Therefore, some important information is lost in classical
scaling, namely the existence of the second oval. Note, however, that FastMap, section 3.4.1, reveals
two closed curves. Although for this example, it may seem that FastMap is superior to classical
scaling in discovering the structure, it is not true for more complex, multi-class real data; see for
instance Fig. 6.8. The nonlinear Sammon mapping outputs clearly illustrate two ovals of a similar
shape. In general, nonlinear mappings reveal more ’hidden’ structure in the data.

To illustrate the differences between the stress measures, as well as nonlinearity aspects of the
projections involved, an artificial example of points lying on three non-crossing and non-parallel
lines in a Y " space is considered with the Euclidean distance representation. Fig. 6.5 shows � "
linear MDS maps and � " nonlinear MDS maps obtained by optimization of various

B  stresses.
On the basis of either the classical scaling or FastMap results, one can draw a false conclusion that
the data set represents three straight crossing lines in a higher-dimensional space. On the contrary,
the Sammon maps suggest that the data consist of three non-crossing curves, but of course, not
necessarily straight lines. Therefore, linear and nonlinear mappings are useful while studying them
together, hence they complement each other.

The Sammon maps are ordered with respect to the nonlinearity involved in projections. By minimiz-
ing the

B � < stress, one focuses on preserving very small distances, by which local perturbations may
appear as observed in Fig. 6.5, top row, third plot from the left. By optimizing the

B < stress, on the
contrary, one tries to preserve large distances, and as a result, the curves start to somewhat resemble
straight lines. The stress

B
r keeps the balance between preserving small and large distances. The

choice of a stress function depends on required geometric properties that an MDS map should have.
When no preferences are given, our experience suggests that the stress

B
r can be recommended.
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Fig. 6.4: Two circles in 3D (left) and their � -or O - dimensional MDS maps based on either Euclidean or city
block distance representations. The scales within � " and O " maps are identical.
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Classical scaling FastMap Sammon map � N � Sammon map � N �

Sammon map � B Sammon map � � Sammon map � � LSS map with Ü �

Fig. 6.5: MDS maps of the three straight non-crossing lines in 5D represented by Euclidean distances. The
LSS map is provided as a reference. The scale is preserved in all the subplots.

Classical scaling Sammon map � N � Sammon map � B Sammon map � �

Raw stress: 1.63e+04 Raw stress: 6.02e+03 Raw stress: 5.46e+03 Raw stress: 5.95e+03

Fig. 6.6: MDS maps of the ñ Ù distance representation of the Pump data. Three operating states are distin-
guished: normal, marked in circles, imbalance, marked in squares and bearing failure, marked in crosses. The
result of the FastMap is not presented, since it looks very similar to the classical scaling output. The scale is
preserved in all the plots.

Pump vibration data. The Pump data set consists of YÇk£k observations with ��Y�� spectral features of the
acceleration spectrum [247]; see also appendix A. It is known [427] that the data have a low intrinsic
dimensionality. The MDS projections based on the city block distances are shown in Fig. 6.6. Both
classical scaling and FastMap reveal three non-overlapping clusters, while the Sammon mappings
with the stresses

B
r and

B < show, however, much more structure in the data. From the Sammon
results, new information can be obtained: the class of bearing failure (marked in ’+’) is composed
of two or even three subclasses, corresponding in fact to the three operating speeds used.

0 10 20 30 40 50
0

0.04

0.08

0.12

0.16

0.2

Fig. 6.7:
B �

stress versus the di-
mensionality for the Pump data.

The MDS maps can provide additional insight into the data, espe-
cially when the data are highly nonlinear. In practice, this means
that many dimensions are necessary to explain a high percentage,
like

L koÁ or �ÇkoÁ , of the total variance in the data by the classical
scaling approach. In case of the ñ : distance representation of pump
vibration, two dimensions explain about O��³Á of the total variance
and j�k�! dimensions would be needed to reach

L koÁ . Basically, in
order to judge the intrinsic dimensionality, a series of the MDS
mapping should be performed to a space of a growing dimension-
ality. Then, the plot of the stress as a function of dimensionality
can be obtained, as in Fig. 6.7. From such a figure, one can find
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Fig. 6.8: MDS outputs for the Zongker dissimilarity data, describing dissimilarities between digit images;
see appendix A.2. The disparities in the LSS maps are modeled by . Ø and . É , i.e. polynomials of the second
and third orders, respectively. The scales in the plots are not comparable.

a potential intrinsic dimensionality, which corresponds to a point where the rapid decrease in the
stress function stops. For the Pump data, it would be around � or ! dimensions. Another indicator
of the intrinsic dimensionality can be provided by the number of significant eigenvalues found in
classical scaling, however, nonlinear MDS techniques usually need much less.

Zongker digit data. The data set describes the NIST digits [420], originally provided as j<� L�� j<� L
binary images. Here, the similarity measure, based on deformable template matching, as defined
in [207], is used; see also appendix A.2. For visualization purposes, a random subset of ��Y digits
per class has been chosen. Fig. 6.8 presents 2D MDS maps. It can be observed that according to
the classical scaling result, the classes of ’0’, ’1’ and ’6’ are the most distinguishable. The first two
classes are also mostly separated in the other MDS results. On the other hand, in nonlinear MDS
outputs, the class of ’2’ is the most scattered overall.

Missing values. Any nonlinear MDS can handle missing values. This can be implemented by in-
corporating extra weights P /7º of zeros and ones, as given in formula (3.31), such that zeros account
for the missing information. Provided that the data items are labeled, it is even possible to consider
a case, where only the dissimilarities between classes are available; see Fig. 6.9. In general, even a
large amount of the data can be missing, as shown in Fig. 6.9 and 6.10.

Implementations

Initialization. Different starting configurations are important as they can influence the resulting pro-
jections. Each initialization gives potentially a possibility to end up in a different configuration. It
follows from our experience that initializing a Sammon projection by classical scaling (CS) often
gives good results [297–299]. Another advantage is that the minimization process is also relatively
short. Therefore, such an initialization is applied in most cases. It is, however, always useful, to
analyze the MDS result based on a pseudo-random initialization. The optimization procedure ini-
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No within-circle distances Missing of Â�ÃÅÄ distances

No within-circle distances Missing of Â�ÃÅÄ distances

Fig. 6.9: MDS outputs of the Sammon mapping
B j Ù based on the ñ Ù distance representations between two

circles, either parallel (top row) or enclosing each other (bottom row), with missing values. The first two
plots, starting from the left, present the results where only distances between the circles where supplied. The
differences are due to different initializations. The rightmost plots show the results, when around �NM¶Á of
distances where randomly removed from the data.

Fig. 6.10: MDS output (left) of the Sammon mapping
B �

on the ñ Ù distance representation with YÇkoÁ of
missing values for the Pump data and the corresponding dissimilarity matrix presented as an image (right),
where white pixels denote the missing information.

tialized by the classical scaling may, in some cases, got stuck easily in a local minimum. One may
also add some noise to the output of classical scaling. Recently, also Malone at al. [256] argued that
a better initialization than the one offered by the CS can be considered by finding a proper term

L
scaling the output of the

 �B
; see also section 3.4.2.

Algorithms. There exists a number of different MDS implementations ready for use; see [37, 72]
for an overview. From our experience with the variants of Sammon mappings [297–299], we have
found out that both the Newton-Raphson minimization technique [308] with a line search algorithm
and scaled conjugate gradients (SCG) [272] provide good results. The Newton-Raphson method,
besides the gradient information, uses also the second order information, approximating the full
Hessian by its diagonal matrix. The SCG is a combination of a nonlinear conjugate gradients
technique [308] with a trust-region variant. In the beginning, it attains a very large decrease of
the stress function, slowing down considerably after the first few iterations. Therefore, it might
be beneficial to start the optimization process from the SCG method and switch to the Newton-
Raphson technique after a while for a better combination of the efficiency and performance. To
stop the iteration process, the following criteria can be used:

B  / ý B  / p :   � ¿ w d Ý f j à B / p : h or�ð� I / p : ý I / �ð�   × � ¿ w d Ý f j à �ð� I / p : �ð� h , where � ¿ w d Ý stands for a chosen precision value and
�ð� î �ð�

is the
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Classical scaling FastMap Sammon map � N � Sammon map � B

CCA LLE, Æ « ë LLE, Æ «Ç��� LLE, Æ «$¸����

Isomap, Æ « ë Sammon-Isomap, Æ « ë Isomap, Æ « ë�� Sammon-Isomap, Æ « ë<�

Fig. 6.11: The outputs of various projection methods based on the Euclidean distance representations of the
Hypercube data in j�k£k D. The scales are not comparable.

Euclidean or max norm. The superscript indicates the iteration number. All our results presented
here are based on the first criterion with � ¿ w d Ý equal to j�k �

Ï
or j�k �

Ò
.

6.2 Other mappings
In real applications, large high-dimensional data can be modeled as points lying close to a nonlinear
low-dimensional manifold or a linear subspace. Examples include image vectors of the same digits,
scaled, thickened and tilted or image vectors of the same objects under different camera positions
and lighting conditions. Another example is given by document vectors in the complete database
related to a specific topic. Usually, such feature representations live in very high-dimensional spaces
(described e.g. by the number of image pixels or the number of terms/phrases in the vocabulary
of the text database). The intrinsic dimensionality, however, is often limited due to e.g. physical
constraints or the degrees of freedom of the measuring tools.

This observation has recently led to a growing interest in developing algorithms for finding nonlinear
low-dimensional manifolds (or subspaces) from data represented in high-dimensional spaces. This
can serve the purpose of data visualization as well as identification of the underlying variables, such
as the degree of tilting, angle of elevation or direction of light, given the high-dimensional data.

Two main directions can be identified: one based on the preservation of the geodesic distances be-
tween the data points (or objects in general) with respect to the assumed underlying manifold and the
other direction describing the global structure in terms of (overlapping) local structures. The latter
research line follows the already established methodology of self-organizing maps (SOMs) [220],
generative topographic mappings [29, 30], principal curves [189] or topology-preserving networks
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FastMap Sammon map � B CCA, random start CCA

Isomap, Æ «$¸���� Sammon-Isomap, Æ «/¸���� Isomap, Æ «½·<��� Sammon-Isomap, Æ «½·<�Y�
LLE, Æ «$¸���� corrected-LLE, Æ «$¸���� LLE, Æ «�·���� corrected-LLE, Æ «½·����

Fig. 6.12: The outputs of various projection methods based on the ñ Ù distance representation of the Pump
data.

)
denotes the numbers of neighbors taken into account for the definition of local neighborhoods. For)   j�k£k , the LLE projection reduces to three points, while Isomap determines the geodesic distances betweenOÇk£k vibration spectra only. The scales are not comparable.

[261], however, with emphasis on simple and reliable implementation. Two recent examples of both
research lines will be discussed.

Locally linear embedding (LLE). This technique [321, 322, 335, 392] has recently gained a lot of
attention. It constructs a manifold by preserving local geometric structures, collectively analyzed,
which are invariant to rigid transformations in a neighborhood of each point. In brief, the algorithm
can be summarized in three steps:

(1) Compute
)

neighbors of each data point.
(2) Find the weights that best reconstruct each point from its neighbors by constrained linear fits.
(3) Determine the vectors in a low-dimensional space which are best reconstructed by the derived

weights in terms of some constrained least-square problem.

It turns out that the solution to the LLE resolves into the problem of finding eigenvectors of some
large, yet sparse, matrix, which encodes information on local neighborhoods. By this sparsity, such
an implementation can be made efficient. The difficulty, however, arises since the weights in the
step (2) rely on the inverses of the local Gram (inner product) matrices, which should be regularized
to avoid singularities.

Since for the LLE the computation of weights is based on local Gram matrices, there exists
a straightforward implementation of the LLE method based on Euclidean distances [335]; see also
section 3.2.1 on the linear relation between the Gram matrix and square Euclidean distances. Based
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on the same principle, non-Euclidean distances can also be used. For small neighborhoods, non-
Euclidean distances will approximate the Euclidean ones well. For large neighborhoods, however,
the deviation from Euclideaness might be significant. Still, the derived information can be used as
an approximation. Here, our proposal is to use the local corrections of the indefinite Gram matrices
to make them positive definite by adding proper constants, as discussed in section 3.3.2. We will
denote this method as the corrected-LLE.

Isomap. This technique [393] has also become popular. It shares some virtues of the LLE, however
its philosophy is different, since it is based on notion of geodesic distances (the shortest distance be-
tween two points on a manifold). Geodesic distances can be approximated by summing a sequence
of distances between neighboring points. These approximations are computed efficiently by finding
shortest paths in a graph with edges connecting neighboring data points. Roughly speaking, the
Isomap algorithm has three steps:

(1) Determine
)

nearest neighbors for each data point based on the given distances.
(2) Estimate geodesic distances between all pairs of points by computing their shortest-path dis-

tances in the weighted graph with edges weighted by distances between neighboring points.
(3) Apply classical scaling to the geodesic distance matrix.

In this sense, Isomap is a nonlinear extension of the classical MDS, in which embedding is op-
timized to preserve geodesic distances. Isomap is asymptotically guaranteed to recover the true
dimensionality and geometric structure of a class of nonlinear manifolds, whose intrinsic geometry
is of a convex region of Euclidean space, but however, the manifold might be highly folded, twisted
or curved in a high-dimensional space; see [393] for proofs.

Both Isomap and LLE refer to the construction of low-dimensional manifolds in a nonlinear way.
Their applicability to general data represented by dissimilarities will be, however, limited due to an
underlying assumption of a densely sampled manifold. Moreover, the choice of a proper neighbor-
hood size (i.e. the number of neighbors or equivalently, the � -neighborhood) might be problematic;
we have observed that especially the LLE is sensitive to this aspect. The possible failure of the LLE
is then to map far away points to the nearby outputs in the projected space. On the other hand,
Isomap is dominated by the preservation of far away (geodesic) distances (since the classical MDS
minimizes the raw stress) at the expense of distortions in local geometry. Consequently, their use-
fulness is justified for well sampled data. From that point of view, the traditional MDS techniques
might be preferable to get insight into the structure of the, possibly undersampled, data. Still, we
think that the preservation of geodesic distances can reveal additional aspects of the data. Then,
we would propose to perform a nonlinear MDS on the approximated geodesic distances instead of
classical scaling as done in Isomap. The reason is to put more emphasis on local geometry. We will
denote it as Sammon-Isomap.

Another technique trying to discover an underlying spatial structure of the data is the kernel-PCA
[353, 354], which loosely speaking, performs the PCA in the space defined by the kernel map. It
starts from a positive definite kernel matrix

,
interpreted as a generalized inner product matrix,

which serves further for finding the principal directions of the space it describes. If one starts
from a square Euclidean dissimilarity matrix, the kernel-PCA on the corresponding Gram matrix is
equivalent to a process of an approximate embedding of the distances to an underlying Euclidean
space, as discussed in sections 3.3.1 and 3.3.6. This is exactly the classical scaling projection to
a few dimensions. Although any other positive definite kernel can be used, this can always be
interpreted from a classical scaling point of view for an appropriate distance matrix, formula (4.28).
For that reason we will not investigate its performance here.

Another research line focuses on unfolding a nonlinear structure present in the data. It has been
started by Curvilinear Component Analysis (CCA) [82, 180, 194], which draws an inspiration from
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CCA Isomap, Æ «Ç� Sammon-Isomap, Æ «Ç�
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Fig. 6.13: The outputs of various projection methods for the Zongker data. The dissimilarities between the
digit images are computed in a template matching process.

)
denotes the numbers of neighbors taken into

account for the definition of local neighborhoods. The scales are not comparable.

the MDS techniques and Kohonen SOM [220]. It is based on the minimization of the least-square
loss function (similarly to MDS), but making use of an additional weight function � which depends
on the current estimates of the approximated distances in a Euclidean space. � is a decreasing and
bounded function of its argument, such as exponential, sigmoid or a step function, so it is used to
favor local topology preservation (similarly to SOM). Consequently, the CCA tries to reproduce the
short distances first and then, the large ones. An additional value is the efficient implementation; see
[82] for details. Basically, the loss function is given as

@ f�I h 6 :< z /fÎ º f Q /7º ý ! /7º f�I h+h < � f ! /7º f�I h � V è h ,
where

Q /7º are the given dissimilarities,
! /7º are Euclidean distances in the projected space and

V è
is the neighborhood parameter. By the focus on distances in local neighborhoods, unfolding of
a manifold is reveled more significantly than in case of the MDS techniques. This means that for
large dissimilarities,

! /7º tends to be larger than
Q /7º , on average. It is emphasized in [82] that due to

the special loss function, the CCA method is able to better preserve local topology when mapping
data from dissimilarities to a Euclidean space. On the other hand, although the CCA might be very
beneficial for well sampled manifolds, it may locally get into too much details of reproducing the
dissimilarity structure, especially for data yielding some clusters. The information can be lost.
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Classical scaling Sammon map � B Isomap, Æ «/¸�� Sammon-Isomap, Æ «/¸��

Isomap, Æ «½·�� corrected-LLE, Æ «½·<� corrected-LLE, Æ «/¸���� CCA

Fig. 6.14: The outputs of various projection methods based for the News-cor data defined by the correlation-
based dissimilarities between the text newsgroups: ’comp.*’, marked in crosses, ’rec.*’, marked in circles,
’sci.*’, marked in squares and ’talk.*’, marked in stars.

)
denotes the numbers of neighbors taken into

account for the definition of local neighborhoods. The CCA result is presented after 200 iterations, however,
even 2000 iterations did not change the results significantly. The scales are not comparable.

An extension of the CCA method is offered by Curvilinear Distances Analysis [241, 242]. The nov-
elty relies on the use of curvilinear distances, expressing the distance measured along the structure,
instead of the original distances

Q /7º . Such curvilinear distances are computed as the shortest path
between two chosen prototypes, after their quantization and linking.

Examples. Here we will present some embedding examples of artificial and real dissimilarity data.
The LLE and Isomap routines come from the specially dedicated web pages, see [205, 250]. Since,
in general, Isomap or the LLE are suitable for locally linear, but globally nonlinear, embeddings,
the dissimilarity data should be more complex than representing the distances between two circles.
By Sammon-Isomap, we mean that the embedding procedure follows the Isomap routine until the
estimation of geodesic distances, but then it uses the Sammon mapping

B
r (instead of classical

scaling) to find the � " representation. The CCA result is presented after YÇk or j�k£k iterations, being
initialized by the classical scaling result. We have also noticed that in a number of cases, when
the random initialization was used for the CCA, �Çk£k£k iterations were not sufficient to discover the
structure in the data; see also Fig. 6.12.

Let us consider the Euclidean distance representation of the Hypercube data as described in ap-
pendix A.1 for details. The data points are generated inside two enclosing hypercubes in a j�k£k -
dimensional space. The results of various mappings are presented in Fig. 6.11. Concerning the
distance data, Fig. A.2, according to our judgment, the Sammon mapping and Isomap reveal the
data structure most appropriately, namely one compact cluster (corresponding to a smaller hyper-
cube) with points around this cluster, possibly building a cloud. Of course, there is an inherent side
effect of the Sammon stresses to give more sphere-like shapes than squares, which has been already
mentioned in section 3.4.2.

Pump vibration spectra represented by the ñ : distances (see appendix A.2 for the data description and
section 6.1 for the MDS results) is a difficult case for both the LLE and Isomap, since they describe
well separated classes. The sampled ’manifold’ is not continuous, hence many nearest neighbors
have to be taken into account in order to discover such a structure. For less than

) 6 j�k£k nearest
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Classical scaling FastMap

Sammon map ��B Isomap, Æ « ë

LLE, Æ « ë CCA

Fig. 6.15: An illustration on the generalization abilities of each of the projection methods: classical scaling,
Sammon mapping, LLE, Isomap and CCA. Each two subsequent plots correspond to one method and their
scales are identical. From each pair, the left plot presents the projection of the Euclidean distance repre-
sentation of the Hypercube data based on all points, the right plot shows the result when first the map was
established by �Çk£k randomly selected points (marked by dots) and then the remaining M±k£k points were added
to the existing map (marked by circles).

neighbors, the LLE method collapses to the result of three points in a � " space. For such a case, also
Isomap projects points on the top of each other. Many nearest neighbors have to be included and, as
a side effect, both methods become more costly than the nonlinear MDS mappings. The results of
various mappings are shown in Fig. 6.12. Note that the CCA concentrates on the locality so much
that it looses the ability to show the separateness of the classes. It has also difficulties to present
a good solution when the initialization is random; see second plot, top row in Fig. 6.12. From all
the plots, the Sammon map

B
r is the only one which detects three subclusters in the bearing failure

mode of the pump; see Fig. 6.6 for the MDS results.

Spatial representations of the Zongker dissimilarity data are presented in Fig. 6.8 (MDS maps) and
Fig. 6.13 (other maps). Note that these data are an example of highly non-metric dissimilarities.
While the MDS methods find, in general, the classes of ’0’ and ’1’ as the most confined, Isomap
considers the classes of ’3’, ’5’ (and ’0’ for

) 6§j�k ) as the most distinguishable. The remaining
classes are heavily overlapping as judged from the Isomap result. The LLE could not detect any
sensible structure in the data, also for larger neighborhoods (not presented here). Depending on the
neighborhood size, the corrected-LLE distinguishes the classes of ’5’,’9’,’4’ and ’0’. Still, the results
vary tremendously with the increasing locality, hence it is hard to draw clear conclusions. According
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to the CCA map, ’8’ is the central class, similar to all other classes, ’1’ is the most compact class
and ’2’ is the most confusing (since single examples of ’2’ appear in various places). Since the
CCA method ’unfolds’ the data, it is hard to judge which classes are potentially overlapping, hence
difficult for the classification task.

The last example refers to the News-cor data, the newsgroups data, for which the non-metric
correlation-based dissimilarity representation was computed; see appendix A.2 for the data descrip-
tion. The results of the mappings are presented for randomly chosen j�k£k objects per class. They can
be observed in Fig. 6.14. In general, the newsgroup ’rec.*’ is the most well-defined class, followed
by the ’talk.*’ group, as revealed by the MDS maps and Isomap. The corrected-LLE seems to detect
the cluster of ’rec.*’, however for a large neighborhood.

Generalization abilities. Classical scaling and Isomap can naturally be extended such that the new
data is added to an existing map. This is due to the fact that such a generalization relies on an
orthogonal projection, which can be easily applied; see section 3.3.5 for details. The possibility of
adding new points to the Sammon map, by an iterative minimization of a modified stress function,
has already been discussed in section 3.4.3. The extension of the LLE is straightforward by finding
for each object its

)
nearest neighbors and determining the weights in a lower-dimensional space

such that the projected point can be in the best way represented as a linear combination of its
neighbors. The generalization of the CCA is also apparent and described in [82]. In principle, this
suggests that any of the mappings described so far, can be used for the classification purposes. An
example of their generalization abilities is presented in Fig. 6.15. In our example, however, the CCA
does not seem to generalize well.

6.3 Tree models
A tree structure of the dissimilarity data enhance a natural interpretation of relations between the
objects. It is a useful tool utilizing the understanding of the data structure, as by the inference of
the organization of objects, especially for a smaller number of them. Moreover, trees support the
hierarchical clustering scheme based on proximities. Such discrete models can be considered as
complementary to the continuous spatial representations obtained e.g. by the MDS techniques. The
key discrete model is the additive tree model, which represents objects by nodes of a tree and defines
dissimilarities as path lengths between two nodes.

An additive tree is a connected, undirected graph where each pair of nodes is joined by a unique path.
An

* �³*
dissimilarity matrix

"
defines a unique additive tree if

"
is additive, hence ñ : -embeddable.

This means that the distance between two points is a path metric realized by the sum of positive
weights along the path connecting the points; see section 3.1.2. From an algorithmic point of view,
the additivity of

"
stands for

"
being a metric and fulfilling the four-point inequality as presented

in Def. 3.12. A special case of an additive tree is an ultrametric tree, which is intimately related to
the hierarchical clustering of the data. It is an additive rooted tree in which the distance from the
root to every leaf is identical, as in dendograms. Formally, an

* �³*
dissimilarity matrix

"
defines a

unique ultrametric tree if the ultrametric inequality as in Def. 3.14 holds.

Note that in additive trees the root is not determined, hence different interpretations may be sug-
gested by choosing different roots. Basically, the root helps in distinguishing of some clusters in the
data, so it could be chosen to enhance the interpretability of the data. This, however, requires some
prior knowledge. Another possibility is to place the root at a node which minimizes the variance of
the distances from the root to the leaf nodes, so it splits the data into homogeneous clusters.

In practice, there might be no tree metric coinciding exactly with the given dissimilarity matrix
"

,
hence no representation by an additive or ultrametric tree. This means that a tree metric ^" can
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be sought which provides the best approximation of
"

under some criterion, e.g. given by a loss
function such as the ñ : , ñ < or ñ ¯ norms. This is a formulation of the numerical taxonomy problem;
see e.g. [8, 216]. Such tasks of fitting an additive or ultrametric tree are known to be NP-hard under
the ñ : and ñ < loss [64, 216, 370]. In case of the ñ ¯ norm, the same holds for an additive tree [1],
however the optimal ultrametric tree can be computed in a polynomial time [123]. There exists a
number of other methods trying to construct such trees so that the path distances approximate the
given distances as well as possible; see e.g. [1, 66, 123, 139, 140, 373, 374] for specific algorithms.
Below we briefly mention some of such tree fitting techniques.

Approximation under the
� � norm. The dissimilarity data

"
can be approximated by an additive

or ultrametric tree in terms of the least square error. If
" 6 f ! /7º±h are the original dissimilarities,

the dissimilarities ^" 6 f ^! /7º h defining either an additive or ultrametric tree are sought such that in
terminology of the MDS, the raw stress z /�Î º f ^! /7º ý ! /7º±h < is minimized. This can be formulated as:

Additive tree Ultrametric tree

Minimize
Ó9f ^" h 6 z /�Î º f ^! /7º ý ! /7º±h < Ó9f ^" h 6 z /fÎ º f ^! /7º ý ! /7ºÃh <

s.t. ^! /7º à ^! «�Ò É ,$. � 8�^! / « à ^! º Ò � ^! / Ò à ^! º « ? ^! / º°É ,$. � 8h^! / « � ^! º « ? © 0 � ¼ � ) � ñ
De Soete [371, 372] has proposed a practical algorithm to solve these constrained optimization
problems by transforming them into a series of unconstrained problems.

Approximation under the
� ! norm. It is known [169] that given a distance matrix

"
, there exists

a unique ultrametric distance matrix
"ÉÈ

such that
"ÊÈ�f 0 � ¼ h�É "gf 0 � ¼ h for all pairs

f 0 � ¼ h and
"�È

is
maximal, i.e. all other ultrametric distance matrices are dominated by

"�È
. One way to find

"�È
is to

construct a minimum spanning tree1 DtÆ on the complete graph whose weights become the distances
of
"

. Then,
"�È

is built from maximum weights of the edges in D . The same tree is obtained
in a greedy agglomerative approach of the single-linkage (SL), algorithm, which is of quadratic
complexity. It first starts with all objects in their own clusters. Then, repetitively, it finds the two
clusters with the closest distance and merges them into one cluster until there is one cluster left.
After every merging, the distance between the new clusters is recomputed and all other distances
are reduced. Due to its simplicity, the SL algorithm has become popular and it is widely used in
cluster analysis.

A possibility to fit an additive tree to a given dissimilarity matrix
"

is by using the neighbor joining
heuristic [328]. Conceptually, the method is related to the SL algorithm, but without resorting to
the assumption of an ultrametric tree. The idea here is to join the clusters that are not only close to
one another, but are also far from the rest. The method begins with all objects in their own clusters
(leaves). In each step, the algorithm attempts to find the direct parent of the two nodes in the tree.
For the 0 -th node, its average distance to the other nodes is estimated as � / 6 :> � : z º�Õ| / "gf 0 � ¼ h . In
order to minimize the sum of all branch lengths, the nodes i and j that are clustered next are those for
which

"5f 0 � ¼ h ý � / ý � º is smallest. The distances between the nodes are recomputed appropriately.
The algorithm stops when all objects belong to one cluster. Its time complexity is � f * < h .
Another approach to fitting an additive tree relies on the property that an additive metric

" i
can be

characterized by an associated ultrametric via a centroid metric. A centroid metric
" =

is a metric
which is realized by a weighted tree with a star topology (i.e. a tree with all leaves but one) and edge
weights P / . Then,

" = f 0 � ¼ h 6 P / à�P º . More formally, for a chosen � , let � 2 476ã,/. � / " i f � � 0%h . Then,
the centroid metric is defined by the weights P / 6Î� 2 ý "�i�f � � 0ïh such that

" = f 0 � ¼ h 6 P / à P º 6
1 A minimum spanning tree (MST) is a tree É H ��Ë that spans all the nodes and minimizes the total weight of the tree,

i.e.  � ¾ � Å � . An MST constructing algorithm starts from an arbitrary root node and grows until the tree spans all the
nodes. The algorithm is greedy since the tree is augmented, step by step, with an edge that contributes the minimum
amount possible to the total weight cost. MSTs can be used to solve tree optimization problems.
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Fig. 6.16: Tree models for human dissimilarity judgments on various sports.

��� 2 ý " i f � � 0%h ý " i f � � ¼ h . " i is an additive metric iff
" i à " = is ultrametric [1, 64, 88]. Since,

the nearest ultrametric can be found in a quadratic time by the SL algorithm, this suggests a general
strategy for fitting an additive metric

" i
to
"

in a quadratic time. Loosely speaking, given
"

, a
centroid metric

" =
is chosen and added to

"
. Then, an ultrametric

"yÈ
approximating

" à " = is
found. The additive metric

" i
is determined as

"ÊÈ ý " =
, which should serve for the reconstruction

of the tree; see [1, 64] for specific algorithms.

Generalization abilities. It is not clear to us how new objects can be added to the existing trees.
To our knowledge, it has not been discussed in the literature, although it is possible to think of
constructing additive and ultrametric trees for rectangular dissimilarity matrices

"5f D � 1 h , where the
sets 1 and D are distinct. Conceptually, the most reasonable approach would be to construct again
a tree based on all the dissimilarities, including these of newly coming objects. Yet, this is not a
generalization. Surely, one can think of some approaches of adding objects to the existing trees,
e.g. by appending them to the objects for which the distances are the smallest, but then the complete
additive structure of the tree may be destroyed. So, this remains an open issue.

Two examples. Let us consider the auditory confusion (dissimilarity) measurements for letters and
numerals and the human judgments on sports. The fitted ultrametric and additive trees [252, 381]
are presented in Fig. 6.17 and 6.16. The same figure contains also a representation of a minimum
spanning tree pictured between the points of the MDS map.

In an additive tree the root is not determined, and choosing different roots may suggest different
interpretations. Therefore, two different additive trees are shown in the figure: the first one (I) is
found such that the root is placed at a node which minimizes the variance of the distances from
the root to the leaves and the second tree (II) is unrooted and determined such that it has three
or four apparent clusters (or in fact internal nodes). All the presented trees agree in some basic
interpretations e.g. on the existence of a clear cluster composed of ’I’, ’5’, ’R’, ’1’, ’Y’ and a bit more
remote ’9’ and also identification of generally remote objects as ’4’ and ’W’ in case of Fig. 6.17 or
on a basic division of sports into team sports versus individual sports as observed in Fig. 6.16.

6.4 Summary
Spatial models of the dissimilarity data can be realized either by linear and nonlinear projections to
an output space or by tree representations of the relations between the objects.

In the first group of methods, multidimensional scaling (MDS) techniques play a special role, since
they aim to preserve all pairwise, symmetric dissimilarities, resulting in a faithful, low-dimensional
representation, usually in a Euclidean space, of the geometrical relations between the points. Other
methods concentrate on the preservation of dissimilarities in local neighborhoods, like locally linear
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Fig. 6.17: The plots in the top row present tree models of the auditory confusion measurements for letters
and numerals. The plots in the bottom row show the minimal spanning tree models drawn on the 2D MDS
maps applied to the same data. These plots are made by using some of the routines available at [252, 381].

embedding and curvilinear component (distance) analysis or the preservation of locally estimated
geodesic distances, like Isomap. Nonlinear methods can reveal more structure and cluster tendencies
than the linear ones. They are, however, much more time consuming. To understand the data
better, both of them should be used since they integrate with each other. Classical scaling (a linear
projection), accompanied by the Sammon map

B
r and Isomap can provide a good insight into the

data. Due to an inherent property of nonlinear MDS techniques to project the data onto spherical
shapes, some judgments might be biased. Therefore, both classical scaling and Isomap are useful.
Isomap is dominated by the preservation of far away geodesic distances at the expense of distortions
in local geometry, while Sammon mapping tries to penalize large distances to maintain the local
geometry, hence they complement each other.

Our conclusion, therefore, is that for general dissimilarity representations of possibly undersam-
pled problems, the most revealing projections are the ones based on the MDS principles (including
kernel-PCA) and Isomap. Other techniques such as locally linear embedding and curvilinear com-
ponent (distance) analysis seem to need dense samplings and a clearly identifiable low intrinsic
dimensionality, hence their usage is limited.

Tree models focus on the organizational aspects of the dissimilarity data. They enhance understand-
ing of the data in terms of hierarchical or nested structures and, moreover, they are easy to interpret.
However, to make the interpretation a feasible process, the objects should be distinct from each
other and not too many. Trees naturally support evolutionary processes in which all the objects have
an initial structure in common and additional distinctive features are developed later on. Examples
is the evolution of the species or languages in time, so, these are clear cases of their applicability.
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If you torture data sufficiently, it will confess to almost anything.
FRED MENGER

Understanding data is crucial in the process of designing and validation of learning algorithms.
Visualization is often the first step. In the previous chapter, continuous and discrete spatial repre-
sentations of the dissimilarity data were described, attained by vector configurations in some low-
dimensional spaces or by weighted fully connected graphs which facilitate the visualization. Sub-
sequent steps require a more profound comprehension of interrelations among the data instances.
Therefore, this chapter focuses further on methods that help in the exploration of the dissimilarity
data so that an assessment of the organization and the (underlying) structures can be made.

Three main issues are discussed here concerning both the structure and the complexity in the dissim-
ilarity data representation: clustering techniques, intrinsic dimensionality and the sampling issue.
Initially, all given objects are the candidates for the representation set, hence the analysis starts from
an
* �³*

dissimilarity matrix
"gf 1 � 1 h . The first question investigates in section 7.1 cluster tenden-

cies in the data. Since the clustering problem has gained a great deal of attention over the years, we
are not able to study numerous existing methods; this would be a research issue in itself. Hence,
we limit ourselves to the presentation of some essential algorithms, related to the dissimilarities.
The second question moves on to the intrinsic dimensionality of the data, to be indicative for the
complexity of the class or classes the dissimilarity describe. This is discussed in section 7.2. The
third question refers to the sampling issue, i.e. whether the dissimilarity data are represented by a
sufficient number of objects. The ideas presented in section 7.3 rely on our earlier work [102].

7.1 Clustering
Clustering has been addressed in many contexts and in many disciplines, reflecting its significance
in exploratory data analysis. The purpose of clustering [188, 209, 211, 212, 370] is to improve
understanding and to enhance interpretation of the data by organizing them in some meaningful
groups such that examples within one group are more closely related than those from different
groups. Therefore, such techniques are often used to analyze the structure in the data. Some of
the most important applications are image segmentation, data mining and information retrieval or
categorization.

The clustering task is subjective, since the data can be partitioned differently depending on what is
taken into account. Basically, it reflects the user’s needs. For instance, one can be interested in find-
ing ’natural clusters’ in the data, representatives of homogeneous clusters, some useful (i.e. easily
interpretable) data groupings or even outliers. Consequently, there is no universally applicable tech-
nique that would be able to uncover the variety of structures present in the data. Depending on the
final aim, a suitable method should be applied.

7.1.1 Standard approaches

Two basic strategies have been developed for clustering: hierarchical and partitioning methods,
both encompassing a variety of algorithms. Most of them rely on the notion of a (dis)similarity and
a criterion specifying how the clusters are formed. However, the dissimilarity is not just the relative
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dissimilarity between pairs of objects, but also the conceptual dissimilarity instead, comparing ob-
jects (or concepts) and concepts. So, the objects are grouped according to their fit to the specified
concepts; see also section 4.2. The concept can be given, for instance, as a density model of a cluster
or as an average dissimilarity within the cluster.

Hierarchical clustering. Hierarchical clustering proceeds successively either by merging smaller
groups into larger ones or by splitting larger groups into smaller ones. Hence, the methods are
either agglomerative or divisive. The final result is a tree of nested clusters, a dendogram, such
that the complete set is represented by the root, while the leaves are the individual examples. The
internal nodes are defined as the union of their children. Hence, each level of the tree represents a
partition of the set into several (nested) clusters. By cutting a dendogram at a specified level, a clus-
tering into disjoint groups is obtained. The way the current clusters are merged (or split) depends
on the criterion which defines the dissimilarity between the clusters (which is the conceptual dis-
similarity). Divisive methods often rely on constructing neighborhood graphs such as the minimum
spanning tree and using some principle to remove edges and create the clusters. Agglomerative
methods start from the partition where each example forms a cluster and proceed by repetitively
merging two clusters with the smallest conceptual dissimilarity until one cluster is left (or a specific
number of clusters is reached). Due to the sequential nature of such algorithms, i.e. objects once
assigned to a cluster cannot change its label later on, they will not necessarily produce the optimal
clustering, even with the prior knowledge of a desired number of clusters.

Hierarchical methods are often applied in Euclidean feature spaces by using the square Euclidean
distance as a basic measure. The reason behind this is the interpretability of the results, since the
Euclidean distance captures the (imposed) geometry between the clusters in a Euclidean space. Yet,
the techniques can be applied to any dissimilarity measure.

Partitioning clustering. Partitioning methods usually operate in (Euclidean) feature spaces. They
split the objects into (a priori specified)

)
groups according to some criterion. They are often

model-based techniques, where the clusters are described by some parametric or non-parametric
distributions, by the use of representatives or by assuming a specific type of geometrical structures
like planes, spheres etc. Hence, the conceptual dissimilarity is the goodness of fit of an object to an
assumed cluster model. The primary difference to the hierarchical methods is the need to specify)

. Given a hypothesized number of clusters, a general representative-based partitioning procedure
chooses the cluster representatives with some strategy. The remaining objects are then assigned
to the clusters according to the conceptual dissimilarity, which may be calculated based either on
the initial cluster members or on their merged versions such as the average. New representatives
are estimated for each cluster and the whole procedure is repeated until a stable solution is reached.
Methods differ primarily in the choice of initial representatives, the assignment of objects to clusters
and the estimation of representatives.

A typical method is the
)
-means algorithm [253], where new representatives are estimated by the

cluster means and the conceptual dissimilarity is the distance to them. The EM-clustering, based on
the expectation-maximization (EM) algorithm (a general maximum likelihood optimization proce-
dure for problems with hidden variables or missing data1 [83]) is an extension of this basic approach;

1 To maximize the likelihood, the EM algorithm iterates between the E-step and the M-step until convergance. In the
E-step, a posterior probability distribution on the hidden or unobserved variables is estimated, which serves for a further
estimation of the model parameters in the M-step, where the likelihood is maximized. EM is usually employed for
finding the parameters of a mixture-of-Gaussian distribution. Assume þ Gaussian models, where the � -th model is given
as ø Ä ´�«$±�¸ Ä �rÌ Ä �ÎÍ Ä ¹ and the total model structure is ø ´�«$±�ø � �������Y�ôø ó ¹ . Then, the mixture-of-Gaussian is described
as ÜG£ j,�ôø½�Y«  óÄ$# � Í Ä ÜG£ jßª ¸ Ä �ÏÌ Ä � , where Í Ä ��� and  Ä Í Ä «o¸ . Given a population ÐÕ´�«/±>j � ���������kj
Ññ¹ , the optimized

log-likelihood becomes then ÿ ÿ £¦Ð���« ã�ä	å Ü�£ÒÐ$ª ø½�Y«  ÑÓ # � ã�ä	å Ü�£ j Ó �ôø½��«  ÑÓ # � ã$ä�åÕÔ  óÄ$#�Ö Í Ä Ü»× j ÓÅØ ¸ Ä �rÌ ÄÒÙ�Ú .
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see also [27]. It computes probabilities of cluster memberships based on the assumed probability
distribution models. Then, the goal is to maximize the overall probability or the likelihood of the
data, given the (final) clusters. Usually, one hypothesizes the number of clusters and the Gaussian
cluster models [265], yet, other probability distributions, like multinomial, can be used. Note that
in contrast to the Û -means algorithm, the EM-clustering uses ’soft’ assignments (memberships) to
the clusters.

The EM-clustering can also be interpreted as an approach, where starting from an initial partition
to Û clusters, a normal density based classifier is trained, changing the given assignments accord-
ingly. This proceeds iteratively until stable assignments are achieved. A generic EM-clustering can
be considered when any probabilistic classifier is employed instead of the normal density based
classifier. One can go even further, by using an arbitrary classifier (e.g. logistic discriminant, de-
cision tree, support vector classifier) with crisp label assignments. We will denote this approach
as the classifier-clustering, in particular, the NMC-clustering, NQC-clustering, etc. (Note that theÛ -means is in fact the NMC-clustering.) One must realize and take some precautions in judging the
obtained partition, because the results of the EM- and classifier-clustering depend on the initializa-
tion. The initial labels are often provided by an another clustering algorithm such as a hierarchical
clustering.

Cluster validity. Finding the right number of clusters to retain is often difficult, since the answer
depends on the scale (size of clusters) one is interested in. One usually chooses a criterion capable
of recognizing the ’correct’ number of clusters, where an optimum is reached, when evaluated for
a growing number of clusters. If the true cluster labels are known, the evaluation measures include
the confusion matrix, classification accuracy, average entropy or mutual information. Some cluster
validity proposals can be found in [25, 128, 132, 181, 184, 396].

In probabilistic approaches to clustering, the likelihood-ratio measures are used. In the framework
of the Û -means and EM-clustering, new patterns can be assigned to the known clusters, so the
classifiers are indirectly designed. The clustering can proceed in an Ü -fold cross-validation fashion
to determine the the average distance to the cluster means (in terms of conceptual dissimilarity) for
the Û -means or the average log-likelihood for the EM-clustering. Such values may indicate the right
number of clusters (according to the assumed cluster distributions). For hierarchical approaches
(except for the centroid linkage), the change in the dissimilarity between the merged clusters (the
gap) can be inspected (since it will grow). A large value indicates that two dissimilar clusters are
merged, as further exploited by Fred and Leitão [132].

Cluster ensembles. Ideally, a clustering algorithm should posses a number of useful properties,
such as an ability to discover clusters of arbitrary shapes, easily determined input parameters, han-
dling noise and outliers, an ability to find the right number of clusters, interpretability and usability.
However, the basic difficulty of clustering algorithms lies in their limitation to find clusters of spe-
cific shapes or structures (e.g. hyper-spherically shaped), failing to reveal clusters whose shapes do
not match the assumed models. To address the above-mentioned requirements more adequately,
cluster ensembles are an appealing alternative. Indeed, there has been a growing interest in study-
ing cluster ensembles to discover clusters of variable shapes and to improve the robustness of the
clustering techniques. Examples of such a work can be found in [7, 129–131, 382–384, 397]. An
interesting approach is to transform data partitions resulting from various clustering methods into
the co-associations [129, 131] encoding the co-occurrences of pairs of objects in the same cluster.
In fact, a new higher-level similarity representation is created, where each similarity value is the
numerical vote towards gathering a pair of objects together. The final grouping is then derived from
such similarities e.g. by a single linkage [129, 131].
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Other views on clustering. The division of the clustering techniques into hierarchical and partition-
ing methods is not the only possibility. Another way to inspect the arsenal of clustering approaches
is to consider them as hard and fuzzy algorithms. In a hard clustering process, each object is allo-
cated to a single cluster, which is indicated by a crisp label. A fuzzy clustering method [24, 198]
assigns to each object degrees of cluster memberships. The final crisp result is obtained by assigning
objects to the clusters which yield a maximum membership degree.

One may also distinguish deterministic and stochastic approaches, applicable to criterion-based
minimization techniques. The deterministic methods are often greedy descent approaches and EM,
while stochastic methods often rely on simulated annealing or mean field annealing [46, 211, 310].
Yet, another possibility are the incremental versus non-incremental algorithms. The former methods
are especially important for the organization of huge data sets when they are designed to be efficient
with respect to both the execution time and memory.

7.1.2 Clustering techniques on dissimilarity representations

Here, we will mention some clustering techniques derived for dissimilarity representations. This
is not meant as a thorough investigation of the subject, rather as a brief survey and adaption of the
basic existing techniques. The dissimilarity representations will now be interpreted in three frame-
works: neighborhood-based, embedded spaces and dissimilarity spaces. For the sake of simplicity,
symmetric representations ÝßÞ�à~áâà�ã , where àåäßæÏç�èwá�ç�éêá ë ë ë�á�ç�ìuí are considered.

Neighborhood relations. The rationale is to group objects characterized by small dissimilarities to
other objects or which are in a close neighborhood of some selected representatives. Let îðï and îòñ
be two clusters of the cardinalities Ü~ï and Üiñ , respectively and let ó±ï�ñ be the dissimilarity between
them. Concerning the hierarchical clustering, the basic criteria for the agglomerative methods are:ô Single linkage (SL). The dissimilarity ó ï�ñ between two clusters is determined by the dis-

similarity between their nearest neighbors, i.e. ó
ï�ñõä÷öùøûúwü Ä�ý±þuÿ öùøûúÅü Å ý¢þ�� � Þ ç��¹á�ç��³ã . This rule
emphasizes cluster connectedness, resulting in elongated clusters.ô Complete linkage (CL). The dissimilarity ó±ï�ñ is defined by the furthest neighbors of the two
clusters, i.e. ó ï�ñ ä ö��
	Åü Ä ý¢þuÿ ö��
	Åü Å ý¢þ�� � Þ ç � á�ç � ã . This usually performs well when the objects
form naturally distinct clouds; since it emphasizes the compactness. It is inappropriate if the
clusters are somehow elongated or of a chain type.ô Average linkage (AL). The dissimilarity ó±ï�ñ becomes the average between-cluster dissim-
ilarity, i.e. ó¢ï�ñ ä è� ÿ � � � ü Ä�ý±þuÿ � ü Å�ý¢þ�� � Þ ç � á�ç � ã . This performs well in both cases, when the
objects form natural distinct clouds and when they form elongated clusters. It tends to produce
clusters of a similar variance.ô Density linkage. This criterion computes a new dissimilarity

��
based on the density es-

timates and adjacencies, which is further used by the single linkage clustering. For in-
stance, in the Û -nearest neighbor approach, the estimated density ��Þ ç��Îã at ç�� is the num-
ber of objects within the Û -ball divided by its volume. The new

� 
is then computed as�  Þ ç � á�ç � ãêä èé Þ è��� ü Ä���� è��� ü Å�� ã if

� Þ ç � á�ç � ã�� ö��
	�æ � ï�� ��� Þ ç � ã�á � ï�� ��� Þ ç � ã¹í and � , otherwise.

Concerning the implementation issues, a general recurrence formula for hierarchical clustering
methods has been developed [119, 238]. It is useful since at any level of the hierarchy, the dissimi-
larity between newly created cluster and other clusters can be computed from the current grouping.

The methods mentioned above work directly on the dissimilarities. Two other popular criteria, the
centroid linkage and the Ward linkage [119] require a Euclidean feature space representation, since
they work with the estimated cluster means. We may, however, propose an extension for arbitrary
symmetric dissimilarity representations that indirectly makes use of the centroids in the embedded
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pseudo-Euclidean space:ô Generalized centroid linkage (GCL). In the centroid linkage, the dissimilarity between
clusters is the square Euclidean distance between their mean vectors. Although our GCL
extension refers to the embedded pseudo-Euclidean space, such an embedding does not
need to be performed explicitly. Making use of Corollary 4.2 and formula (4.23), the
square pseudo-Euclidean distance between the cluster means can be approximated by ó ï�ñ äó��! #"¶Þ�îòï�á�îòñ�ã%$ èé ó��! #"¶Þ�îòïµá�îòï±ã�$ èé ó��! #"¶Þ�îòñ á�îòñ�ã where ó��! #" is the average square dissimilarityó �! #" Þ�î ï á�î ñ ãêä è� ÿ � � � ü Ä ý¢þuÿ � ü Å ý¢þ�� � é Þ ç��âá�ç&�³ã . This becomes our merging criterion.ô Generalized Ward linkage (GWL). In the Ward linkage, in each step, the two clusters
are merged that give the smallest increase in the within-cluster sum of squares, which is
the sum of the squared Euclidean distances between vectors and their cluster means. This
tends to create clusters of similar sizes. In our extension, the pseudo-Euclidean distance
of the embedded cluster configuration can be used. Based on formula (4.20), the pseudo-
Euclidean distance of a single point to the mean of cluster î¤ï in an embedded space is de-
termined as

� é Þ ç � á me ï ã±ä è� ÿ � ü Å�ý¢þuÿ � é Þ ç � á�ç � ã'$ èé ��(ÿ � ü Ó ý¢þuÿ � ü Ë ý¢þuÿ � é Þ ç*)¶á�ç�+Ïã . Hence, we
can propose the GWL criterion relying on the estimated within-cluster sum of squares as� ü Ä ý¢þuÿ � é Þ ç � á me ï ãêä èé � ÿ � ü Ó ý�,�þuÿ � ü Ë ý¢þuÿ � é Þ ç*)¶á�ç�+Ïã .

Remember that the dendogram built in an agglomerative clustering process is an additive tree (or an
ultrametric tree as e.g. in the case of single linkage) approximating the original dissimilarity matrix;
this has been introduced in sections 3.1.2 and 6.3.

Concerning the partition methods, the Û -centres [427] and the mode-seeking [63] will be described.Æ -centres. This technique works on ÝßÞ�à~áâà�ã directly. It looks for Û objects from à such that they
are approximately evenly distributed with respect to the dissimilarity information. The algorithm
proceeds as follows:

1. Select an initial set -�. äßæÏç � � �è á�ç � � �é á ë ë ë�á�ç � � �ï í of Û objects, e.g. randomly chosen from à .
2. For each object ç�)0/ à find its nearest neighbor in - . Let -�� , 1¤ä32Åá54¢á ë ë ëwá¹Û , be a subset

of à consisting of objects that yield the same nearest neighbor ç � � �� in - . This means thatàåä76 ï�98 è -�� .
3. For each -:� find its center ;<� , i.e. an object in -:� for which the maximum distance to all other

objects in - � is minimum (this value is called the radius of - � ).
4. For each center ;<� , if ;��>=ä ç � � �� , then replace ç � � �� by ;�� in - . If any replacement is done, then

return to 2, otherwise STOP.
Except for the step 3, this routine is identical to the Û -means, performed in a vector space. The result
of the Û -centres procedure heavily depends on the initialization. For that reason we use it with some
precautions. To determine the set - of Û objects, we start from a chosen center for the entire set and
then more centers are gradually added. At any point, a group of objects belongs to each center. -
is enlarged by splitting the group of the largest radius into two and replacing its center by two other
members of that group. This stops, when Û centers are determined. The entire procedure is repeated?

times, (say @BA ) resulting in
?

potential sets from which one yielding the minimum of the largest
final subset radius is selected. Note that if we continue with the splits, the Û -centres can also be seen
as a hierarchical divisive method.

Mode-seeking. The mode-seeking method [63] focuses on the modes in dissimilarity data deter-
mined in the specified neighborhood size of C . The algorithm proceeds as follows:

1. Set a relative neighborhood size as an integer CED72 .
2. For each object ç*��/¤à find the dissimilarity

� Þ ç*�âáGF�FEHÅÞ ç�� ãÏã to its C -th neighbor.



152 7 Further data exploration

3. Find a set - of all ç&�I/¤à for which
� Þ ç&�¢áGF�FEHêÞ ç��³ãÏã is minimum within its set of C neighbors.

The objects from the set - are the estimated modes of the class distribution in terms of the given
dissimilarities. They are used to constitute the modes. The final number of clusters Û depends on
the choice of C . The larger C , the smaller Û .

Embedded spaces. The symmetric dissimilarity representations can be represented in the complete
or approximated embedded spaces, where the standard partition methods, such as the Û -means
and the classifier-clustering can be used. Here, embedded spaces are understood broadly as ei-
ther pseudo-Euclidean spaces or Euclidean spaces. The embedding may focus on the preservation
of all original dissimilarities or on the preservation of the dissimilarities only in local neighbor-
hoods. Such spaces are determined by the use of multidimensional scaling methods or some other
techniques, such as Isomap or local linear embedding, described in section 6.2. In fact, by per-
forming an approximate embedding, some information, possibly reflecting the noise in the data, is
neglected. This might be seen as a purification of the dissimilarity information2. Here, we will use
an approximate linear embedding to a pseudo-Euclidean space.

Dissimilarity spaces. In a dissimilarity space, traditional clustering algorithms can be applied. From
the efficiency (computational) point of view and from the representational point of view (using only
informative objects as the representatives), it is beneficial to use a reduced representation ÝßÞ�à~áâà>"wã ,
where à "KJ à . The cardinality of à " can be specified as e.g. @L$M4BAoÁ of N àON (depending also on
the hypothesized number of clusters to be retrieved) or as the estimated intrinsic dimensionality
of Ý Þ�à~áâà�ã . à " can be selected randomly or by using the Û -centres or mode-seeking procedures.
Additionally, to ensure that the objects in àP" convey various dissimilarity information, they can
be chosen in the following way. First for each object in à , the average dissimilarity to all other
objects is computed resulting in a sequence Q&��. äRQ»Þ ç��rã�ä èS T%S � ü Ó ý T ÝßÞ ç��¹á�ç*)Åã . The sequence is
then sorted in a decreasing order and the objects are then selected, which correspond to each U -th
sorted value. First objects can be disregarded as possible outliers. We will refer to it as the sparse
average selection. Alternatively, one may also retrieve principal components from the dissimilarity
space (treating it as a usual vector space) reflecting e.g. VBAoÁ of the variance. We will call it a PCA-
dissimilarity space.

The generic EM-clustering or classifier-clustering approach in a dissimilarity space is advantageous
for reasonably sampled clusters of significantly different radii (i.e. the maximum dissimilarity be-
tween the objects in a cluster) or where at least one cluster is very sparse in comparison to other
compact clusters. In such cases, the neighborhood-based clustering approaches (e.g. AL or CL hi-
erarchical clustering or Û -centres) tend to fail. In a (reduced) dissimilarity space, clusters might be
well separable. Note, however, that if the dissimilarity between two objects does not capture the
cluster characteristic, the dissimilarity space will not help in detecting such clusters3. So, a possible
solution is to consider a nonlinear monotonic transformation of the dissimilarities, such as a sigmoid
� sigm ÞXWuãêä04�Y±ÞZ2 �\[ �^]�_ H ã`$a2 , applied in an element-wise way. Such a transformation will change the
neighborhoods perceived in the dissimilarity space, although, it will not influence the methods based
on the neighborhoods relations directly such as hierarchical methods or the Û -centres.

2 It is also possible to re-compute the dissimilarity representation derived from the approximate embedding. Hence,
the embedding can be treated as a de-noising step in obtaining a more discriminative dissimilarity representation, which
can be further used by the neighborhood-based clustering approaches.

3 Imagine e.g. artificial banana data in 2D with a Euclidean distance representation, Fig. A.3. The curved banana
clusters will be even more pronounced in a distance space, so no EM-clustering algorithm would be able to find such
a structure without a perfect initialization. To detect curved structures, the dissimilarities should be recomputed appro-
priately, e.g. along the path.
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Random VAT TRUE 2 clusters 3 clusters

4 clusters 5 clusters 6 clusters 7 clusters

Fig. 7.1: Intensity images of the permuted protein dissimilarity representation. The upper leftmost intensity
image corresponds to a random representation of the original data. The second upper intensity image is an
implementation of the visual assessment cluster tendency algorithm (VAT) [23], which in fact reorders the
data items with respect to the within-cluster dissimilarity. The third upper intensity image shows the true
classes present in the data. The remaining intensity images are created based on the assignments to a number
of clusters varying from 4 to b . The data objects are grouped by the NQC-clustering (mixture-of-Gaussians
clustering) in the PCA-dissimilarity space. To make an intensity image, the detected clusters are presented
in the order of a growing within-cluster average dissimilarity, which is a simple visualization proposed by us
below. From the visualization of the two-cluster clustering, one may already detect two more clusters present.

Related work. An interesting approach to a general proximity-based (neighborhood-based) parti-
tioning, both partitioning and hierarchical, has been advocated by Buhmann, Hofmann and Puzicha,
where the clustering is formulated as a combinatorial optimization problem; see e.g. [45, 46, 197,
310]. The authors specified an objective function, incorporating a suitably weighted average of the
within-cluster and between-cluster dissimilarities, and derived some optimization heuristics based
on annealing. Another idea has been proposed in [126] discussing a path-based pairwise cluster-
ing, which emphasizes the within-cluster connectivity by the use of graph methods. Two objects are
considered as similar if there exists a within-cluster path between them without any edge of a large
dissimilarity. As a result, a new dissimilarity is developed that is further used for grouping.

Recently, another proximity-based algorithm, called evidential clustering (EVCLUS) has been pro-
posed by Denœux and Masson in [85]. The method relies on the evidence theory and attach to each
object a mass function such that the degree of conflict between the masses of any two objects reflect
their proximity, which is measured by a suitable stress function from the metric multidimensional
scaling (see section 3.4.2). Practically, it relies on the optimization of the stress function penalized
by some entropy measure, added to prevent the resulting model from being too complex.

The applications of spectral graph theory to the clustering problem resulted in spectral clustering
algorithms; see e.g. [14, 284]. Such procedures rely on finding the eigenvectors of some similarity
matrix derived from a feature-based representation of a set of objects. This is a suitably scaled Gaus-
sian similarity matrix (based on Euclidean distances). The interesting property of spectral clustering
is the ability to pull out non-convex or even disjoint clusters. In the final stage, however, partitioning
algorithms perform the final grouping. The specification of c in the Gaussian function, as well, as
the number of clusters are the main questions to be solved. In fact, such algorithms determine a
specific embedded Euclidean space of an appropriately transformed similarity representation used
later for traditional partitioning clustering methods.

Visual cluster validity. Since clustering is subjective, one must not forget to visually inspect the re-
sults. The most appealing approach is to represent the dissimilarity representation Ý as an intensity
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image, in which each pixel value corresponds to a dissimilarity between a pair of objects. To ob-
serve the detected clusters, Ý should be permuted according to the cluster assignments. If a fuzzy or
soft clustering method is used, then the objects within a cluster can be sorted based on their mem-
bership values. To keep it simple and general, we propose to permute the objects within one cluster
based on their growing average dissimilarity to all other objects. Assume that d is the final per-
mutation matrix. Hence, one needs to display dõÝed as an intensity image. Example displays for a
growing number of clusters is shown in Fig. 7.1, where the results for the protein dissimilarity data,
grouped by the NQC-clustering in the PCA-dissimilarity space are presented; see next section for
details. A more profound way to visualize the cluster validity methods was proposed in [23, 192].
Additionally, one may analyze the clustering results by labeling the objects accordingly in the 4 - orf
-dimensional spatial maps obtained by multidimensional scaling techniques.

7.1.3 Clustering examples of dissimilarity representations

Four dissimilarity data sets are considered here for which true labels are known: the g�A�Aihjg�A�A
Euclidean distance representation of the artificial two-class ringnorm data describing two somewhat
overlapping Gaussian clouds in a 4BA -dimensional space, k�@lhmk�@ cat-cortex dissimilarity data (four
classes), 4&2 f hn4&2 f protein dissimilarity data (four classes) and g�A�A7hog�A�A newsgroup correlation-
based dissimilarity data News-cor2 (four classes); see Appendix A for the data description. The
protein dissimilarity data set is nearly Euclidean, while the cat-cortex data and the newsgroup data
are non-Euclidean; see also Our assumption is that the dissimilarity measure used is able to capture
the underlying cluster difference, so we should perceive the clusters as Gaussian-type clouds either
in embedded or dissimilarity spaces. We assume that the number of clusters is known and we will
try to find out whether the true classes given in the data can be detected.

The following clustering methods are used: evidence clustering (EVCLUS) [85], the standard hi-
erarchical clustering such as single linkage (SL), average linkage (AL) and complete linkage (CL),
the Û -centres, mode-seeking and the NQC-clustering (which is a Gaussian-of-mixture EM cluster-
ing for soft labels) both in the pseudo-Euclidean embedded space and in the dissimilarity space. The
NQC has been chosen, since it is an appropriate classifier for detecting all types of Gaussian-like
clusters. To avoid singular covariance matrices for small clusters, the NQC is slightly regularized
with p«äq2#A �Er ; see section 4.4.1 for details. The dimensionality of an embedded space is chosen
based on a small number of significant eigenvalues determined in the embedding. The dissimilarity
space ÝßÞ�à~áâà�ã is reduced to Ý Þ�à~áâà " ã by the sparse average selection, as described above. We will
denote this procedure as the NQC-clustering in DS. Another possibility is to extract the largest prin-
cipal components in the dissimilarity space. Here, as default, the dimensionality is chosen based on
the preservation of VBAoÁ of the total variance. We will denote this approach as the NQC-clustering
in PCA-DS. If a square dissimilarity is used instead, it will be indicated by DS

 é .
The EVCLUS has been used here since it was applied to the cat-cortex and protein data in [85],
where the authors claimed that their fuzzy-like method performed the same or much better than
other state-of-the-art fuzzy techniques. Since EVCLUS is initialization-sensitive, we followed the
authors’ suggestions by running their code [84] @BA times and determining the final result as the one
for which their penalized stress objective function was minimum. In this way, we compare our
results to a good method.

The NQC-clustering depends on the initial labeling, as well. Therefore, a criterion is needed for the
selection of the final result. Let Û be the number of clusters and FI� be the 1 -th cluster cardinality, with
F being the total number of objects. Inspired by [310], we propose to use the following goodness-
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Fig. 7.2: Eigenvalues determined in the linear embeddings of the four dissimilarity data. The number of most
significant eigenvalues describes the effective intrinsic dimensionality, here denoted by the black lines. For
the Ringnorm distance data, only first 4BA non-zero eigenvalues are shown.

of-clustering measure - GOC relating the cluster separability and cluster compactness as:

- GOC ä � ï�98 è F�� � ��s8I� ì Äì � ì Äut �v�
4 � ï�98 è F � t �w� á (7.1)

where t �v� is the average dissimilarity between the 1 -th and x -th clusters. So, t �w� is the average within
1 -th cluster dissimilarity. In our approach, the NQC-clustering is run @BA times in chosen embedded
or dissimilarity spaces. The final result is chosen as the one corresponding to the maximum of - GOC.

Other clustering methods provide deterministic results. Only in case of mode-seeking, a proper
neighborhood size should be detected to retrieve a specified number of clusters.

In our clustering approaches, the number of clusters Û is assumed to be known. Concerning the Û -
centres, hierarchical clustering and the mode-seek algorithms, a larger number of clusters is some-
times retrieved, since these methods suffer either from outliers (objects with large dissimilarities)
or have difficulties to accommodate sparse clusters. For the NQC-clustering in the embedded and
PCA-dissimilarity spaces, we notice that the results depend on the space dimensionality. In our
understanding, the dimensionality should be chosen close to the effective intrinsic dimensionality
of the problem, i.e. the smallest dimensionality, which can reveal the structure in the data (note that
this reasoning is valid for clustering, but not necessarily for classification). Since in an embedded
space and a PCA-dissimilarity space, all the determined dimensions depend on the dissimilarities to
all objects, a small dimensionality is preferred.

For each dissimilarity data set, all eigenvalues of the pseudo-Euclidean embedding have been found
and plotted, as observed in Fig. 7.2. The dimensionality of an embedded space has been chosen
according to the number of very significant eigenvalues, understood as eigenvalues being apart
from the ’continuous stream’ of eigenvalues (as judged visually by us). So, the effective intrinsic
dimensionality is chosen to be: 2#A for the ringnorm data k for the cat-cortex data, g for the protein
data and 2!4 for the newsgroup News-cor2 data. We admit that this might not be the best approach,
since it is not automatic, yet, it makes sense intuitively. We need to develop an automatic procedure,
based e.g. on a spline interpolation of the eigenvalue plot for which the change in the speed of
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First two features TRUE: Sammon map y{z EVCLUS Æ -centres

CL clustering Mode-seek NQC-clust. in PCA-DS | ( NQC-clust. in DS | (

Fig. 7.3: Clustering results of the ringnorm Euclidean distance data as visualized by a proper labeling of
the 2D Sammon map }�~ obtained on the unlabeled data. The objects are labeled according to the specified
clustering algorithms. The number of clusters is fixed to 4 , however for the CL and mode-seek clusterings,
the results for three clusters are presented, because the two-cluster groupings find one cluster of a few objects
only. TRUE stands for the true class labels. Note that the Sammon map is only a visualization of the
dimensionality effects in the original 4BA -dimensional space. The first two features of the Gaussian clusters
are shown in the top, leftmost plot. See text for details.

TRUE: Classical scaling TRUE: Sammon map y�z EVCLUS Æ -centres
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Fig. 7.4: Clustering results of the cat-cortex dissimilarity data as visualized by a proper labeling of the 2D
Sammon map } ~ obtained on the unlabeled data. The objects are labeled according to the specified clustering
algorithms. The number of clusters is fixed to g . TRUE stands for the true class labels. See text for details.

its decline (from a fast to moderate steepness) should be determined. This requires some future
attention. To simplify our procedures, the same dimensionality, as reported above, was used for the
PCA-dissimilarity space (which might be not optimal at all).
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Fig. 7.5: Clustering results of the protein dissimilarity data as visualized by a proper labeling of the 2D
classical scaling representation obtained on the unlabeled data. The objects are labeled according to the
specified clustering algorithms. The number of clusters is fixed to g , however for the CL clustering, the
results for nine clusters are presented, because the groupings found for less clusters, detect two clusters only.
TRUE stands for the true class labels. See text for details.

TRUE VAT

Fig. 7.6: Intensity images of the newsgroup News-cor2 dissimilarity data. On the left, the data objects are
permuted according to the true cluster memberships. On the right, the visual assessment cluster tendency
(VAT) [23], meant to detect clusters in the dissimilarity data is shown. These intensity images suggest that
there is no strong structure in the dissimilarity data.

Concerning the ringnorm Euclidean distance data, the two Gaussian clusters are not discovered by
the EM-clustering algorithms in the initial Euclidean space. This is caused by the sparseness of one
of the clusters. Presumably, the path-based clustering or the spectral clustering should be able to
detect these clouds. In a dissimilarity space, however, the clusters are better separated, since the
distances to the objects from the compact cloud are discriminative for both clusters. The clustering
results of some algorithms are presented in Fig. 7.3.

Cat-cortex dissimilarity data set is difficult, since it is not only small, but the dissimilarities are
ordinal values. This makes it hard to build a NQC in both the embedded and the dissimilarity
spaces. In fact, the dissimilarities should be de-noised or smoothed out. Since the dissimilarities are
not very discriminative (only five different dissimilarity values are used, integers from A to g ), the
task becomes difficult. Some of the clustering results are illustrated in Fig. 7.4.

Protein dissimilarity data are reasonably well clustered, so the clusters can be recovered. Some of
the results are shown in Fig. 7.5.

Newsgroup dissimilarity data are defined on weak and poor word occurrence vectors. The dissimi-
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Fig. 7.7: Clustering results of the newsgroup News-cor2 dissimilarity data as visualized by a proper labeling
of the 2D classical scaling representation obtained on the unlabeled data. The objects are labeled according
to the specified clustering algorithms. The number of clusters is fixed to g . TRUE stands for the true class
labels.

larities are not very discriminative between the clusters, so it is difficult to discover them properly.
The within-cluster dissimilarity of the ’sci.*’ news group are of the same order as the between-
cluster dissimilarities; see Fig. 7.6. Majority of these objects is assigned to other clusters. Some
clustering results are illustrated in Fig. 7.7.

The overall numerical results are shown in Table 7.1. It can be observed that indeed, EVCLUS
performs well, provided that a suitable trade-off parameter is chosen. If the parameter deviates
from the optimal value, very bad results are found. Additional disadvantage of EVCLUS is the
high computational burden, which for the protein dissimilarity data the @BA groupings takes about
90 minutes, while the NQC-clustering (with the embedding included) takes about 0.5 min. The
authors of EVCLUS reported in [85] that their algorithm competes with other state-of-art fuzzy
clustering algorithms. We must, therefore, report that our handcrafted NQC-clustering approach in
the PCA-dissimilarity space (or in an embedded space) performs similarly or better than EVCLUS
(especially for the ringnorm data). Although our results are preliminary, they indicate that possibly
more can be gained if the methods will be improved further by designing an automatic selection of
the parameters.

7.2 Intrinsic dimensionality
If a certain phenomenon can be described (or if it is generated) by Û independent variables, then its
intrinsic dimensionality (ID) is Û . In practice, however, due to noise and imprecision in measure-
ments or some other uncontrolled factors, such a phenomenon may seem to have more variables.
If all these factors are not ’too strong’ that they completely disturb the original phenomenon, one
should be able to re-discover the proper number of variables. So, the intrinsic dimensionality is
a minimum number of variables that explains the phenomenon in a satisfactory way. In pattern
recognition, one usually discusses the intrinsic dimensionality with respect to a collection of data
vectors in a feature space. The intrinsic dimensionality can then be defined as the minimum number
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Table 7.1: Clustering results compared with respect to the true classes for four dissimilarity data. The num-
bers below describe the absolute number of mismatches (hence a small number in the clustering procedures
indicates a faithful grouping).

Clustering method Ringnorm Cat-cortex Protein Newsgroup
TRUE 400 65 213 600
EVCLUS 137 2 5 190
Hierarchical clustering 159 10 21 195�

-centres 176 14 22 402
Mode-seek 230 38 41 348
NQC-clustering in PE 168 4 1 229
NQC-clustering in PCA-DS 2 2 4 253
NQC-clustering in PCA-DS | ( 4 5 2 199
NQC-clustering in reduced DS | ( 4 23 1 298

of features needed to obtain a similar classification performance as by using the total number of fea-
tures. In a geometrical sense, the ID can be defined as a dimension of a manifold that approximately
(due to noise) embeds the data. In fact, the estimated ID of a sample depends on a chosen criterion
(e.g. whether one searches a linear or nonlinear manifold) and it may vary from one criterion to
another. Therefore, the estimated ID is relative for the task. Usually, the determination of the ID is
done by the use of (nonlinear) feature reduction techniques, either by a selection or extraction.

For the study of dissimilarity representations, one may choose an embedding method and estimate
the ID appropriately or perform the dimensionality reduction of the dissimilarity space. Some of
such techniques were briefly explained in chapter 6, where the projections of the dissimilarity data
were considered. Here, we will focus on two linear techniques: the pseudo-Euclidean embedding
of a symmetric ÝßÞ�à~áâà�ã and PCA applied in a dissimilarity space. In the embedding process, the
number of informative eigenvalues describes the ID. If the data are labeled, then the intrinsic dimen-
sionality might be judged for each class separately, as well as for the complete set. For unlabeled
data, one may first determine some meaningful groups and then proceed as if with the labeled case.
Using this particular embedding, the estimated ID cannot be larger than the number of objects con-
sidered.

Statistical estimation of the intrinsic dimensionality for a Gaussian sample. Assume first a Euclidean� -dimensional space and a variable � , normally distributed with a zero mean vector, zero covari-
ances and equal variances � (é in all dimensions. Hence, ����� Þ��uá�� (én� ã . Consider now the square
Euclidean distance variable � which for a particular pair two realizations � ï and ��ñ of � is expressed
as � ï�ñ ä �M��98 è ÞXW ï � $�W ñ � ã é . Since ��ä��� ( is � é� distributed4, then after straightforward calculations one
obtains that �e� �:��ä � and �l� � é ��ä Þ � é � 4 � ã , where �e��� � denotes the expectation. Hence �l� ����ä � c é
and similarly �l� � é ��ä Þ � é � 4 � ã�c�� . Using these results, we find that

4 Þ��l� ���Òã é
�l� � é �*$ Þ��e� ���Òã é ä�4

� é c �Þ � é � 4 � ã�c � $ � é c � ä�4
� é c �
4 � c � ä � and

�e� ���� ä�c é ë (7.2)

In this way, both the dimensionality � and the variance of the spherical Gaussian variable � can
be estimated from the square Euclidean distance variable � only. Given a sample of � , i.e. a finite

4 A basic statistical fact is that given � independent one-dimensional variables � Ä �i¡ ×£¢�¤u¥ Ù , the variable �§¦¨i©Ä�ª�Ö � (Ä is « (© distributed with � degrees of freedom (df). The probability density function of « (© is ¬�!®�×£¯ Ù ¦°²±*³ ®µ´
¶�·�´¹¸ ³ ®( ±*³ ®»º�¼ ©¾½ (�¿ , where À�×w¯ Ù ¦LÁ�ÂzÄÃ °#Å ÖGÆ Å�Ç�È Ã . If É Ä<�Ê¡ ×9¢�¤�Ë ( Ù , then ÉÌ¦ ¨ ©Ä�ª�Ö É (Ä ¦�Ë ( ¨ ©Ä�ª�Ö � (Ä ¦�Ë ( � . Consequently,

É is Ë ( « (© distributed. Consider now two independent � -dimensional variables ÍÎ¤Ï� �Ê¡ ×9Ð�¤�Ñ ®(OÒ Ù , which means that
for one dimensional variables Í Ä and � Ä , we have Í Ä ¤Ï� Ä<�Ó¡ ×£¢:¤ Ñ ®( Ù . The square Euclidean distance Ô between Í and
� can be expressed as ÔÕ¦ ¨i©Ä�ª�Ö ×9Í Ä*Ö � Ä�Ù ( ¦ ¨i©Ä�ª�Ö Í (ÄK× ¨o©Ävª�Ö � (ÄØ×mÙ ¨o©Ä�ª�Ö Í Ä � Ä . Therefore, Ô is Ù Ñ ®( « (©e¦O« (© -
distributed, since the variables Í Ä and � Ä are independent.
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Fig. 7.8: Estimated intrinsic dimensionality (top row) and variance (bottom row) for various Gaussian sam-
ples. Different marks correspond to different dimensionalities, as described in the legend.

set of examples � ä æ!��èÅáG��éêá ë ë ë�áG�uìuí and the corresponding square Euclidean distance matrix Ý  é ,
�e� ��� and �e� � é � can be expressed as �l� ���oä èì ( � ìÕÚ�Û Ý  é Ú and �l� � é �êä èì ( � ìÜÚ�Û Ý  � Ú . Consequently,
the dimensionality � and c é can be estimated as

Ý� äÞ4 Þ Ú Û Ý  é Ú ã é
F ÞXFß$�2�ã Ú Û Ý  � Ú $ Þ Ú Û Ý  é Ú ã é and

Ýc é ä 2
4 Ú Û

Ý  � Ú
Ú Û Ý  é Ú $ Ú Û Ý  é ÚF ÞXFß$O2�ã ë (7.3)

The goodness of these estimates is illustrated in Fig. 7.8, where the Gaussian samples drawn from
� Þ�� á54 � ã in spaces of various dimensionalities are considered. The results are good even for a
small sample (with respect to the space dimensionality), such that from the Fßh`F Euclidean distance
matrices (for F7Da2#A ), an estimation sufficiently close to the true value can be found. Also, when
noise is added, the estimation of intrinsic dimensionality does not significantly change, although,
the estimated variance is naturally influenced (it becomes larger).

Assume further a Gaussian variable àq�O� Þ��vá � (Äé � ã . Then, the square Euclidean distance variable �
is described by

�M��98 è c é��á � , where á �Õ�â� é è . Consequently, � is a linear combination of � é è distribu-
tions with one degree of freedom. Note that if c é�Þã c é� , then á � � á �Õ�n4`c é� � é è . One can, therefore,
describe � approximately as

� ï�X8 è c é á � ääc é � ï�98 è á � , where c é ä èï �M��98 è c é� and Û is equal to � or
less depending on the number of dominant variances c é� . So, � is approximately distributed as c é � éï .
Effectively, the number of degrees of freedom is determined by the dominant variances5.

Examples. We will illustrate the difficulty of determining the ’true’ intrinsic dimensionality for the
square dissimilarity representations. Here, we are only concerned with the data describing a single
class. Even though artificial Gaussian samples are considered, they already give some indication
of the difficulties to be met in real problems, especially when different dissimilarity measures are
used. Three different Gaussian samples are drawn in a

f A -dimensional space:
5 For instance, let Í �K¡ ×9Ð�¤ diag ×£å ÙÎÙ , where åÓ¦Þæ ç%ç�çèç%çèç%çÊ¥è¥%¥²éwê . Then , by the formulation, Ë (Ä ¦ Ù�ë Ä . The

variable Ô can be described as ìèí<î#« ( Ö × çèí Ù « ( Ö ¦�ï»ð¹« ( Ö and approximated by ñ�ò ç»ç�« (ó , since ñ�ò ç¹çØôõï»ðBö#÷ . Effectively,øË ( should be then Ù ò ìBî . ø� and
øË ( can be derived for each sample realization of Í .
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Euclidean distance representations ù ( for a Gaussian sample ¡ ×9Ð*¤ diag ×£å ÙÎÙ
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Fig. 7.9: Case 1: Estimation of intrinsic dimensionality for three dissimilarity representations: Euclidean,ý�þ
and

ý ~�ÿ � derived for a Gaussian sample � Þ��vá diag Þ���ãÏã in a
f A -dimensional space, where � is such that� þ � ��� � ä�2#A and �	� ä 2 for 1�ä gµá ë ë ë�á f A . Every plot presents the eigenvalues of the pseudo-Euclidean

embedding. The cardinality of the Gaussian sample grows from left to right as 4BA±á5@BA±á!2#A�A and @BA�A .



162 7 Further data exploration

Euclidean distance representations ù ( for a Gaussian sample ¡ ×9Ð�¤ diag ×£å Ù�Ù
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Fig. 7.10: Case 2: Estimation of intrinsic dimensionality for three dissimilarity representations: Euclidean,
ý<þ

and
ý ~�ÿ � derived for a Gaussian sample � Þ��uá diag Þ���ãÏã in a

f A -dimensional space, where � is such that � � ä0@
for 1µä 2Åá ë ë ë�á!2!@ and �	� ä 2 for 1µä 2!k¢á ë ë ë�á f A . Every plot presents the eigenvalues of the pseudo-Euclidean
embedding. The cardinality of the Gaussian sample grows from left to right as 4BA±á5@BA±á!2#A�A and @BA�A .
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Fig. 7.11: Case 3: Estimation of intrinsic dimensionality for three dissimilarity representations: Euclidean,ý�þ
and

ý ~�ÿ � derived for a Gaussian sample � Þ��vá diag Þ���ãÏã in a
f A -dimensional space, where � is such that� � ä�@ for 1�äâ2Åá ë ë ë�á!2#A , � � ä�4 for 1�äâ2�2Åá ë ë ëwá54BA and � � äâ2 for 1 ä�4&2Åá ë ë ë�á f A . Every plot presents the

eigenvalues of the pseudo-Euclidean embedding. The cardinality of the Gaussian sample grows from left to
right as 4BA±á5@BA±á!2#A�A and @BA�A .
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1. Case 1: a Gaussian sample � Þ��vá diag Þ���ãÏã , where � is such that � è�
 é�
 �Çä 2#A and � ��äÄ2 for
1wäÌgµá ë ë ë�á f A .

2. Case 2: a Gaussian sample � Þ��vá diag Þ���ãÏã , where � is such that � ��ä\@ for 1uä�2Åá ë ë ëwá!2!@ and� � äm2 for 1Åäm2!k¢á ë ë ë�á f A .
3. Case 3: a Gaussian sample � Þ�� á diag Þ�� ãÏã , where � is such that � �oää@ for 1oän2Åá ë ë ëwá!2#A , � �oä�4

for 1wäi2�2Åá ë ë ë�á54BA , and � � äm2 for 1wä04&2Åá ë ë ë�á f A .
In all cases the ’true’ intrinsic dimensionality is

f A , since the data is generated by
f A variables.

Since the Gaussian samples are not hyper-spherical, the hyper-ellipsoidal data will be treated as
such, so they would be indirectly reshaped to a hyper-sphere of a similar volume. The dimension-
ality estimated from the Euclidean distances by formula (7.3) will be, therefore, smaller than

f A .
Other dissimilarity measures will also influence the estimation of the intrinsic dimensionality by the
amount of ’departure’ from the Euclideaness.

One may also be concerned with the effective intrinsic dimensionality, i.e. the number of significant
variables, i.e. variables with the largest variance (spread). Such an effective ID can be thought of asf á!2!@ and 2#A for the cases 1,2, and 3, respectively. This might be detected by the number of a few the
most significant eigenvalues in the pseudo-Euclidean embedding.

Figures 7.9-7.2 show the eigenvalues of the pseudo-Euclidean embeddings for the three cases men-
tioned above. For each case, three

ý ü -distance representations are considered for çÕä04¢á!2Åá²A±ë� , reflect-
ing the proper Euclidean representation, the metric and non-Euclidean city block representation, and
the non-metric representation. Also four different sample cardinalities Ü are taken into account: 4BA
(undersampled), @BA±á!2#A (a small sample), and @BA�A (a large sample). Additionally, the original samples
were contaminated with a hypothetical Gaussian noise with the variance of A±ë @ .
A few general conclusions can be drawn from the analysis of these figures. As expected, the esti-
mated intrinsic dimensionality in all cases is smaller than

f A , although the smallest is found for the
Euclidean distances in case 1. For non-noisy Gaussian samples in cases 2 and 3, the estimated ID
varies between 4&2 and 4
g , provided that the sample is larger than 4BA . Since the added noise is quite
large, it disturbs the estimations.

For sufficiently large samples ( @BA�A points) and the Euclidean distances, the most informative direc-
tions can be revealed, even when noise is added. So, three, 2!@ and 2#A the most significant eigenvalues
can be identified, in cases 1–3, respectively. When other distance measures are used (only in case
1), the three eigenvalues can be still clearly detected, while it becomes less obvious in other cases.
In general, case 1 seems to be the easiest, such that even for smaller samples, it is possible to distin-
guish three characteristic eigenvalues. However, it becomes more difficult to judge for cases 2 and
3. Still, if one imagines a curve interpolating the eigenvalues, the change of steepness (hence con-
vexity) suggests the following eigenvalues describe the dimensions of a lesser importance. When
determine the number of informative directions, one may, therefore, determine it by the position
where the ’eigenvalue curve’ changes its steepness. This can be considered as the smallest number
of informative dimensions for the problem. The estimated intrinsic dimensionality, formula (7.3),
may serve as an upper bound for the determination of the number of significant directions.

Although this is an analysis of a single Gaussian sample, when noise is added, the situation becomes
more realistic. When multiple Gaussian samples are considered, the problem becomes much more
difficult, since various Gaussian samples might have different numbers of important variables. In
such a procedure, all samples are judged as one combined description, so the resultant description
might have properties different from any single sample. Yet, the combined description is analyzed
from the perspective of significant directions, which in principle allows us to rely on the ’eigenvalue
curve’ reasoning. However, formula (7.3) cannot be recommended any longer, since the assumption
of a single cloud is completely violated. Another type of estimation must be searched for.
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7.3 Sampling issues
In this section we will study criteria, which judge from a dissimilarity representation whether a
single class is sufficiently sampled. It is partially based on our earlier study [102]. Consider an
Fßh`F dissimilarity matrix ÝßÞ�à~áâà�ã , where àq. ä æÏç�èÅá�ç»é³á ë ë ë�á�ç�ìuí is a representation set. In general,à may be a subset of a larger training set � . It is assumed here that à ä�� . The entire set à
is represented by vectors of dissimilarities Ý Þ ç��Ïáâà�ã , 1 äâ2Åá54¢á ë ë ëwáGF . We will address the question
whether F , the cardinality of à , is sufficiently large for capturing the variability in the data. Or, in
other words, whether it is to be expected that not much can be gained by increasing the number
of representation examples. This question is directly related to the complexity of the classification
problem as discussed in [104]. To start the analysis, we will restrict ourselves to a more simple issue
concerning the sampling of a set of unlabeled objects, possibly forming a single class. Next, the
problem will be formulated and some criteria are proposed judging whether the representation set
is sufficiently sampled. The usefulness of such criteria is experimentally investigated on two data
sets. Although the results are preliminary, they suggest a direction for further study. Some more
extensive experiments have been done [104].

The research question refers to the determination of a criterion defined on Ý judging how well
the dissimilarity data are sampled. This can be rephrased as judging whether new objects can be
expressed in terms of the ones already present in à or not. Some possible statistics that might
be used as such are based on the compactness hypothesis [4, 98, 102]. As it states that similar
objects are also close (similar) in their representation, it constrains the dissimilarity measure

�
in

the following way.
�

has to be such that
� ÞXW�áG�µã is small if W and � are very similar, i.e. it should be

much smaller for very similar objects than for objects that are very different.

Assume that
�

is definite, i.e.
� ÞXW�áG�µã±ääA iff the objects W and � are identical. This implies that they

belong to the same class. This can be extended somewhat by assuming that all objects � for which� ÞXW�á��¶ã���� , where � D�A , are so similar to W (if � is sufficiently small) that they belong to the same class
as W . Consequently, the dissimilarities of W and � to the objects in the representation set à should be
close (or in fact positively correlated), i.e.

� ÞXW á�ç�� ã ã � Þ��
á�ç��rã . This implies that their representations� ÞXW�áâà�ã and
� Þ��
áâà�ã are also close. We conclude that for dissimilarity representations that satisfy the

above continuity, a stronger property than formulated by the compactness hypothesis holds, as now
also objects that are similar in their representations are also similar in reality. Consequently, they
belong to the same class. We will call such representations true representations.

A representation set à can be judged to be sufficiently large if an arbitrary new object of the same
class is not significantly different from the other objects in the data set. This can be expected if à
already contains many objects that are very similar, i.e. if they have a small dissimilarity to at least
one other object. All the statistics, studied below are based, in one way or other, on this observation.

We will illustrate the statistics on an artificial example and present later results for some real world
data sets. This artificial example will be illustrated on the

ý���� �
-distance6 representation between F

normally distributed points in a Û -dimensional space. Both, F and Û , will be varied between @ and
@BA�A . If F�� Û , then the points lie in an ÞXFÓ$e2�ã - dimensional subspace, resulting in an undersampled,
difficult problem. If F�� Û , then the data set may be judged as sufficiently sampled. Large values ofÛ generate difficult (complex) problems as they demand a large data cardinality F . The results are
averaged over 4BA experiments, each time based on a new, randomly generated data set. The criteria
are presented and discussed below.

In studying the criteria curves, one should remember that the height of the curve or a flattened
behavior curve are informative on sampling of a data set. For the PCA, mean relative rank, in-

6 Remember that the
ú zuû ü -distance

È z5û ü�× �^¤"! Ù ¦�× ¨$#Ä�ª�Ö Ø % Ä Ö ¯ Ä Ø zuû ü Ù Ö ½ zuû ü is non-metric.
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Fig. 7.12: Sampling criteria for the
ý ~�ÿ � -distance representations Ýl~�ÿ �³Þ�à~áâà�ã computed for artificial Gaussian

data sets of a varying dimensionality Û (from @ to @BA�A ), as indicated in the legends.

trinsic dimensionality and compactness criteria holds that lower values (of the flattened curves) are
indicative either for a sufficient sampling and/or for a compact class description. And the other
way around, high flattened values for the curves of skewness and correlation point to a sufficient
sampling.

Principal Component Analysis (PCA). A sufficiently large representation set à will contain at least
some objects that are very similar to each other, i.e. their representations, the vectors of dissimilari-
ties to all other objects, are very similar. This suggests that the rank of Ý should be smaller than N àON ,
i.e. rank Þ�Ý�ã��LF . In practice, this will not be exactly true if objects are not fully alike. A more robust
criterion may, therefore, be based on the principal component analysis applied to the dissimilarity
matrix Ý . Basically, the set is sufficiently sampled if F'& , the number of eigenvectors of Ý for which
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the sum of the corresponding eigenvalues equals a fixed fraction ( , such as A±ë V�@ of the total sum of
eigenvalues (hence ( is the explained fraction of the variance) is small in comparison to F . So, for
well represented sets, the ratio of F)&^Y»F is expected to be smaller than some small constant(the faster
the criterion drops with a growing à , the smaller intrinsic dimensionality of the dissimilarity space
representation). So, our criterion is:

- pca 
 & ä F*&
F á (7.4)

with F*& such that («ä � ì,+�98 è p{��Y � ì�98 è p�� . There is usually no integer F)& for which the above holds
exactly, so it would be found by interpolation. In the experiments, in Fig. 7.12, top left, the value
of - pca 
 �-� .0/

is shown for the artificial Gaussian example as a function of the cardinality of à . The
Gaussian data are studied for various dimensionalities Û . It can be concluded that the data sets
consisting of more than 2#A�A objects may be sufficiently well sampled for small dimensionalities
such as Ûåä @ or 2#A . On the other hand, the considered number of objects is too small for the
Gaussian sets of a larger dimensionality. These generate problems of a too high complexity for the
given data size.

Skewness. A new object added to a set of objects that is still not sufficiently well sampled will
generate many large dissimilarities and just a few small ones. As a result, for insufficiently sampled
data, the distribution of dissimilarities will peak for small values and show a long tail in the direction
of large dissimilarities. By adding new objects more and more small dissimilarities will appear.
Consequently, the skewness grows with increasing N àON . The value to which the skewness grows,
however, depends on the problem. After the set becomes ’saturated’, however, the skewness curve
should flatten. Note also that a negative skewness will indicate a ’tail’ of small dissimilarities or a
distribution with more than one mode (possible clusters). The skewness of the distribution of the
dissimilarities

�
is given as

- H ï äÌ� 1 � $o�l� � �2 �l� � $i�l� � � � é43 � á (7.5)

where �l��� � denotes the expectation. In practice, the off-diagonal values
� �v� of the dissimilarity

matrix Ý are used for the estimation. In Fig. 7.12, top right, the skewness of the Gaussian sets are
presented. For small representation sets, their cardinalities appear to be insufficient for representing
the problem, as it can be concluded from the noisy behavior of the graphs in that area. For large
representation sets, the curves corresponding to the Gaussian samples of different dimensionalities
’asymptotically’ increase to different values of - H ï . These final values may be reached earlier for
more simple problems in low dimensions, like Û�ä0@ or 2#A . This is, however, not clearly observable.

Mean relative rank. An element
� �v� represents the dissimilarity between the objects ç � and ç � . The

minimum of
� �v� over all indices x points to the nearest neighbor of ç�� , say, ç*) if ��ä argmin��s8I� Þ � �v�¶ã .

So, in the representation set à , ç�) is the most similar to ç*� . We now state that a representationÝßÞ ç � áâà�ã of ç � describes the object well if the representation of ç�) , i.e. ÝßÞ ç�)oáâà�ã is close to Ý Þ ç � áâà�ã
in the dissimilarity space. This can be measured by ordering the neighbors of the vectors ÝßÞ çE�Ïáâà�ã
and determining the rank number 5 ���� of Ý Þ ç*)¶áâà�ã in the list of neighbors of ÝßÞ ç��Ïáâà�ã . So we
compare the nearest neighbor as found in the original dissimilarities with the nearest neighbors in
the dissimilarity space. For a well-described representation we expect that the mean relative rank:

- � "u" ä 2
F

ì6
�98 è 5 ���� $\2 (7.6)

is close to A . In Fig. 7.12, middle left, the results for the Gaussian example are shown. Similarly, as
for the PCA criterion, it can be concluded that the sizes of the representation set à larger than 2#A�A
are sufficient for Gaussian samples in @ or in 2#A dimensions.
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Correlation. The correlations between the objects in the dissimilarity space will also be used. Simi-
lar objects show similar dissimilarities to other objects and are, thereby, positively correlated. As a
consequence, the average of positive correlations ó47�Þ�ÝßÞ ç*�âáâà�ã�áâÝßÞ ç&�±áâà�ãÏã divided by the average of
absolute values of negative correlations ó � Þ�Ý Þ ç��Ïáâà�ã�áâÝ Þ ç��±áâà�ãÏã :

-98 ä èì ( � ì � ì� 
 ��s8I� ó 7 Þ�Ý Þ ç � áâà�ã�áâÝ Þ ç � áâà�ãÏã
2 � èì ( � ì � ì� 
 ��s8I� N ó � Þ�Ý Þ ç��âáâà�ã�áâÝ Þ ç��±áâà�ãÏã#N (7.7)

will increase for large sample sizes. The constant added in the denominator prevents - 8 from be-
coming very large if only small negative correlations appear. For a well-sampled representation set,
-98 will be large and it will increase only slightly when new objects are added (new objects should
not significantly influence the averages of either positive or negative correlations). Fig. 7.12, middle
right, shows that this criterion works well for the artificial Gaussian example. For less complex
problems -:8 reaches higher values and exhibits a flatten behavior for sets consisting of at least 2#A�A
objects.

Intrinsic embedded dimensionality. Another possibility to judge whether à is sufficiently sampled
is to estimate the intrinsic dimensionality of the underlying vector space, where the original dissim-
ilarities are preserved. This can be achieved by a linear embedding (provided that Ý is symmetric)
into a pseudo-Euclidean space; see section 3.3 for details. The representation à , consisting of� � F dimensions, is determined such that it has uncorrelated derived features and it is centered
at the origin. The dominant variances captured by the eigenvalues determined in the embedding
should reveal the intrinsic dimensionality (small variances are expected to show just noise). Since
the dimensions corresponding to small variances can be neglected. (Note, however, that when all
variances are similar, the intrinsic dimensionality is approximately F .) Let F<; �>=& be the number of
dimensions with significant variances for which the sum of the corresponding magnitudes of vari-
ances equals a specified fraction ( such as A±ë V�@ of the total sum. Of course, F<& may not be found
exactly, so it is interpolated. Since F)& determines the intrinsic dimensionality, so as a criterion we
propose the following index:

-:? � � 
 & ä F ; �@=&
F ë (7.8)

For low intrinsic dimensionalities, smaller representation sets are needed to describe the data char-
acteristics. Fig. 7.12, bottom left, presents the behavior of our criterion as a function of N àON for the
Gaussian data sets. The criterion curves clearly reveal different intrinsic dimensionalities. If à is
sufficiently large, then the intrinsic dimensionality remains constant. Since the number of objects
is growing, the criterion should then decrease and reach a relatively constant small value in the end
(for very large sets). From our plot, we can then conclude that the data sets of more than 2#A�A objects
are satisfactorily sampled for original Gaussian data of a low dimensionality, i.e. ÛL�j4BA . In other
cases, the data are too complex.

Compactness. As mentioned above, a symmetric distance matrix Ý can be embedded in a pseudo-
Euclidean space A . When the representation set is sufficiently large, the intrinsic dimensionality is
expected to remain constant during further enlargement. Consequently, the mean of the data should
remain approximately the same and the average distance to this mean should decrease (as new
objects don’t surprise anymore) or be constant. The larger the average distance, the less compact
the class is, requiring more samples for its description. Therefore, a compactness criterion can be
investigated. It is estimated in the leave-one-out approach as the average square distance to the
mean vector in an embedded space:

-oñCBDB�ä 2
F é $iF ì6

�#8 è 6
�Gs8��

� éE ÞX� � �� áGF � ã�á (7.9)
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where � � �� is a vector representation of the 1 -th object in the pseudo-Euclidean space determined by
all the objects, except object x , and F � is the mean of such a configuration. Fig. 7.12, bottom right,
shows the behavior of this criterion, clearly indicating a high compactness of the low-dimensional
Gaussian data. The case of Û�äÞ@BA�A is judged as not having a very compact description.

Experiments with the NIST digits. A training set of four classes of handwritten digits shapes of
A±á!2Åá54 and

f
from the NIST database [420] constitutes a representation set à . For each class, Fðä04BA�A

objects are considered. The modified Hausdorff distance Ý MH, Def. 5.6, is computed between the
digit contours derived from binary images. Three variants of the distance representations based
on the element-wise (Hadamard) power transformation: Ý  /MH, Ý MH and Ý  �-� é

MH are studied. These
transformations do not change the rank of the dissimilarities, but they influence both dissimilarity
and embedded spaces and, thereby, the criterion values in a non-linear way.

Fig. 7.13 - 7.15 present the results of the six criteria introduced in the previous section as a function
of a growing representation set. The experiments are repeated 4BA times for randomly chosen subsets.
The following observations can be made:

1. The four character sets of ’0’-’3’ show slightly different behavior. In general, the set of ’1’-s
is the simplest (the most compact one) and the set of ’3’-s is the most difficult one.

2. The power transformation influences the criteria significantly. The power of A±ë 4 has some
normalizing effect as it removes the tails of the distribution of dissimilarities.

3. The PCA (7.4) indicates that for the Ý  ��� é
MH representation, the cardinality of à is far from

being sufficient. It even shows some yet unexplained peaking phenomenon. For Ý MH the
set of ’1’-s is well sampled and for Ý  /MH, all four character sets are sufficiently large; see
Fig. 7.13, left.

4. The skewness criterion (7.5) is noisy and not very informative; see Fig. 7.13, right.
5. The mean relative rank (7.6) shows, Fig. 7.14, left, that the Ý  �-� é

MH set builds a good represen-
tation space in which distances correspond well to the original dissimilarities. This can be
explained by the linearizing effect of taking a small power ���ä2 . At the same time, the differ-
ence in complexity between the character sets has disappeared. The strongly nonlinear Ý  /MH
dissimilarity representation appears to be difficult according to the mean relative rank (7.6);
see Fig. 7.14, left.

6. The correlation criterion (7.7) shows interesting results; see Fig. 7.14. It indicates that with
respect to other classes, the set of ’1’-s is the best sampled. It is sufficiently sampled for the
original representation Ý MH. For Ý  �-� é

MH , the curves are growing fast, which points to a pos-
sible large increase of - 8 , hence an insufficient sampling. On the other hand, the correlation
criterion does not seem much increasing for Ý  /MH with growing à .

7. The embedded intrinsic dimensionality (7.8) of the set of ’1’-s is relatively low and much
smaller than for other data sets; see Fig. 7.15. The largest intrinsic dimensionality has the
class of ’0’-s. Remarkably, the dimensionality of the combined set seems to be relatively low,
indicating that all classes share some descriptions.

8. The set of ’0’-s is the most compact class according to the criterion (7.9); see Fig. 7.15. The
sets of ’1’-s and ’2’-s are much less compact, indicating possible subclasses or elongated
distributions. Not surprisingly, this criterion judges the combined set of all characters as more
complicated than any single of them.

9. Most data sets may be judged as well sampled in Ý  / transformation.

A global comparison of Fig. 7.12 to Fig. 7.13 - 7.15 shows that the characteristics of high dimen-
sional Gaussian distributions cannot be found in a real world problem. This observation is confirmed
in our recent study (on a number of problems) devoted to complexity and sampling issues [104].
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Fig. 7.13: PCA (7.4) and skewness (7.5) criteria as functions of N àON for four sets of the NIST handwritten
digits represented by the modified-Hausdorff distances Ý MH. Three different power transformations are used:ÝKJ ~�ÿ �MH , Ý MH and ÝKJMLMH.

Concerning the criteria used, the following may be concluded. The PCA criterion works well for
the

ýN�-� �
distance representations of artificial data and for the modified Hausdorff distance example

on real data. In the latter case, this criterion may seem to indicate some unwanted property of
growing criterion curves for Ý  �-� éO�P . This is however in agreement with the complexity of the class
as described by the power transformation. The skewness is noise sensitive. Still, we expect that
the distribution of the dissimilarity values should be indicative for the complexity of the problem in
one way or another. Indeed, skewness can provide some more insight as studied also in [104]. The
nearest neighbor relationships on which the mean relative rank criterion is built appear to be useful
in both, the artificial problem, as well as for the real data. Both the estimation of intrinsic embedded
dimensionality and compactness of the data description are found to be informative, when treated
as complementary information. They give an indication of the problem complexity. The correlation
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Fig. 7.14: Mean relative rank (7.6) and correlation (7.7) criteria as functions of N àON for four sets of the NIST
handwritten digits represented by the modified-Hausdorff distances Ý MH. Three different power transforma-
tions are used: ÝQJ ~�ÿ �MH , Ý MH and ÝKJMLMH.

criterion performed also well. The criteria should be further tested on artificial data sets and in
real applications. Other criteria using label information may be considered as well in relation with
classification problems. Some further study has also been conducted[104].

7.4 Summary
This chapter pertains to techniques that enable exploration of the dissimilarity data. Many clustering
algorithms have been proposed in the neighborhood-based framework (often called proximity-based
clustering). Our contribution here is to propose the use of both the embedded and dissimilarity
spaces. As such the use of a dissimilarity space for clustering is new. One of our interesting
conclusions is that the dissimilarity space approach might be especially useful for problems where
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Fig. 7.15: Compactness rank (7.9) and intrinsic dimensionality (7.8) criteria as functions of N àON for four sets
of the NIST handwritten digits represented by the modified-Hausdorff distances Ý MH. Three different power
transformations are used: ÝRJ ~�ÿ �MH , Ý MH and ÝKJMLMH.

at least one of the sought groups is compact and some others are widely-spread. In general, the
NQC-clustering (mixture-of-Gaussian EM-clustering) seems to work well in the PCA-dissimilarity
space. Both the embedding and dissimilarity space grouping techniques give promising results.

Both the embedded and dissimilarity spaces may serve for the estimation of the intrinsic dimension-
ality of the data. In general, the former methods are based on detecting the satisfactory dimension-
ality of an embedding, while the latter methods rely on various reduction based techniques. The use
of a simple linear pseudo-Euclidean embedding, as well as the principal component analysis in a
dissimilarity space gives reasonable indications.

Some statistics have been considered that can be used for examining whether a representation set
contains a sufficient number of objects to describe a class. The problem itself is ill-defined as it
depends on a specific application as to what ’sufficient’ means for a single class. One might imag-
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ine that classes are well sampled, but positioned with respect to each other in such a complicated
way that the classification problem is difficult for most classifiers. As a consequence, the size of
the training set should be judged from an evaluation of the classification result using a test set. In
the presented study, an attempt is made to find out whether it is possible to judge from a dissimi-
larity matrix its sampling density. Some criteria are proposed, which overall, work well. The most
indicative are the ones based on the number of the most significant eigenvalues either in the the
PCA-dissimilarity space or the pseudo-Euclidean embedding and the mean relative rank criterion.





8. One-class classifiers
The whole is more than the sum of its parts.

”METAPHYSICA 10F-1045A”, ARISTOTLE

The problem of describing a single class or a domain has recently gained a lot of attention, since it is
identified in many real applications. The area of interest covers all situations, in which the specified
targets have to be recognized and non-targets, anomalies or outlier situations have to be detected1.
These might be examples of any type of fault detection (wearing of a machine) or target detection
(e.g. face detection in images), abnormal behavior (intruders attacks on networks, a suspicious be-
havior in surveillance checks), disease detection, person identification, etc. The methodology for
handling such situations can be also useful for imbalanced data, in which one class is represented
by a relatively small number of examples, usually due to either an occasional occurrence of such
examples or high costs connected to the measurement process. In brief, the problem is characterized
by the presence of a target class, which should be well sampled. The goal is to describe this class
such that resembling objects are accepted as targets and outliers are rejected. The outliers are, how-
ever, badly represented, with unknown priors, or even not provided at all. If available in a training
stage, they may have a different distribution than in a testing stage, as may occur in a time-changing
process, e.g. wearing-of a machine.

Different methods are developed for that purpose, among others the so-called one-class classifiers
(OCCs), which are domain or boundary descriptors; see [386, 390]. The OCCs describe the data
characteristics such that a proximity function of an object to a target class is defined. In principle,
OCCs are concept descriptors. The description of this class should be wide enough to accept most
of the new-coming targets, yet sufficiently tight to reject the majority of outliers. The construction
of OCCs is, however, an ill-posed problem since the knowledge on a class is deduced from a finite
set of target examples, while the outliers are infrequently sampled or not at all.

The basic assumption that an object belongs to a class is that it is similar to other examples within
this class. This is expressed by a proximity judgment or a typicality measure. In feature spaces,
such a typicality depends on (non-)linear combinations of features. An OCC built in a feature space
can, for instance, be found by determining the minimum-volume hypersphere containing (almost)
all target points [390, 391] or by finding a hyperplane optimally separating the target points from
the origin as well as possible [349, 350]. Then, the proximity function assigns an object to the
target class depending whether its feature vector lies inside a hypersphere or on a proper side of
a hyperplane. By the use of (conditionally) positive kernels, Def. def:pdfunction, a kernel-based
OCC can be designed to offer nonlinear descriptions; see [347, 386]. Alternatively, when objects
are represented by dissimilarities, the proximity will become a function of the given dissimilarities.
The strength of dissimilarity representations lies in the focus on differences between objects, which
may lead to an easier detection of outliers.

In this chapter, some class descriptors built on dissimilarities are proposed. These are constructed
based on neighborhoods, in pseudo-Euclidean spaces or in dissimilarity spaces. The results pre-
sented here originate from our publications [301, 305, 306].

1 Outliers and non-targets can be understood differently. Non-targets denote examples of ’opposite’ characteristics
that the targets posses (e.g. ’ill’ versus ’healthy’), while outliers denote examples somewhat different than the targets
are (e.g. an advanced versus a mild stage of a disease). For simplicity, we will further refer to outliers only.
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8.1 General issues
One-class classifiers are trained to accept the target class and reject the outliers. Such OCCs either
fit some density model to the data or directly describe the boundary. In the most simple case, the
assignment of a sample to the class depends on its closeness (proximity) to a sort of an average
representative. This may not correspond to any actual object, but it will contain a summary of either
all or some essential class members. In other case, an instance is considered to be a member of the
class if it is somehow judged as jointly close to a set of selected objects, e.g. boundary examples. In
all such approaches, an identification procedure is realized by a proximity function � proxm ÞXW�áTS Û ã of
an object W to the target class S Û equipped with a threshold U , which determines whether an instance
belongs to the class or not. Usually, an OCC is expressed as V�ÞXWuã�. äXW�Þ�� proxm ÞXW�áTS Û ã��YUvã , where W is
the identification function (i.e. taking value of 2 if the condition is true, and A , otherwise).

The threshold U can be determined by using the information on the training objects. A standard
way is to supply a fraction 5 tp (a true positive ratio) of the target objects to be accepted by an
OCC [387, 389]. Equivalently, a fraction 5 fn (a false negative ratio) of the target objects rejected
by the OCC can be used. This means that the threshold U is set up such that Z@W�Þ�� proxm ÞXW áTS Û ã¾DUvã � � proxm ÞXW�áTS Û ã ÞXW�ã�ä[5 fn, where W is the indicator function. 5 fn is set up as a small value, for
instance 5 fn ä�A±ë A�@ , to prevent a high acceptance of outliers as targets (false positive). U can also be
determined as ÞZ2{$\5 thr ã -percentile of the sorted sequence of the proximity outputs computed for the
training (target) examples. 5 thr is then a user-specified fraction. Note, however, that U specified in
this way in not related to 5 fn. This is important, since in our study, due to the implementation of
the one-class classifiers [387], some of them estimate the threshold directly based on 5 fn and some
others based on 5 thr.

Fig. 8.1: An ROC curve.

To study the behavior of an OCC, one often uses a ROC (Receiver
Operator Characteristics) curve [41, 389], which is a function of the
true positive ratio (target acceptance) versus the false positive ratio
(outlier acceptance). In order to evaluate that, example outliers are
necessary. In principle, an OCC is trained with a fixed target rejec-
tion ratio 5 fn (or the threshold fraction 5 thr) for which the threshold is
determined. This OCC is then optimized for one point on the ROC
curve. In order to compare the performance of various classifiers,
the AUC measure can be used [40]. It computes the Area Under
the Curve (AUC), which is the total OCC’s performance integrated
over all thresholds. The AUC of A±ë @ or less indicates that the OCC
is worse than random guessing. The larger AUC, the better the OCC
is; for instance in Fig. 8.1, the solid curve indicates a better performance since the AUC becomes
larger than for the dashed curve. The black dots indicate points for which the thresholds U of two
OCCs were optimized.

8.2 Domain descriptors for dissimilarity representations
Although a dissimilarity measure

�
provides a flexible way to represent the data, there are some

constraints on the measure
�

itself. Reflectivity and positivity conditions are essential to define a
proper measure, however, in conceptual representations 4.2 one can also use negative dissimilarities.
Although for our convenience, the symmetry requirement is adopted (it is required for an embedding
of the dissimilarity data into a pseudo-Euclidean space), it is not necessary for constructing OCCs
in pretopological and dissimilarity spaces. We do not require that

�
is a metric. Remember that

a dissimilarity representation ÝßÞN�ðáâà�ã based on the representation set àåä æÏç è á ë¸ë¸á�ç�ì í and the training
set � can now be interpreted in three ways. In the pretopological approach, OCCs will be based
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on dissimilarities to neighboring objects. In the embedding approach, where necessarily à^]_� and
the symmetry condition holds, OCCs will be built as in the underlying pseudo-Euclidean space. In
the dissimilarity space approach, OCCs will be constructed in an F -dimensional dissimilarity spaceÝßÞ��¸áâà�ã . Unless stated otherwise, both à and � consist of the target objects only.

Concave transformations of dissimilarities. Transformations of dissimilarities play a two-fold role.
If a measure is unbounded, then some atypical objects of the target class (i.e. with large dissimilari-
ties) may badly influence the solution of an OCC. Therefore, a transformation to a bounded interval
might be useful. For instance, a transformation to � A±á!2�� can be used, such that locally the dissimilar-
ities are scaled linearly and globally, all large dissimilarities become close to 2 . Another issue is to
impose an extra flexibility of a description by a nonlinear transformation equipped with a parameter
to be tuned. The purpose of such a transformation is e.g. to enhance the compactness (expressed
by small dissimilarities) of local neighborhoods by setting a proper parameter value. To determine
a suitable value is not trivial; usually an additional validation set, possibly containing some outlier
examples, should be used. A study on the selection of a proper parameter is left for further research.
Some ideas have been recently presented in [388].

Transformations that we have in mind are non-decreasing functions since they preserve the order of
original dissimilarities and are concave. The concavity ensures that metric properties are preserved;
see Theorem 3.15. Examples of such transformations are the following functions2 (defined on ` � 7 ):
linear, ��ÞXW�ã ä\QÜW , power, ��ÞXWuã ä W ü , where çM/ � A±á!2�� , logarithmic, ��ÞXWuãväbadc9e�ÞZ2 � Q�W�ã , or sigmoid
��ÞXW�ãêä04�Y±ÞZ2 � [ �^]�_ H ã`$\2 or ��ÞXWuãêä04�Y±ÞZ2 �\[ �^] ( _ H ( ã¾$\2 , where C controls the ’slope’ of � (the size of
the local neighborhoods). Such transformations are applied in an element-wise way to dissimilarity
representations such their transformed versions are obtained Ý � ÞXW áâà�ãêäÞ��Þ�ÝßÞXW�áâà�ãÏã .
Below, we will introduce some OCCs constructed in three different frameworks of interpreting the
dissimilarities, as discussed above. Their behavior will be illustrated on an artificial example of
a theoretical banana target class described by a Euclidean distance representation ÝßÞ�à~áâà�ã and its
sigmoidal transformations. We will use the following notation: Ý H ÞXW�áâà�ãêä04�Y±ÞZ2 � [ �)f � ] 
 T � _ H ãI$a2
(sigmoidal-I) and Ý H é ÞXW áâà�ãêä04�Y±ÞZ2 � [ �)f � ] 
 T � ( _ H ( ã`$\2 (sigmoidal-II).

8.2.1 Neighborhood-based OCCs

A domain descriptor can be built using the neighborhood relations to some representation ob-
jects. Such objects are chosen as the ones which have relatively many close (as judged by dis-
similarities) neighbors. For a dissimilarity representation Ý ÞN� áâà�ã , this can be achieved by theÛ -centers algorithm [426], originally a clustering method. It looks for Û center objects, i.e. examplesç � è � á ë ë ë�á�ç � ï � that minimize the maximum of the dissimilarities over all the objects to their near-
est neighbors. In a forward search strategy, starting from a random initialization, the error
�jä öO�
	 �X8 èD
 ���g� 
 � öùø�ú ) 8 è�
 �g��� 
 ï ÝßÞ�h � á�ç � ) ãÏã is minimized. With

?
trials, e.g.

? äo@BA , the objects corre-
sponding to the minimal value of � are determined; see also section 7.1.2.

Assume that à@i ; ì +uä æÏç � è � á ë ë ë�á�ç � ï � í . For Ü target objects h � , dissimilarities to their nearest center
(among the Û chosen centers),

� i ; ì + Þ�h � áâà@i ; ì +¹ãêäyöùøûú ) 8 è�
 �g�g� 
 ï � Þ�h � á�ç � ) � ã are computed. The threshold U
is chosen as the ÞZ2!$j5 thr ã -th percentile of the sorted sequence of

� i ; ì + , where 5 thr is a chosen fraction,
e.g. 5 thr ä0A±ëw2 . Also, a suitable U can be sought such that a specified false negative ratio, e.g. 5 fn äÌA±ë A�@ ,
is reached. The Û -centers data description [386, 387], V k-CDD, relies on the dissimilarities to Û
objects only. It becomes then:V k-CDD Þ�Ý ÞXW áâà@i ; ì +¹ãÏã�äkW�Þ�öùøûú) � ÞXW�á�ç � ) � ã��lUuã�ë (8.1)

2 It is straightforward to check their monotonicity and concavity. The latter is guaranteed by non-positive second
derivative [125].
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Fig. 8.2: Neighborhood-based OCCs for a Euclidean distance representation Ý of a theoretical banana class.
The plots on the left and right sides show the OCCs with the thresholds 5 thr äiA and 5 thr ämA±ëw2 , respectively.
Remember that 5 thr is a threshold on the derived conceptual proximity values and not the false negative ratio.
That is why for 5 thr ä A±ëw2 , one cannot expect 2#Anm of points to be outside the class boundary. The legends
refer to various choices of Û .

Another OCC, the Û -nearest neighbor data description ( Û -NNDD) is realized by V k-NNDD, where the
proximity function relies on the nearest neighbor dissimilarities [386, 387]. For Ü target training
objects h�� , the averaged Û nearest neighbor dissimilarities

� ì³ì�Þ�h��âáâà�ãêä èï � ï�#8 è � Þ�h��âá�ç � � ã , where ç � � / à
is the x -th nearest neighbor of h � , are computed. Then, a threshold U is determined as the ÞZ2�$o5 thr ã -th
percentile of the sorted sequence of

� ì³ì . Similarly, as above, U can be first found to ensure the that
the fraction of rejected target examples is 5 fn. The classifier becomes then:

V k-NNDD Þ�Ý ÞXW áâà�ãÏã�äkW�Þ � ì³ì ÞXW áâà�ã%�lUvã�äkW�Þ 2Û ï6
�#8 è � ÞXW á�ç � ] ãÏã%�lUvã�á (8.2)

where ç � ] / à is the x -th nearest neighbor of W . So, V k-NNDD relies on the dissimilarities to all objects
from à . Note that for such OCCs, non-decreasing and concave transformations preserve the order
of dissimilarities, hence they will hardly change the OCCs built on the original dissimilarities.

In both cases, the proximity function can also be used to define not one, but many thresholds,
e.g. thresholds either for each center (the Û -CDD) or for each object (the Û -NNDD). This, however,
requires a lot of data for a good estimation. As such, the OCCs are built using the target information
only. It is not clear to us how potential outliers can be used to define the boundary. In general, if
N àON*� N �ÎN , then such OCCs will be denoted as the reduced versions, i.e. the Û -nearest neighbor andÛ -centers reduced data descriptions, the Û -NNRDD and Û -CRDD, respectively.

As an example, the OCCs are trained on a Euclidean distance representation Ý of the banana class.
Since the theoretical data are 4 -dimensional the boundaries of the OCCs can be drawn for such a
case. The results are presented in Fig. 8.2. The ’bubble’-like character of the Û -CDD is caused
by Euclidean balls (containing neighboring objects) around the centers, hence different values of Û
influence the boundary a lot. On the other hand, the boundary of the Û -NNDD relies on averaged
distances to each object of à , hence it becomes smoother.
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8.2.2 Generalized mean class descriptor

One of the simplest way to describe a class relies on the proximity to the ’average’ representative. If
objects are described as vectors in a feature space, then the mean vector plays such a role. In [301],
we discussed that a proximity to the average representative can be formulated in the case, where
only a dissimilarity representation is given. The details are also presented in section 4.5, where the
generalized nearest mean classifier is discussed.

Assume à represents the target class S Û . Any symmetric dissimilarity matrix ÝßÞ�à~áâà�ã can be
seen as a description of an underlying, lower-dimensional pseudo-Euclidean space A such that the
pseudo-Euclidean distances are preserved. Assume that � /pA results from the projection of ÝßÞXW�áâà�ã .
From section 4.5, it is known that the proximity function � proxm Þ�ÝßÞXW�áâà�ã�áTS Û ãðä N N � $ � E N N éE can
equivalently be computed by the use of dissimilarities as � proxm Þ�Ý ÞXW áâà�ã�áTS Û ã�ä èì � ì�X8 è � é ÞXW�á�ç��ÎãÕ$èé ì ( � ì�X8 è � ì�#8 è � é Þ ç � á�ç � ã . For the construction of an OCC, the threshold U can be chosen as theÞZ2*$X5 thr ã -th percentile of the sorted sequence of � proxm Þ�Ý Þ�h � áâà�ã�áTS Û ã which express the square dis-
tances U ? . The generalized mean-class data description (GMDD) becomes then:

V GMDD Þ�ÝßÞXW�áâà�ãÏã�äkW Þ 2F ì6
�98 è � é ÞXW á�ç � ãI$ 2

4
F é ì6
�98 è ì6

�#8 è � é Þ ç � á�ç � ã%�lUvã�ë (8.3)

Note that V GMDD Þ�Ý ÞXW áâà�ãÏã äkW Þ èì Ú�Û Ý  é ÞXW�áâà�ãI$ èé ì ( Ú�Û Ý  é Ú �lUuã . Since this inequality implicitly
corresponds to N N � �<$ � E N N éE �lU , this OCC basically accepts objects as targets if they lie in a pseudo-
Euclidean hypersphere with the radius of q U .

In general, à äk� , however à might consist of a fixed, small fraction of the objects from � . The
objects in à should reflect the information on original objects such that the pseudo-Euclidean mean
defined by à lies close to the original mean. Our proposal for the selection of à relies on formula
(4.23) discussed in section 4.5. There, we showed that given two classes, the difference between
the average between-class square dissimilarities and the average within-class square dissimilarities
approximates the square pseudo-distance between the two class means in an embedded space. This
knowledge can be used as follows. Assume à is randomly chosen out of � . Consider two classes:
one defined on à and the other on � . Now, the square pseudo-distance between the two class means
can be approximated using formula (4.23). Hence, we can proceed with random choices of à and
finally choosing the one which offerers the smallest difference to the mean defined on the complete
set. This is computed fast, so e.g. Ü äm2#A�A of possible sets à can be considered. We will refer to this
selection as to the mean-resemblance.

Some flexibility can be gained by nonlinear transformations of the dissimilarities. As an example,
the GMDD is trained on a Euclidean distance representation Ý of the 2D banana class, as well as
its sigmoidal transformations Ý H and Ý H é . The OCC’s boundaries are presented in Fig. 8.3. Since
the original representation is Euclidean, then the GMDD on Ý yields a spherical description (the
boundary is defined by the square distance to the mean of the target class), as observed in the figure.
The parameters of sigmoidal transformations are not optimized: they were chosen in relation to
local neighborhoods. Depending on the parameter of the transformation, the boundary can become
either tighter or wider.

Generalized weighted mean class descriptor. Since the GMDD relies on all objects of the set à , a
natural extension is to define a similar classifier, but based on some objects only. This leads to the
concept of a weighted mean in a pseudo-Euclidean space A . So, �'r�. ä � ì�98 èts � � � , where all s � are
nonnegative and

� ì�X8 èus � äm2 . Ideally, the s � should be selected such that many of them are zero and
only some of them are positive. This would imply a sparse formulation based on the dissimilarities
to the non-zero objects only.



180 8 One-class classifiers

ùwv ; Ë'¦ È NN ùwv ( ; Ë'¦ È NN ùwv ( ; Ë'¦ È v Çyx

r
thr

 = 0.1

0.5 σ
  1 σ
  2 σ
orig

r
thr

 = 0.1

0.5 σ
  1 σ
  2 σ
orig

r
thr

 = 0.1

0.5 σ
  1 σ
  2 σ
orig

Fig. 8.3: Generalized mean class descriptor (GMDD) for dissimilarity representation Ý (orig) and its sig-
moidal transformations: ÝRz and ÝKz � of a theoretical banana class. C is a parameter of such transformations.
The legend describes various choices of C , i.e. C äõA±ë @Bc�á²c�á54Bc , where c is defined for the original distancesÝ either as the averaged q Ü -nearest neighbor distance (

�
NN) or the standard deviation (

� zI{ | ). The threshold5 thr äÌA±ëw2 has been used.

Remember that for the pseudo-Euclidean considerations, à^]_� and Ý Þ�à~áâà�ã should be symmetric.
An OCC in the embedded A can be now designed based on the square distance to the weighted
mean of the target class. Similarly as above, let à . ä æ!��èÅá ë ë ë�áG�uìuí be a vector representation in A
resulting from the embedding of Ý Þ�à~áâà�ã . The remaining �~} à objects are then projected to A . Let
� r E be the weighted mean vector of all objects. The classifier can be now described as a pseudo-
Euclidean hypersphere with the center being the weighted mean and some radius q U . This leads to
the proximity function � proxm Þ�Ý ÞXW áâà�ã�áTS Û ãµä\N N ��$ � r E N N éE . Similarly as above, such a proximity can
be equivalently expressed by the dissimilarities only as � proxm Þ�Ý ÞXW áâà�ã�áTS Û ã ä � ì�98 è s � � é ÞXW á�ç*� ãè$èé � ì�X8 è � ì�#8 èts � s � � é Þ ç � á�ç � ã±ä�� Û Ý  é ÞXW áâà�ãÜ$ èé � Û Ý  é Þ�à~áâà�ãI� . This can be derived analogously as
in section 4.5 by using � r E instead of � . Note such a formulation is similar to the support vector data
description as proposed by Tax [386, 390]. The difference lies in the fact that Tax reformulates it for
kernels, hence positive definite similarity representations, while we focus on general dissimilarities.

The question now arises how the weights s � should be found. A logical approach relies on de-
termining s � such that the pseudo-hypersphere has a minimal (positive) radius, hence the square
pseudo-Euclidean distances to the weighted mean are minimized (in the pseudo-Euclidean sense).
All training objects ç*� ( �yäyà ) may be forced to lie inside the pseudo-Euclidean hypersphere. It may
be, however, useful to allow for the rejection of some target examples to obtain a tighter boundary.
This can be realized by introducing the nonnegative slack variables � � accounting for possible errors:öùøûú�U � è� � � �

�98 è �#�
s.t. � Û Ý  é Þ�h � áâà�ã`$ èé � Û Ý  é Þ�à~áâà�ãI���lU � � � á 1wäm2Åá54¢á ë¸ë¸áâÜ� Û Ú äm2Åá s ���\A±á�U��aA±á��#���\A±á (8.4)

where �0/ Þ�A±á!2�� is a user-specified parameter. The idea of using the form of è� � � ��98 è �#� comes from
the support-vector research e.g. [349, 350, 390], where it can be proved that � is an upper bound
for the error on the target class. By a proper reformulation, the above optimization is a quadratic
programming (QP) problem. By solving it, one hopes to find a sparse solution, i.e. based on a
relatively few objects only. The problem, however, lies in solving a non-convex QP problem, since
the dissimilarity matrix Ý  é Þ�à~áâà�ã is not positive definite (although if Ý is Euclidean, then $¤Ý  é
is conditionally positive definite; see a part of the SVC in section 4.5 and section 4.6 on relations
between conditionally positive definite and Euclidean matrices). From the Euclidean point of view,
the difficulty is caused by the fact that a local optimum can only be found, in contrast to the convex
formulation, where the global optimum is guaranteed. So, a suitable (non-standard) software is
necessary to solve the problem. We plan to investigate methods of solving this optimization task in
our future research. The generalized weighted mean class data description GWMDD would be then
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Fig. 8.4: Illustrations of the LPDD (left) and the LPDD-II (right). The dashed lines indicate the boundary of
the area which contains the genuine objects if the measure is metric. The LPDD tries to minimize the max-
norm distance from the bounding hyperplane to the origin, while the LPDD-II tries to attract the hyperplane
towards the average of the distribution. The LPDD-II is defined below.

defined as V WGMDD Þ�Ý ÞXW áâà�ãÏã älW Þ 6r ÿ s8 � s ïoÝ  é ÞXW á�ç�ï¢ã`$ � r �lUuã�á � r ä 2
4 � Û Ý  é Þ�à~áâà�ãI��ë (8.5)

As before, concave transformations can be applied to the dissimilarities to add an extra flexibility.

8.2.3 Linear programming dissimilarity data description

A one-class classifier designed in a dissimilarity space was proposed by us in [306]. When the setà contains objects from the class of interest, then objects W with large Ý ÞXW áâà�ã are considered as
outliers and should be remote from the origin in the dissimilarity space. This characteristic is used
in our OCC. If the dissimilarity measure Ý is a metric, then all vectors Ý ÞXW áâà�ã , lie in a prism,
bounded from below by a hyperplane on which the objects from à lie and bounded from above by
the largest dissimilarities (we assume that

�
is bounded if not it can be scaled to be such).

Consider a dissimilarity representation Ý ÞN� áâà�ã , where à äjæÏç è á ë¸ë¸á�ç�ìví is the representation set and� . ä æ�h è á ë ë ë�áTh � í is a set of objects. Let � be a hyperplane in ` ì , i.e. � . ä æ!�a/�` ì .o� Û � äó�á��3=än�Î/w` ì á óP/w`Õí and let �e/w` ì be any point outside � . � can be projected onto � by using
an arbitrary norm

ý ü , ç��\2 [257]. Then, the distance between � and the hyperplane � or, in fact,
the distance between � and its projection � P onto � , is measured by the dual norm

ý��
such that U

satisfies 2¹Y¹ç � 2¹Y
Uväm2 . It is given by
�,� ÞX��á�� ãêäoN N �7$o� P N N � äoN � Û �7$ ó�N Y{N N �nN N ü .

To describe a class in a non-negative dissimilarity space, one could minimize the volume of the
prism, cut by a hyperplane � .:� Û ÝßÞXW�áâà�ã³äyó suppressing the data from above (in general � is not
expected to be parallel to the prism’s bottom hyperplane); see Fig. 8.4. In this case, non-negative
dissimilarities impose both ó��õA and �ß�)�õA . However, this task might not be feasible. A natural
extension is to minimize the volume of a simplex with the main vertex coinciding with the origin of
a dissimilarity space and the other vertices, say �^� , resulting from the intersection of � and the axes
of a dissimilarity space. Note that � � is a vector of all zero elements except for � ��� äyó&Y�� � , provided
that �è�^=ämA . Assume now that there are 5��0F non-zero weights of the hyperplane � , so effectively,� is constructed in a ` " . From geometry, we know that the volume � of such a simplex can be
expressed as Þ�� base Y�5�� ãI�oÞÒó&Y{N N �nN N éÅã , where � base is the volume of the base, defined by the vertices � � .
The minimization of �òä�ó&Y{N N �oN N é , i.e. the Euclidean distance from the origin to � , is then related to
the minimization of � .

Let Ý ÞN� áâà�ã be a dissimilarity representation bounded by the hyperplane � , i.e. � Û ÝßÞ�h � áâà�ã%� ó for
1�ä\2Åá ë ë ë�áGF , such that the

ýN�
distance to the origin

�n� Þ 0
¯
á�� ã�ä ó&Y{N N �oN N ü is minimal (remember that U

satisfies 2¹Y¹ç � 2¹Y
U äo2 for ç@��2 , since
ýN�

and
ý ü are the dual norms) [257]. This means that � can be
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determined by minimizing óè$mN N �oN N ü . However, in order to avoid any arbitrary scaling of � , we may
require that N N �iN N ü äm2 . Then, the construction of � can be solved by the minimization of ó only. The
mathematical programming formulation of such a problem is [20, 257]:öÊøûú ó

s.t. � Û Ý Þ�hÏ�Ïáâà�ã%� ó�á 1wäm2Åá54¢á ë¸ë¸áâÜ á
N N �mN N ü äm2Åá ó��aA±ë (8.6)

(Note that from the algorithmic point of view, the assumption of N N �iN N ü äo2 requires that the dissim-
ilarities are bounded by not too large values, e.g. 2 or 2#A , otherwise ó should become very large to
fulfill the constraints, which might cause the problem be unbounded.)

If ç«ä§4 , then the hyperplane � is found when � - the Euclidean distance from the origin to � is
minimized. However, the problem is then formulated by a quadratic optimization. A simpler, linear
programming (LP) formulation is of interest to us. This can be realized for çÊäq2 . Knowing that
N N �oN N éÕ�õN N �mN N è¾� q FÜN N �oN N é and by the assumption of N N �iN N è�ä 2 , after simple calculations we find out
that ó��R� ä ó&Y{N N �oN N éj� q F�ó . Therefore, by minimizing

��� Þ�� á�� ã±ä ó (and requiring that N N �iN N èväj2 ),� will be bounded, (for a fixed and small à , the minimization of ó bounds � ) and, therefore, the
volume of the considered simplex, as well.

By the above reasoning and formula (8.6), a class represented by dissimilarities can be characterized
by a linear proximity function with the weights �%� and the threshold ó . Such a hyperplane simply
’pushes’ the objects in the direction of the origin in the dissimilarity space. Our one-class classifier,
the Linear Programming Dissimilarity-data Description V LPDD is then defined as:V LPDD Þ�ÝßÞXW�áâà�ãÏã äkW�Þ 6� Å s8 � �Ü�ÅÝ ÞXW á�ç&�³ã�� ó±ã�ë (8.7)

The proximity function is found as the solution to a soft-margin formulation3, which is a straight-
forward extension of the hard-margin case (by neglecting the slack variables), as:öùø�ú ó � è� � � �

�X8 è � �
s.t. � Û ÝßÞ�h��Ïáâà�ã%� ó � �#�Ïá 1wäm2Åá54¢á ë¸ë¸áâÜ� ÛØÚ äm2Åáj� � �\A±á�óK�\A±á�� � �\A±á (8.8)

where � � are the slack variables, allowing objects to lie above the hyperplane, i.e. accommodating
some targets as outliers. In the LP formulations, sparse solutions are obtained, meaning that only
some weights �Õ� are positive. Objects corresponding to such non-zero weights, will be called
support objects (SO). (Note that they cannot be called support vectors, since they directly refer to
the objects and not to their vector representations.) These support objects construct the effective
representation set à ; , N à ; N�ä�5 and, as a result, test objects need to be evaluated by computing
dissimilarities to objects from à ; only.

The left plot of Fig. 8.4 shows a two-dimensional pictorial illustration of the LPDD. The data are
represented in a metric dissimilarity space, and by the triangle inequality, the dissimilarities can only
lie inside the prism indicated by the dashed lines. The LPDD boundary is given by the hyperplane,
as close to the origin as possible in terms of the

ý��
distance (determined by the minimization of ó ),

while still accepting (most) target objects4. The outliers should be remote from the origin.

3 We abuse here somewhat the soft-margin and hard-margin formulation from the support vector research e.g. [349,
350, 390], where it can be proved that � is an upper bound for the error on the target class.

4 This picture might be misleading. In a ��� space, all representation objects lie in × � Ö ¥ Ù -dimensional subspaces
determined by all but one basis axes. E.g. in a 3D, the objects from   are placed on the

% ¯ Ö ,
%�¡ Ö and ¯ ¡ -planes.
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Fig. 8.5: Linear programming data description for a dissimilarity representation Ý (orig) and its sigmoidal
transformations Ý z and Ý z � for a theoretical banana class. Various boundaries are shown depending on the
choice of C ; C»äÌA±ë @Bc�á²c�á54Bc , where c is defined for the original distances Ý either as the averaged q Ü -nearest
neighbor distance (

�
NN) or the standard deviation (

� zI{ | ). The number of support objects varies from 4¢á f for
the LPDD based on original distances (marked by a dash-dotted line), k for CuäÞ4Bc and up to 2� for Cuä0A±ë @ � .
The upper plots refer to ��äÌA and the bottom plots refer to � ä0A±ëw2 .
Proposition ¢ 8.1 Consider formula (8.8) for Ý ÞN� áM��ã . Then, �e/ Þ�A±á!2�� is the upper bound on the
outlier fraction for the target class, i.e. the fraction of objects that lie outside the boundary; see also
[349, 350]. This means that èì � �

�98 è ÞZ2ß$�V LPDD Þ�Ý Þ�hÏ�âáM��ãÏã%�b� .

Sketch of proof. The proof goes analogously to the proofs given in [349, 350]. Intuitively, these
proofs follow the reasoning given as: assume we have found a solution of (8.8). If ó is increased
slightly, the term

� � �#� in the objective function will change proportionally to the number of points
that have non-zero � � (i.e. the rejected target objects). At the optimum of (8.8), therefore, it has to
hold Ü��R� number of outliers.

As before, nonlinear transformations of dissimilarities can be used. The LPDD is trained on a
Euclidean distance representation Ý of the 2D banana class, as well as on sigmoidal transformationsÝ H and Ý H é . The OCC’s boundaries are presented in Fig. 8.5. As it can be observed, such a LP
formulation offers flexible descriptions of the data boundary depending on the transformation.

Using outlier information. The LPDD can straightforwardly be extended to handle example outliers.
This means that � contains some outliers. The representation set à can also contain some outliers.
If the problem to be solved describes the targets against ’pure’ non-targets (healthy versus diseased
people), we think that the instances of à should belong to the target class, otherwise the outliers fromà may become support objects, hence objects which determine the decision. This point, however,
needs to be investigated further.

In the LPDD, the hyperplane in a dissimilarity space is attracted towards the origin and the objects
are placed in the half-space below this hyperplane. In fact, they lie in a simplex with the main vertex
coinciding with the origin and the other vertices resulting from the intersection of the hyperplane and
the axes of this dissimilarity space. This is described by the constraint � Û Ý Þ�h � áâà�ã�� ó � � � , where� � ��A account for possible errors, such that the targets can be found above the hyperplane. This is the
place, where the outliers should lie. If we allow some outliers to be accepted as targets, this would
lead to � Û ÝßÞ�h��Ïáâà�ã��«óÎ$��#� , assuming that hZ� are now outlier examples. A variable ���Ü/ æ � 2Åá!$^2wí can
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be used to denote the targets as 2 and outliers as $^2 . The formulation (8.8) remains then the same
except that the constraint there changes to � � Þ�� Û ÝßÞ�h � áâà�ãÏã%� � � ó � � � . This constraint simply forces
the known outliers ( ����äm$^2 ) to be placed in the right half-space of the hyperplane.

Linear programming dissimilarity data description II. A linear programming formulation for novelty
detection has also been proposed in [53]. The reasoning there starts from a feature space in the
spirit of positive definite kernels £ Þ } áu}�ã based on the vector set } ä æ!� è á ë¸ë¸áG� � í . The authors
restricted themselves to (modified) RBF kernels, i.e. for £ ÞX� � áG� � ã ä [ �)f � �)¤ 
 � Å � ( _ é H ( , where Ý is
either Euclidean or

ý è distance. In principle, we will refer to RBFp, as to the ’Gaussian’ kernel based
on the

ý ü distance. Here, to be consistent with our LPDD method, we will rewrite their soft-margin
LP formulation (a hard-margin formulation is then obvious by neglecting the slack variables), to
include a trade-off parameter � as follows:öùøûú è� � �

�98 è Þ�� Û £ ÞX�^�Ïáu}�ã � ó±ã � è� � � �
�X8 è �#�

s.t. � Û £ ÞX���âáu}�ã � ó¥��$o�#�Ïá 1wäm2Åá54¢á ë¸ë¸áâÜ� Û Ú äm2Åá��è�j�\A±á��#���\A±ë (8.9)

Unfortunately, ¦ now lacks the interpretation as given in the LPDD case. è� � is a trade-off pa-
rameter, relating different quantities, i.e. weighting the error contributions and the average classifier
output. From our point of view, £ can be any similarity representation, moreover, not necessarily
square (in the same way as the LPDD is defined for general dissimilarity representations). So, for
simplicity, we can denote this method as Linear Programming Similarity-data Description (LPSD).

Following the principles as described above, one can consider an equivalent formulation for the
LPDD. Including also the information on possible outliers ( ��� äR$^2 ), the soft-margin LPDD-II (a
hard-margin LPDD-II is then obvious) becomes then:öùøûú è� � ��98 è ÞÒó�$�� Û ÝßÞ�h��âáâà�ãÏã � è� � � ��98 è �#�

s.t. ���9� Û Ý Þ�hÏ�Ïáâà�ãè� ����ó � �#�Ïá 1Åäm2Åá54¢á ë¸ë¸áâÜ� ÛØÚ äm2Åá�� � �\A±á�ó¥�\A±á�� � �\A±ë (8.10)

Similarly to the LPDD, a sparse solution is obtained. Hence, also the objects corresponding to non-
zero weights are the support objects. The V LPDD-II is defined identically as the V LPDD in (8.7). The
difference lies in the way how the weights � are found during the training process.

If only target objects are given, the hyperplane is determined such that its averaged output is attracted
towards origin. Hence, such a formulation may lead either to a narrow description of the target class
(narrower than the LPDD) for a compact class or to a wide description of the target class, when
there are examples lying further away than the main bulk of the data. See Fig. 8.4 for an illustration
of such a case. However, when outlier examples are present, this might be advantageous, since the
outliers influence the average output and, as a result, a hyperplane ’balanced’ in-between the targets
and outliers can be determined.

Here, to be consistent with our dissimilarity approaches, we will focus on the dissimilarity-based
OCCs. For some remarks concerning the LPSD, see our paper [306].

8.2.4 More issues on class descriptors

There are additional points to be discussed concerning the class descriptors, especially the LP clas-
sifiers. An important point refers to the support objects of the LPDD and the LPDD-II. There is
an essential difference between such support object and to a similar concept of support vectors in
the SVC terminology. Since we operate on dissimilarities, the chosen support objects are related
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Fig. 8.6: One-class classifiers: neighborhood-based OCCs (the Û -NNDD and the Û -CDD in the top row),
the GMDD (second row from the top) and hard-margin LP classifiers for the two cluster data represented by
the non-metric

ý ~�ÿ ª distances Ý�~�ÿ ªêÞN� áM��ã and their sigmoidal transformation Ý�z �~�ÿ ª . The neighborhood-based
OCCs are designed on the original dissimilarities (since they are not influenced by sigmoidal transformations),
while other OCCs are built on their transformed versions. In the latter case, the slope parameter C is fixed,
such as C ä A±ë @ � NN á²A±ë� � NN á � NN á!2Åë @ � NN á54 � NN, where

�
NN is the averaged q Ü -nearest neighbor distance.

The OCCs boundaries for the LP classifiers are originally determined by a hyperplane in a dissimilarity space,
which correspond to nonlinear boundaries in the input space. Support objects are marked by squares. Note
that in case of the LPDD-II, the support objects tend to lie on the boundary, which might not be a case for the
LPDD. Since the boundary of the Û -CDD is determined by Û objects, these are also marked by squares (see
top row).

to the dimensions of a dissimilarity space. The boundary of the OCCs is determined by a suitable
hyperplane on which some objects are likely to lie. In general, such boundary objects are different
than the support objects, although they may coincide. The boundary objects are in principle objects
which are far away from the origin, hence they influence the hyperplane weights, hence the support
objects. This means that by removing support objects from the target class, the OCC’s boundary
may remain nearly unchanged (if there are other objects close the removed support objects), how-
ever, by a removal of a far-away boundary object, other support objects can be chosen. This is in
agreement with the support-vector formulations, where support objects are boundary objects.
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ç -NNDD; § thr ¦>¢�ò�¥ ñ -CDD; § thr ¦>¢�ò�¥ GMDD; § thr ¦>¢�ò�¥ LPDD; �^¦K¢:òv¥ LPDD-II; �^¦>¢:òv¥
 err = 0.06  err = 0.1  err = 0.1  err = 0.06  err = 0.06

Fig. 8.7: The OCCs designed for the uniform cloud with outliers. The data are represented by the city
block distances Ý þ ÞN� áM��ã . Support objects are marked by squares. Note that the Û -CDD might not be able
to disregard outliers in the target class. Note also that the LPDD defined by four support objects defines a
reasonably tight boundary around the cloud.

 err = 0.1  err = 0.1  err = 0.1  err = 0.1  err = 0.1
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Fig. 8.8: The GMDD built on a sigmoidal-I transformations of the
ýZþ

distance representation Ý þ designed for
the uniform cloud with outliers. Five objects are selected from � based on the mean-resemblance criterion
(section 8.2.2), for the representation set à J � . They are marked by squares. All training data points are
assumed to be targets. The GMDD is trained with 5 thr äiA±ëw2 . The plots presents the boundaries in the input
space, which are originally considered in the embedded pseudo-Euclidean spaces defined by Ý zþ ÞN�ðáâà�ã andÝKz �þ ÞN�ðáâà�ã . From left to right, C takes the values of A±ë @ � me á � me á!2Åë @ � me á54 � me and g � me, where

�
me is the

average distance. err in the plots refers to the effective error on the target set.

In general, all class descriptors mentioned here are able to uncover clusters in the data, as well
as, ’outliers’ present in the target class, provided that proper parameters are specified. Consider
two 4 -dimensional artificial data sets. The first set consists of two clusters of 2!@ points each. It
will be denoted as the two-cluster data. These data are represented by a non-metric

ý �-� .
distance.

The second set contains one uniform, rectangular cluster, contaminated with three outlier points.
It will be denoted as the uniform cloud with outliers data. In total, @BA points are given. For a
dissimilarity representation, the

ý è (city block) distance is used. (We have explicitly chosen non-
Euclidean distances to show that any distance can work.) Now, the one-class classifiers are trained.
Since the artificial data are 4 -dimensional, it is possible to draw the decision boundaries in the
2D input space, even if the OCCs are trained in (high-dimensional) dissimilarity spaces. Figures
8.6 - 8.10 show the boundaries of various dissimilarity-based class descriptors trained on square
dissimilarity matrices ÝßÞN� áM��ã or their sigmoidally transformed versions.

In Fig. 8.6, the two-cluster data set and decision boundaries of the trained OCCs are shown. The
neighborhood-based OCCs are designed on the original dissimilarities Ý ��� .

since they are hardly
influenced by concave non-decreasing transformations. Other OCCs are built on their sigmoidally
transformed versions Ý H�-� . and Ý H é�-� . . Although the OCCs are trained on square dissimilarity rep-
resentations, the LP classifiers offer sparse solutions by choosing a number of support objects,
i.e. objects which determine the boundary and to which the dissimilarities should be computed in
a testing stage. Basically, the number of support objects is related to the complexity of the bound-
ary, which can be observed while comparing the leftmost and rightmost plots of the LPDD and the
LPDD-II in Fig. 8.6. The Û -CDD is also determined by a small number of objects, namely Û objects,
where Û is specified beforehand. (This is the difference with the LP classifiers, where the support
objects are specified by � and are determined in the response to the mathematical programming
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Sigmoidal-I transformation
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Fig. 8.9: One-class soft-margin LP classifiers, trained with �yä A±ëw2 , designed for the uniform cloud with
outliers. All training data points are assumed to be targets. The data are described by the

ý5þ
distance repre-

sentation Ý þ . However, here, its sigmoidal transformations are used. Ideally, the OCCs should disregard at
maximum 2#Anm of the points. The plots presents the boundaries in the input space, which are originally found
in dissimilarity spaces Ý zþ and Ý z �þ . From left to right, C takes the values of A±ë @ � me á � me á!2Åë @ � me á54 � me and
g � me, where

�
me is the average distance. err in the plots refers to the effective error on the target set. Support

objects are marked by squares. They belong to the OCCs.

formulation.) On the contrary, the Û -NNDD and the GMDD require all objects for the boundary
construction.

Two cases are considered for the artificial data with three outliers. First, all the data points are as-
sumed to be targets and soft-margin LP classifiers with � äÌA±ëw2 are trained. Then, these three outliers
should possibly be ignored. This can be observed in some plots of Fig. 8.7 and Fig. 8.9, provided
that a proper scaling parameter C of the sigmoidal transformations is used. Another possibility is to
label the outliers appropriately and use them in the training of the LP classifiers (other classifiers,
the Û -CDD, the Û -NNDD and the GMDD cannot directly incorporate such label information). So, in
the training set, g�b points are labeled as targets and three points as outliers. Given that, it is sufficient
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Hard-margin LPDD / LPDD-II on ùXvÖ × ¨Ü¤I¨ Ù
 err = 0  err = 0  err = 0  err = 0.021  err = 0
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Fig. 8.10: One-class hard-margin LP classifiers designed for the uniform cloud with three outliers. In a train-
ing stage, these three outliers are labeled so. Hence, they should be disregarded by the OCCs (except for the
outliers, the data points make are a relatively compact cloud, so a hard-margin OCC should describe it well).
The data are described by the

ýÏþ
distance representation Ý þ and its sigmoidal transformation. The plots show

the boundaries in the input space, which are originally found in dissimilarity spaces Ý�zþ . From left to right,
C takes the values of A±ë @ � me á � me á!2Åë @ � me á54 � me and g � me, where

�
me is the average distance. err in the plots

refers to the effective error on the target set. Support objects are marked by squares. The results are the same
for both the LPDD and the LPDD-II. Since the cloud is compact and the outliers are disregarded, both LP
classifiers return the same support objects, hence the same boundaries.

Soft-margin LPDD on ù�v (Ö × ¨'¤«  Ù ; �^¦>¢�ò�¥
 err = 0.06  err = 0.06  err = 0.08  err = 0.06  err = 0.06

Soft-margin LPDD-II on ù v (Ö × ¨Ü¤"  Ù ; �^¦>¢�ò�¥
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Fig. 8.11: One-class soft-margin LP classifiers designed for the uniform cloud with outliers. � contains @BA
training points. Five randomly chosen points from � are assigned to à . The data are described by the

ý�þ
distance representation Ý þ ÞN� áâà�ã . In the LP classifiers, its sigmoidal transformation Ý z �þ ÞN� áâà�ã is used. The
rows show the results in the input space of the boundaries originally found by the sigmoidally transformedý þ

distances in a dissimilarity space. From left to right, C takes the values of A±ë @ � me á � me á!2Åë @ � me á54 � me and
g � me, where

�
me is the average distance. [ 5¬5 refers to the effective error on the target set. Support objects

are marked by squares. Note that the support object come from à , so there might be maximum five support
objects.

to train hard-margin LP classifiers, since the remaining points make a compact cloud. The results
are presented in Fig. 8.10. While soft-margin LP OCCs trained on the targets seem to be highly
influenced by the slope parameter C (Fig. 8.9), the hard-margin classifiers, trained by using also the
outlier information, seem to be much less.

When the LP classifiers are designed by treating all the points as targets, it is much harder for the
LPDD-II to disregard the three outliers than for the LPDD; compare the boundaries of the LPDD
and the LPDD-II in Fig. 8.7 and Fig. 8.9. This is not surprising, since the boundary of the LPDD-II
is determined by taking into account the averaged dissimilarity output to which outliers significantly
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contribute. In such cases (where only the target data are provided, yet, possibly containing some
’outlier’ examples), logically, it seems more reasonable to use the LPDD. On the other hand, when
outlier information is used for training, the LPDD-II might work better. In our case, however,
Fig. 8.10, both the LPDD and the LPDD-II determine the same support objects, hence find the same
boundary. They both provide a tight description around the uniform cloud and they seem not to
depend much on the parameter of the sigmoidal transformation.

Additionally, Fig. 8.11 shows some results for a rectangular dissimilarity representation ÝßÞN� áâà�ã , in
which just five points are randomly chosen from � for the set à . The results are obtained assuming
that all the points constitute the target class. In such a case, the support objects come from à ,
so there can be maximally five of them. Since the boundary relies on the dissimilarities to a few
objects only, its flexibility is limited. The boundary changes only somewhat with growing parameter
C of sigmoidal transformations; compare Fig. 8.11 with two bottom rows of Fig. 8.9. It might be
therefore useful to pre-select a representation set à smaller than the original training set � .

8.3 Experiments
In this section, we will now present how the introduced one-class classifiers work in practice.

8.3.1 Experiment I: Condition monitoring

Train Validation Test
NB ÷:¥uç ÷�¥�ç ÷:¥uç Ö î<ï�î î#ïBî ( ÷¹÷»ì ÷»÷¹ìj® ÷»÷¹ì�¯ ÷»÷¹ì

Fig. 8.12: Class cardinalities in fault
detection data.

Fault detection is an important problem in the machine diagnos-
tics: failure to detect faults can lead to machine damage, while
false alarms can lead to unnecessary expenses. As an example,
we will consider a detection of four types of fault in ball-bearing
cages, a data set from the Structural Integrity and Damage As-
sessment Network [124] considered in [53]. Each data instance
consists of 4BABgn samples of acceleration. After pre-processing
with a discrete Fast Fourier Transform, each signal is character-
ized by

f 4 attributes, which is a sparse sampling. The data set consists of five categories: normal
behavior NB, corresponding to the measurements made on new ball-bearings and four types of
anomalies, t è - t � . See appendix A.2 for further description. Here, we performed experiments in
the same way, as described in [53], making use of the same training set, and independent validation
and test sets as defined in Fig. 8.12.

Since there is no prior information available on suitable dissimilarity measures, three simple mea-
sures are used: Euclidean (

ý é distance), city block (
ý è distance) and non-metric

ý��-� �
distance. Hence,

we analyze three different dissimilarity representations: Ý �-� �
, Ý è and Ý é . All the dissimilarity

representations are scaled by 2¹Y�2#A�A , which basically corresponds to a change of ’unit’ and it is per-
formed to avoid too large dissimilarities (our linear programming implementation get stuck if the
dissimilarities become too large). For each DR, three different concave transformations are studied:
a power transformation with the parameter ç and sigmoidal-I and sigmoidal-II transformations de-
scribed by the parameter C ; see section 8.2. Since neighborhood-based OCCs are hardly influenced
by such transformations, they are not applied in this case.

The OCCs are trained on (transformed) representations defined for the NB class, i.e. they are based
on Ý ÞN� áâà�ã , where Ý now stands for a chosen dissimilarity representation, � is a training set con-
sisting of V&2 f examples of the NB class and à°]±� is a representation set. Two cases are here
considered: either à is equivalent to � (which means that an OCC is trained on a square dissimilar-
ity matrix) or à consists of 4BAnm of the target examples selected by the Û -centers algorithm (which
means that an OCC is trained on a rectangular dissimilarity matrix). The optimal values of either ç
(power transformation), C (sigmoidal transformation) or Û (parameter for the Û -CDD and Û -NNDD)
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are found using the validation set consisting of examples coming from the NB class and two outlier
subclasses: t è and t é . There is no unique way of determining a good parameter. In our case, we
train the OCCs to reject not more than 2-m of the targets5, so we automatically choose the parameter
C (ç or Û ) such corresponds to the smallest mean error averaged over the NB class and two outlier
subclasses on the validation set. If there is a sequence of such parameters for which the same error
is reached, as a final parameter we choose its median. Note that this is a rough approach, since in
practice one may weight the error contributions depending on what is more costly: a false alarm or
missing the machine fault. One may also wish to keep e.g. the percentage of the target rejection un-
der a chosen value, which would lead to some other way of establishing the parameter value. Since
we cannot decide what are the factors to be taken into account in such a decision, an automatic
procedure based on the averaged error (on targets and outliers) seems appropriate to follow.

To select a suitable C for sigmoidal-I and sigmoidal-II transformations, the range of � A±ëw2 � �! #"oá5@ � �! #"!� ,
where

� �! #" is the average distance within the target class, was considered (for smaller values, our
optimization procedure for the LP classifiers did not terminate). Û was selected as the best integer
between 2 and @BA on the validation set.

0 200 400 600 800 1000
−0.5
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1

1.5

2

2.5x 104

Fig. 8.13: Eigenvalues in the embed-
ding of Ý�~�ÿ �³ÞN� áM��ã .

The errors of the first kind (classifying targets as outliers,
i.e. false alarms) and the second kind (classifying outliers as
targets, missing fault detection) kind for the OCCs built on
the Ý �-� �

and Ý è representations are shown in Tables 8.1-8.3.
As expected, sigmoidal transformations offer more flexibil-
ity. However, a more important observation is that the

ý��-� �
distance measure seems to be more advantageous than both
metrics

ý è or
ý é . The results for the Euclidean dissimilarity

representations and their transformed versions are very bad
(much worse than for the city block representation Ý è ), so,
thereby, we have limited ourselves to present only the results
for Ý ��� �

and Ý è .
To judge the results, two factors are especially taken into account: the error on the target class
which should be kept small, possibly round 2-m and the error on the two outliers subclasses t � and
t � , which are novel to the classifiers. A number of conclusions can be drawn from Tables 8.1-8.3:

(1) In general, the performance of the OCCs is significantly better for Ý ��� �
than for ÝÉè (which in

turn is much better than by using Ý é ). Also, sigmoidal transformations offer more flexibility
and better results for the GMDD and the LP classifiers than the power transformations.

(2) The best overall performance is reached for the 2 -NNDD on Ý ��� �
trained with 5 thr äqA±ë A�@ ;

see Table 8.2. The 2 -NNDD yields the errors of V¢ë V:m and ¢ë f m on the t � and t � outlier
subclasses, respectively, while maintaining the zero errors for the other outlier subclasses and
an error of 2Åë g,m for the normal class. The errors on Ý è are increased to 4¢ëw2-m and V¢ë�:m for
the subclasses t � and t � and to 2Åë k:m for the normal class. In both cases, such a performance
is achieved based on dissimilarities to all V&2 f training examples. When 2� f objects are used,
then the performance deteriorates, becoming worse than the one reached by the LP classifiers
defined on less than 4BA support objects.

On the other hand, since the boundary made by the 2 -NNDD is very wide around the data
(see e.g. Fig. 8.2), a larger threshold (i.e. A±ë A�@ ) on the dissimilarities should be used.

(3) The best LP performance is reached for the LPDD-II with ��änA±ë A{2 trained on a sigmoidal-I
transformation of Ý �-� �

; see Table 8.2. The errors on the t � and t � outlier subclasses are

5 This statement is only approximately true. If �'¦�¢:ò ¢:¥ for the LPDD, then ¥³² is the maximum error on the target
class. This is, however not guaranteed for the LPDD-II. In case of other OCCs, a threshold § thr is set up to e.g. ¢:ò ¢:¥ .
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Table 8.1: The errors of the first and second kind (in m ) of the OCCs trained on the
ý ~�ÿ � distance representationÝL~�ÿ �êÞN� áâà�ã and

ý þ
distance representation Ý þ ÞN� áâà�ã for the ball-bearing data. � is the target class (normal

behavior) consisting of V&2 f samples. à is a subset of 2� f ( 4BAnm ) examples from � chosen by the Û -centers
algorithm with Ûðä 2� f . à\´ is the effective set of objects on which the constructed OCCs rely. The optimalçÓ/�æ:2Åá²A±ë�¢á²A±ë @¢á²A±ë f í of a power transformation is chosen based on the performance on the validation set.

OCC � or § thr Optimal ¬ Ø   · Ø Validation errors æµ²ßé Test errors æ ²ßé¶�·  Ö ×  ( ¶�·  Ö  ( j®  ¯
LPDD on ¸�¹º û »ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢¹¢ ¬I¦>¢�ò ñ 12 0.8 1.1 1.2 0.0 1.2 19.6 19.2ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 8 0.7 1.8 0.9 0.0 3.1 27.0 29.2

ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢�¥ ¬I¦>¢�ò ñ 12 1.0 0.9 1.3 0.0 1.2 ¼	½�òg¾ ¼	¿�ò Àùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 11 0.8 1.6 1.2 0.0 2.1 24.0 24.3
LPDD on ¸�¹Á

ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢¹¢ ¬I¦>¢�ò ñ 11 0.7 2.1 1.3 0.0 3.6 27.5 27.6ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ñ 8 0.8 1.8 1.0 0.0 2.8 28.3 29.5
ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢�¥ ¬I¦>¢�ò ç 17 1.5 2.1 2.2 0.0 3.5 29.5 30.1ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 8 1.9 2.6 1.3 0.0 4.3 29.3 29.7

LPDD-II on ¸�¹º û » ×NÂP¤"Ã Ùùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢¹¢ ¬I¦>¢�ò ð 15 1.4 0.5 1.8 0.0 0.8 ¼	½�ògÄ ¼	Å�ògÄùù× ¨Ü¤"  Ù ¬I¦O¥ 1 0.0 53.2 0.0 1.5 91.4 96.0 97.6
ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢�¥ ¬I¦O¥ 11 1.6 0.7 1.5 0.0 1.1 23.6 21.4ùù× ¨Ü¤"  Ù ¬I¦O¥ 1 1.1 48.1 1.1 0.4 83.4 93.2 94.4

LPDD-II on ¸�¹Á
ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢¹¢ ¬I¦>¢�ò ð 15 1.5 0.6 1.8 0.0 1.0 18.9 17.2ùù× ¨Ü¤"  Ù ¬I¦O¥ 1 0.0 57.1 0.0 4.1 97.1 99.1 98.9
ùù× ¨Ü¤I¨ Ù �E¦>¢�ò ¢�¥ ¬I¦>¢�ò ð 13 1.5 0.6 1.9 0.0 1.0 18.6 17.2ùù× ¨Ü¤"  Ù ¬I¦O¥ 1 1.1 53.9 1.3 1.7 92.2 96.8 97.6

GMDD on ¸ ¹ º û »ùù× ¨Ü¤I¨ Ù § thr ¦>¢�ò ¢¹¢ ¬I¦>¢�ò ç 913 0.1 50.2 0.0 2.7 85.0 95.7 96.3ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 183 0.1 50.2 0.0 2.7 85.0 95.7 96.3
ùù× ¨Ü¤I¨ Ù § thr ¦>¢�ò ¢�¥ ¬I¦>¢�ò ç 913 0.7 16.1 1.0 0.0 27.2 62.6 64.3ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 183 0.7 16.1 1.0 0.0 27.2 62.6 64.3

GMDD on ¸�¹Á
ùù× ¨Ü¤I¨ Ù § thr ¦>¢�ò ¢¹¢ ¬I¦>¢�ò ç 913 0.1 56.5 0.0 6.4 93.3 98.3 98.5ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 183 0.1 56.5 0.0 6.4 93.3 98.3 98.5
ùù× ¨Ü¤I¨ Ù § thr ¦>¢�ò ¢�¥ ¬I¦>¢�ò ç 913 0.7 28.2 0.8 0.1 48.6 75.5 79.2ùù× ¨Ü¤"  Ù ¬I¦>¢�ò ç 183 0.7 28.2 0.8 0.1 48.6 75.5 79.2

2�2Åëvb9m and V¢ë f m , respectively. The error on the normal class is 2Åë @:m . Such results are obtained
by using 2¹b support objects only. The best LPDD (keeping target error small), based on 2<g
support objects yields an error of 2Åë f m for the target class and errors of 2!@¢ë�:m and 2 f ë k:m for
the above mentioned outlier subclasses. Such performances are only somewhat worse than
the results for the best 2 -NNDD, while they are based on dissimilarities to less than 4:m of all
training objects.

(4) Since our experiments are done in the same way as in [53], our results can be compared. In
[53], a sparse linear programming formulation has been proposed (from which our the LPDD-
II method is derived) for Gaussian kernels. The results on the test set reported there (and also
recreated by us [306]) are 2Åë f m for NB, Anm for t è , g:k¢ëvb9m for t é , b�2Åëvb9m for t � and b»gµë @:m for
t � , which are very bad in comparison to our LPDD results on a sigmoidal-I transformation
of Ý �-� �

of Ýyè . We think that this is mainly caused be the use of the Euclidean distance (the
Gaussian kernel is based on it). This is supported by the facts that our LPDDs perform also
badly on Ý é and when a radial basis function is defined on the city block distance (

� è ), better
results are obtained for the method in [53]; see [306].
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Table 8.2: The errors of the first and second kind (in m ) of the OCCs trained on the
ý ~�ÿ � distance representationÝL~�ÿ �³ÞN�ðáâà�ã for the ball-bearing data. � is the target class (normal behavior) consisting of V&2 f samples. à

is a subset of � (reduced set) consisting of 2� f ( 4BAnm ) examples from � chosen by the Û -centers algorithm
with Û äj2� f . àÆ´ is the effective set of objects on which the constructed OCCs rely. The optimal parameter
C of the sigmoidal transformations or the optimal Û for the Û -CDD and Û -NNDD are selected based on the
performance on the validation set.

OCC � or § thr
Optimal© or �

Ø   · Ø Validation errors æµ²èé Test errors æ ²ßé
built on

¶�·  Ö ×  ( ¶�·  Ö  ( �®  ¯
LPDD on a sigmoidal-I transformation of ¸ º û »

ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢¹¢ © ¦ î�ò ð»÷ 17 0.9 0.6 1.3 0.0 0.9 18.2 17.0ùù×y¨'¤"  Ù © ¦Mð:ò ð»ì 8 0.7 0.7 1.2 0.0 1.0 16.1 14.4
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢�¥ © ¦M÷:ò ¢ Ù 12 0.9 0.7 1.5 0.0 1.1 19.5 17.6ùù×y¨'¤"  Ù © ¦O¥�¢�ò ð¹ì 10 0.8 0.6 1.2 0.0 1.2 19.5 16.9

LPDD on a sigmoidal-II transformation of ¸ º û »
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢¹¢ © ¦O¥»¥¹ò Ù î 16 0.8 0.8 1.2 0.0 0.9 19.0 17.6ùù×y¨'¤"  Ù © ¦O¥ Ù ò ð¹ì 11 0.5 0.6 1.3 0.0 1.0 17.6 16.3
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢�¥ © ¦O¥ Ù ò ï»¢ 13 0.8 0.9 1.2 0.0 1.2 20.2 18.9ùù×y¨'¤"  Ù © ¦O¥�¢�ò ¢¹¢ 14 0.9 0.8 1.3 0.0 1.0 ¼:Ç{òµ¿ ¼9È�òµÅ

LPDD-II on a sigmoidal-I transformation of ¸ º û »
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢¹¢ © ¦ Ù»Ù ò Ù ì 14 1.1 0.3 1.6 0.0 0.7 17.1 14.0ùù×y¨'¤"  Ù © ¦O¥�÷�ò ï¹ï 1 0.0 53.2 0.0 1.5 91.4 96.0 97.6
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢�¥ © ¦O¥�ç�ò ñ Ù 17 1.4 0.3 1.5 0.0 0.5 ¼�¼�òg¾ ½�ò Èùù×y¨'¤"  Ù © ¦O¥�÷�ò ï¹ï 1 1.1 48.1 1.1 0.4 83.4 93.2 94.4

LPDD-II on a sigmoidal-II transformation of ¸ º û »
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢¹¢ © ¦>ç»÷�ò ï
ñ 6 0.5 1.7 0.2 0.0 2.2 27.1 26.8ùù×y¨'¤"  Ù © ¦ Ù ¢�ò ç»ñ 1 0.0 53.2 0.0 1.5 91.4 96.0 97.6
ùù×y¨'¤I¨ Ù �E¦>¢�ò ¢�¥ © ¦>ç»ð�ò ç Ù 8 1.2 1.1 1.4 0.0 2.0 23.6 23.3ùù×y¨'¤"  Ù © ¦ Ù ¢�ò ç»ñ 1 1.1 48.1 1.0 0.4 83.8 93.3 94.4

GMDD on a sigmoidal-I transformation of ¸ º û »
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢¹¢ © ¦ Ù ò Ù ñ 913 0.7 11.9 0.8 0.0 21.4 55.7 58.9ùù×y¨'¤"  Ù © ¦ Ù ò Ù ÷ 183 0.7 13.3 0.8 0.0 23.0 57.5 61.2
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢�¥ © ¦ Ù ò Ù ñ 913 1.4 4.4 1.4 0.0 7.6 40.7 42.7ùù×y¨'¤"  Ù © ¦ Ù ò Ù ÷ 183 1.4 4.5 1.4 0.0 7.8 41.5 43.3

GMDD on a sigmoidal-II transformation of ¸ º û »
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢¹¢ © ¦§ï�ò ñ�¥ 913 2.3 0.8 2.2 0.0 0.9 ¼9½�òµÈ ¼9¿�òµÅùù×y¨'¤"  Ù © ¦§ï�ò ð»ì 183 1.4 1.9 1.4 0.0 2.6 27.2 28.6
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢�¥ © ¦�ñ�ò ¢Bî 913 1.5 2.0 1.8 0.0 3.2 28.8 29.7ùù×y¨'¤"  Ù © ¦§ï�ò ñ
î 183 2.4 0.8 2.2 0.0 0.9 19.4 18.7

� -CDD on ¸ º û »
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢¹¢ �^¦>ç¹ð 38 0.4 5.1 0.5 0.0 9.5 41.9 41.8ùù×y¨'¤"  Ù �^¦Mì 6 0.1 4.6 0.2 0.0 8.8 39.7 39.3
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢�¥ �^¦KïBî 47 1.3 0.7 1.5 0.0 1.5 Ä�Ä{òµ½ Ä�Ä{òÉ¼ùù×y¨'¤"  Ù �^¦Kï Ù 42 1.1 1.7 1.4 0.0 3.3 26.8 27.9

� -NNDD on ¸ º û »
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢¹¢ �^¦Mì 913 0.0 42.3 0.0 0.9 71.4 90.8 91.7ùù×y¨'¤"  Ù �^¦R¥ 183 0.0 42.6 0.0 0.7 72.9 90.5 91.9
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢�¥ �^¦R¥ 913 0.2 2.3 0.1 0.0 3.4 29.8 31.5ùù×y¨'¤"  Ù �^¦ Ù 183 0.4 6.7 0.8 0.0 11.3 46.1 46.7
ùù×y¨'¤I¨ Ù § thr ¦>¢�ò ¢»ñ �^¦R¥ 913 1.2 0.3 1.4 0.0 0.0 ½�ò ½ ¿�ò Èùù×y¨'¤"  Ù �^¦R¥ 183 2.8 0.5 2.6 0.0 0.5 15.0 13.9
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Table 8.3: The errors of the first and second kind (in m ) of the OCCs trained on the
ý²þ

distance representationÝ þ ÞN� áâà�ã for the ball-bearing data. � is the target class (normal behavior) consisting of V&2 f samples. à
is a subset of � (reduced set) consisting of 2� f ( 4BAnm ) examples from � chosen by the Û -centers algorithm
with Û¤äj2� f . à\´ is the effective set of objects on which the constructed OCCs rely. The optimal parameter
C of the sigmoidal transformations or the optimal Û for the Û -CDD and Û -NNDD are selected based on the
performance on the validation set.

OCC � or § thr
Optimal© or �

Ø   · Ø Validation errors æµ²ßé Test errors æµ²èé
built on

¶�·  Ö ×  ( ¶�·  Ö  ( j®  ¯
LPDD on a sigmoidal-I transformation of ¸ Á

ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢»¢ © ¦�ñ�ò ñ!ç 13 1.1 1.1 1.3 0.0 1.6 20.9 20.0ùÊ× ¨'¤«  Ù © ¦>ì�ò Ù ð 9 0.7 0.9 1.1 0.0 1.5 21.0 20.5
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢:¥ © ¦ÎîBò ç
î 10 1.1 1.2 1.5 0.0 2.5 22.5 22.5ùÊ× ¨'¤«  Ù © ¦O¥¹ò ñ»î 20 2.0 0.5 2.1 0.0 0.7 ¼:Ç�ò À ¼9È�òµÄ

LPDD on a sigmoidal-II transformation of ¸ Á
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢»¢ © ¦>ì�ò Ù ï 12 0.9 1.3 1.0 0.0 1.8 23.3 22.2ùÊ× ¨'¤«  Ù © ¦>ì�ò ñ»î 10 0.8 1.1 1.0 0.0 1.6 21.3 20.2
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢:¥ © ¦>ì�ò ¢¹÷ 11 1.2 1.2 1.5 0.0 1.7 21.8 21.3ùÊ× ¨'¤«  Ù © ¦>ì�ò ð¹ì 7 1.1 1.8 1.3 0.0 2.3 26.7 27.2

LPDD-II on a sigmoidal-I transformation of ¸ Á
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢»¢ © ¦O¥uç:ò ì:¥ 14 1.2 0.6 1.8 0.0 0.9 18.6 17.3ùÊ× ¨'¤«  Ù © ¦§÷�ò îB¥ 1 0.0 57.1 0.0 4.1 97.1 99.1 98.9
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢:¥ © ¦O¥u¢:ò ç
ñ 15 1.6 0.2 1.6 0.0 0.6 ¼:Ç�òµÄ ¼9È�òµÇùÊ× ¨'¤«  Ù © ¦§÷�ò îB¥ 1 1.1 53.9 1.3 1.7 92.2 96.8 97.6

LPDD-II on a sigmoidal-II transformation of ¸ Á
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢»¢ © ¦O¥u¢:ò ¢»÷ 8 0.8 1.5 1.0 0.0 2.4 28.7 27.5ùÊ× ¨'¤«  Ù © ¦O¥u¢:ò Ù ð 1 0.0 57.1 0.0 4.1 97.1 99.1 98.9
ùÊ× ¨'¤"¨ Ù �E¦>¢:ò ¢:¥ © ¦§÷�ò ¢
î 6 0.5 1.8 1.0 0.0 3.2 21.3 18.5ùÊ× ¨'¤«  Ù © ¦Mñ�ò îB¥ 1 1.1 53.8 1.4 1.7 91.9 96.7 97.2

GMDD on a sigmoidal-I transformation of ¸ Á
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢»¢ © ¦O¥¹ò�¥uç 913 0.7 20.4 0.9 0.0 36.3 67.5 71.6ùÊ× ¨'¤«  Ù © ¦O¥¹ò�¥5ï 183 0.7 21.0 0.9 0.0 37.1 68.3 72.5
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢:¥ © ¦O¥¹ò�¥uç 913 1.1 12.9 1.3 0.0 22.2 56.2 58.7ùÊ× ¨'¤«  Ù © ¦O¥¹ò�¥5ï 183 1.1 13.1 1.2 0.0 23.0 56.7 59.4

GMDD on a sigmoidal-II transformation of ¸ Á
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢»¢ © ¦ Ù ò�¥uç 913 2.8 1.3 2.8 0.0 1.5 23.0 22.7ùÊ× ¨'¤«  Ù © ¦ Ù ò�¥5ï 183 2.8 1.4 2.6 0.0 1.8 23.5 23.7
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢:¥ © ¦ Ù ò�¥uç 913 3.2 1.3 3.3 0.0 1.2 Ä�Ä�òC¼ Ä4¼�ò ÅùÊ× ¨'¤«  Ù © ¦ Ù ò�¥5ï 183 2.8 1.3 3.0 0.0 1.5 23.0 22.8

� -CDD on ¸ Á
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢»¢ �^¦Kï Ù 42 0.8 6.7 0.4 0.0 11.2 48.0 49.2ùÊ× ¨'¤«  Ù �^¦Kï
ñ 45 0.1 16.5 0.2 0.0 28.3 61.8 65.2
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢:¥ �^¦KïBî 47 1.3 2.8 1.1 0.0 4.8 È�Ä�ò Å È,À*ò ÅùÊ× ¨'¤«  Ù �^¦Kï Ù 42 0.7 4.2 1.6 0.0 7.5 38.2 39.9

� -NNDD on ¸ Á
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢»¢ �^¦q¥ 913 0.0 47.8 0.0 1.3 81.2 94.8 94.7ùÊ× ¨'¤«  Ù �^¦ Ù 183 0.0 48.3 0.0 1.6 81.8 94.9 95.4
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢:¥ �^¦ Ù 913 0.7 4.6 0.5 0.0 6.6 39.4 42.4ùÊ× ¨'¤«  Ù �^¦q¥ 183 0.3 11.0 0.3 0.0 19.7 54.4 56.5
ùÊ× ¨'¤"¨ Ù § thr ¦>¢:ò ¢
ñ �^¦q¥ 913 1.9 0.4 1.6 0.0 0.0 ¼:Ä�òC¼ ½�ò ¿ùÊ× ¨'¤«  Ù �^¦q¥ 183 2.6 0.9 2.7 0.0 1.5 20.9 20.1
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Fig. 8.14: 2D linear approximate embeddings of the dissimilarity representations (left) or their sigmoidal-
I transformations (right). The embedding spaces are defined on the training target objects ÝßÞ�à~áâà�ã . The
outliers from the validation sets are then projected to such spaces. Note the scale differences.

(5) The LPDD may benefit from a representation set à smaller than the training set � . This can
especially be observed for sigmoidal transformations of Ý ��� �

, upper rows in Table 8.2, where
the test errors about the same or smaller than in case of a complete dissimilarity representa-
tions. On the contrary, the LPDD-II determines only one support object and its performance
deteriorates to about VBAnm error on the outlier class. A smaller à seems to be disadvantageous
for other OCCs, as well.

(6) The GMDD and Û -CDD do not perform well.

To better explain differences in the OCCs, we will discuss the data characteristics. As explained
in chapter 6, to understand the data, one may visualize their dissimilarity relations. Here, we sim-
ply apply the pseudo-Euclidean embedding to each of the dissimilarity representations Ý �-� � ÞN� áM��ã ,ÝÉè³ÞN� áM��ã and Ýùé¢ÞN� áM��ã ( � is the training target class) as well as their best (in terms of the per-
formance) sigmoidal-I transformations. The mappings are defined on the NB class and then the
remaining outliers from the validation set are added after that. The projections to 2D are shown
in Fig. 8.14. Remember that these linear projections preserve the variance as much as possible as
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revealed in two dimensions. The preserved variances are equal to 2!V¢ë f m , 4�k¢ëw2-m and b
A±ë k:m for theÝ ��� � ÞN� áM��ã , ÝÉè³ÞN� áM��ã and Ýùé¶ÞN� áM��ã , respectively. For the sigmoidal transformations they are some-
what smaller. Although the preserved variance is only large in case of the Euclidean representation
( b
A±ë k:m ), the first two eigenvalues of the embedding (which correspond to the variances) are sig-
nificantly the larges for all the cases. See e.g. Fig. 8.13, where the eigenvalues for Ý ��� � ÞN�ðáM��ã are
shown. Note that in case of ÝÊé¢ÞN� áM��ã , the projection is equivalent to the PCA projection applied to
data instances represented by their pre-processed

f 4 attributes in ` � é ; see section 3.3.1.

Although the 2D projections of the dissimilarity data only roughly approximate the actual relations,
still, they allow to build some intuition. Analyzing the left plots in Fig. 8.14, one can immediately
see that for the

ý���� �
and

ý è distances, the target data (NB class) is a rather compact cloud. The outliers
are widely spread in-between and around the target class. So, the target class seems to lie among
the outliers (and the overlap for the target class is very high). Judging visually, the ratio of the area
of the target cloud to the outlier cloud is smaller for the Ý �-� �

than for ÝÉè . This simply suggests
that the

ýN��� �
distance offers better discrimination between the targets and outliers. On the contrary,

in case of the Euclidean representation, the target cloud is very large in comparison to the outlier
cloud. Hence, many outliers will be incorrectly assigned.

Analyzing the right plots in Fig. 8.14, one can observe that they change the sizes of the target and
outlier clouds and they also shift their positions with respect to each other when comparing the left
plots. As a result, some parts are non-overlapping. Hence, possibly better OCCs can be built. Also
bad performances of the GMDD and the Û -CDD can now be somewhat understood. The NB class
seems to be a relatively compact cloud. Since the Û -CDD builds a bubble-like description around
the Û centers (see Fig. 8.2), it will not be beneficial for a single bulk. Since the GMDD still builds
a relatively wide boundary around the data points and hence its flexibility is limited (due to the fact
that it relies on the mean of the target class in a pseudo-Euclidean space; see Fig. 8.3), it will not
be advantageous in case of a high overlap between the targets and outliers. So, the only flexible
OCCs which allow for building tights boundaries are of use. Hence, the good performance of the
LP classifiers and the Û -NNDD.

8.3.2 Experiment II: Diseased mucosa in the oral cavity

In this experiment, we will analyze the autofluorescence spectra acquired from healthy and diseased
mucosa in the oral cavity; see section A for the data description. The measurements were taken at 2�2
different anatomical locations using six different excitation wavelengths. We will focus on a single
excitation wavelength of

f k�@ nm. After preprocessing [406], each spectrum consists of 2!V�V bins. In
total, �@�k and 2 f 4 spectra representing healthy and diseased tissue, respectively, were obtained for
each excitation wavelength. The spectra are normalized so that they yield a unit area.

In our study, all the spectra are @BA times randomly split into the training set � and the test set � + ; in
the ratio of kBAl.&g�A , respectively. The training set consist of both target and outlier examples, while
the representation set à J � contains only targets. Hence, N àON�ä0@&2<g , N �ÎN�äÞ@�V
g and N �^+ ; N�ä f V
g (

f�f b�YB@�b
healthy/diseased patients). OCCs relying on the target information only are trained on Ý Þ�à~áâà�ã . If
the outlier information can be incorporated, then the OCCs are trained in ÝßÞN� áâà�ã . In a testing stage,ÝßÞN��+ ; áâà�ã is used in both cases.

Eight dissimilarity representations have been considered for the normalized spectra. The first three
dissimilarity representations (DRs) are based on the

ý è distances computed between the Gaussian-
smoothed spectra ( cÉä f

samples) themselves ( Ý�è ) and their first and the second order Gaussian-
smoothed ( cjä f

samples) derivatives ( Ý derè and Ý 2derè , respectively). The zero-crossings of the
derivatives indicate the peaks and valleys of the spectra, so they are informative. The differences
between the spectra focus on the overlap, the differences in first derivatives emphasize the loca-
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ù 2derzuû ü ù\Ê¬Ë4Ì

healthy
diseased healthy

diseased

Fig. 8.15: The 2D approximate embeddings of two dissimilarity representations Ý 2der~�ÿ � (left) and ÝÎÍ:ÏtÐ
(right) between the autofluoresence spectra. The embedding spaces are defined on the (training) target objectsÝ Þ�à~áâà�ã . The outliers �u}Òà are then projected to such spaces.

tions of peaks and valleys, while the differences in second derivatives indicate the tempo of changes
in spectra. Also

ý ��� �
non-metric distances have been used, again between the spectra and their

Gaussian-smoothed derivatives, yielding the representations Ý ��� � áâÝ der�-� � and Ý 2der�-� � , correspondingly.
Since spectra posses a natural connectivity given by the order of the sampled wavelengths, the dis-
similarity measures which make use of that fact might be beneficial. Derivative-based dissimilarity
measures take such information into account. Next representation ÝKÑÓÒ O is based on the spheri-
cal geodesic distance

� ÑÓÒ O ÞX��áTÔ�ã ä 2��	ÕGÖ³Ö0c:×�ÞX� Û Ô ãGY�5 é (here 5Çä 2 ), which is actually the spectral
angular mapper distance [239]; see also section 3.3.8. The remaining representation relies on a
Bhattacharyya distance, a divergence measure between two probability distributions; see section
5.2. This measure is applicable, since the normalized spectra, say, C�� can be considered as unidi-
mensional histogram-like distributions. They are constant on disjoint intervals � èwá ë ë ë�á � � , such that
C¹�¹ÞXW�ãêä � �

) 8 è � � ) W�ÞXWÓ/ � )Åã , where � � ) are nonnegative and ¦ Þ � )êã is the length of � ) . The Bhattacharyya
distance [118] is then:

��Ø P Þ�C¹�âá5C��Åã�ä $Ra c9eðÞ � �
) 8 è Þ�� � ) � � ) ã è _ é ã,¦ Þ � )Åã . So, all the dissimilarity repre-

sentations emphasize different aspects of the spectra.

The AUC performances for the LPDD, the LPDD-II, the GMDD, the Û -CDD and the Û -NNDD for
six DRs are presented in Table 8.4. Since in the one-class classification, there is always a trade-off
between the false positive and false negative ratios and we just want to compare the methods, the
AUC measures seem to be appropriate. Otherwise, we need to fix a point of comparison, which is
subjective. The AUC performance gives us an overall measure; see also section 8.1.

The LPDD, the LPDD-II and the GMDD rely also on power and sigmoidal transformations of the
DRs while the Û -NNDD and Û -CDD are built on the original dissimilarities directly. We do not
present the results of the LPDD-II for sigmoidal-II transformations, since the corresponding linear
programming problems did not terminated successfully (they were infeasible).

Since the
ý ��� �

distance representations are somewhat more discriminative than the
ý è distance rep-

resentations, for the derivative-based measures, the results for the later are omitted. The following
conclusions can be made by analyzing Table 8.4:

1. Concerning various dissimilarity measures, the most discriminative is the
ý ��� �

distance be-
tween the smooth second order derivatives of the spectra ( Ý 2der�-� � ) and the less discriminative
one is the geodesic spherical distance ( Ý�Ù ; B ). The probabilistic Bhattacharyya distance is also
good.

2. The LPDD yields better results than the LPDD-II.

3. The use of outlier information is beneficial for the LP classifiers. Both the LPDD and the
LPDD-II perform significantly better than when trained on the target examples only. Yet,
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Table 8.4: AUC measure ( �w2#A�A ) of the OCCs trained on various dissimilarity representations (and their trans-
formations) for the oral cavity problem. The OCCs are trained either on Ý Þ�à~áâà�ã or on ÝßÞN� áâà�ã (in case
of the LP classifiers), where � is a training set of both target and outlier examples and à J � consists of
the targets only; N àON ä @&2<g and N �ÎN äj@�V
g . In parenthesis, either the average number of support objects for
the LP classifiers is shown or N àÚ´BN , the effective number of objects from à determining the boundary of the
OCCs. (The GMDD is based on 2#A objects determined by the mean-resemblance approach as explained in
section 8.2.2.) The results are averaged over @BA runs. The standard deviations of the AUC �w2#A�A means are less
than 2Åë g , (for the LPDD trained on ÝßÞN�ðáâà�ã ), while in the majority of cases, they are less than A±ë k . The best
results are printed in bold for each classifier and each dissimilarity representation.

Transformation ¸ Á ¸ º û » ¸ derº û » ¸ 2derº û » ¸YÛ�Ü�Ý ¸�Þuß
LPDD, �E¦�Ð�ò Ð�Ç , trained on ¸�×NÃ�¤«Ã Ù

Original 72.3 × Ù ò ï Ù 73.5 ×£ç�ò Ù Ù 72.5 × Ù ò ÷ Ù 79.4 ×£ç:ò Ù Ù 68.1 × Ù ò ð Ù 74.4 × Ù òv¥ Ù
Power; ¬I¦>¢�ò ñ 72.7 ×Xî�ò ç Ù 73.1 ×XîBò î Ù 72.6 ×9ç�ò Ù Ù 79.7 ×£ç:ò ï Ù 68.5 ×9ñBò ¢ Ù 74.7 × Ù ò ì Ù
Sigm-I; © ¦ È	àTá # 73.7 ×9ì�ò ð Ù 73.8 ×Xî�ò ÷ Ù 73.0 ×wï:ò�¥ Ù 79.9 ×9ç�ò ì Ù 72.5 ×£ì�ò Ù Ù ¾,½�òµÈ ×9ñ�ò ¢ Ù
Sigm-II; © ¦ È àTá # ¾�Ç{òµ½ ×XîBò ì Ù ¾,Å�ò À ×£ð�ò ¢ Ù ¾nÀ�ò À ×XîBò ¢ Ù ¿�Ð�ò À ×wï:ò ð Ù ¾nÀ�ògÇ ×Xî
ò ñ Ù 77.8 ×£ì:ò ÷ Ù

LPDD, �^¦�Ð�ò Ð�Ç , trained on ¸É×yÂ ¤"Ã Ù ; outliers used
Original 79.9 ×9ñ�ò ñ Ù 80.1 ×9ñ�ò ð Ù 82.8 ×9ì�ò�¥ Ù 84.9 ×9ñ�ò ¢ Ù 80.0 ×9ì�ò ¢ Ù 79.5 × Ù ò î Ù
Power; ¬I¦>¢�ò ñ 82.5 × Ù ¢�ò ÷ Ù 82.6 × Ù ¥!ò î Ù 84.5 × ¥ Ù ò ì Ù 86.1 ×£÷:ò ñ Ù 80.1 × Ù ñBò ç Ù 83.4 ×9ñ�òv¥ Ù
Sigm-I; © ¦ È	àTá # ¿�Ä{òµÅ�×µ¥�ñBò ð Ù ¿�Ä{òg¾
×µ¥uì�ò ñ Ù 84.7 × ¥»¥¹ò Ù Ù ¿,Å�ò À ×9ð�ò î Ù ¿�Ä�ò Ð�× ¥<ñBò ÷ Ù ¿nÀ*òµÇ ×Xî�ò î Ù
Sigm-II; © ¦ È	àTá # 82.2 × ¥�ç�ò ç Ù 82.3 × ¥�ñ�ò ¢ Ù ¿�Å�ò Ð
×µ¥�ñ�ò ð Ù 86.4 ×µ¥u¢�ò ð Ù 81.7 × ¥»¥!ò ì Ù 82.9 ×µ¥ Ù ò ¢ Ù

LPDD-II, � ¦>Ð�ò Ð�Ç , trained on ¸É×yÃ�¤«Ã Ù
Original Å,Å�ò À ×9ç�ò ñ Ù Ç,Ç�òµÇ ×9ç�ò Ù Ù 63.4 ×9ñ�ò ÷ Ù ¾,Å�ògÇ ×£ì:ò ð Ù 58.8 ×wï�ò ÷ Ù ¾nÀ�ògÄ ×9ç�ò ð Ù
Power; ¬I¦>¢�ò ñ 53.0 × ¥»¥!ò ¢ Ù 48.0 ×µ¥uç�ò�¥ Ù Å�¿�òµÅ
×µ¥ Ù ò�¥ Ù 76.2 × ¥�ç�ò Ù Ù Å4¼�ò ½�× ¥ Ù ò ç Ù 70.0 ×wï:ò ð Ù
Sigm-I; © ¦ È àTá # 52.0 × ¥<ñBò ÷ Ù 51.6 × ¥�ñ�ò ÷ Ù 59.1 ×£÷�ò ï Ù 56.5 × ¥�¢�ò ¢ Ù 55.5 ×µ¥uç�ò Ù Ù 51.4 × ¥�¢�ò�¥ Ù

LPDD-II, �^¦�Ð�ò Ð�Ç , trained on ¸�×NÂP¤"Ã Ù ; outliers used
Original 76.0 ×£ç:ò ï Ù 66.0 ×£ç�ò ì Ù 78.8 ×9ì�ò ¢ Ù ¿4¼�òµ¾ ×Xñ�ò Ù Ù 74.6 ×wï�ò ¢ Ù 81.2 ×9ç�ò Ù Ù
Power; ¬I¦>¢�ò ñ ¾n¿�òµÈ�×µ¥¹¥!ò�¥ Ù ¾n¿�ògÄ
×µ¥5ï�ò ÷ Ù ¾n½�òµ¿ ×9ð�ò ñ Ù 81.6 ×£ð:ò Ù Ù 76.5 ×Xî
ò ð Ù ¿â¼�òµÅ ×£ï:ò�¥ Ù
Sigm-I; © ¦ È àTá # 76.8 × ¥uï�ò ¢ Ù 76.8 × ¥�ñ�ò Ù Ù 78.1 ×£ð�ò ì Ù 78.1 ×9ð�ò î Ù 75.5 ×µ¥¹¥!ò ÷ Ù 77.3 ×9÷�ò ÷ Ù

GMDD, ã thr ¦�Ð�ò Ð�Ç , trained on ¸É×yÃO¤"Ã Ù
Original 77.0 × ¥u¢�ò ¢ Ù 77.0 ×µ¥u¢�ò ¢ Ù 78.8 × ¥�¢�ò ¢ Ù 79.5 ×µ¥u¢:ò ¢ Ù 76.7 × ¥�¢�ò ¢ Ù 77.2 × ¥u¢�ò ¢ Ù
Power; ¬I¦>¢�ò ñ 78.0 × ¥�¢�ò ¢ Ù 78.2 ×µ¥u¢�ò ¢ Ù ¾,½�ògÇµ×µ¥u¢�ò ¢ Ù 79.7 × ¥�¢�ò ¢ Ù 77.6 ×µ¥u¢�ò ¢ Ù 78.9 ×µ¥u¢�ò ¢ Ù
Sigm-I; © ¦ È àTá # ¾,¿�òÉ¼¢×µ¥u¢�ò ¢ Ù 78.4 × ¥�¢�ò ¢ Ù 79.4 ×µ¥u¢:ò ¢ Ù ¾,½�òµ¿
×µ¥u¢:ò ¢ Ù ¾�¾{òµ¿
×µ¥u¢�ò ¢ Ù ¾,½�ògÄµ×µ¥u¢�ò ¢ Ù
Sigm-II; © ¦ È	àTá # 77.9 × ¥�¢�ò ¢ Ù ¾n¿�òµ¾�× ¥�¢�ò ¢ Ù 78.7 ×µ¥u¢:ò ¢ Ù 79.2 ×µ¥u¢�ò ¢ Ù ¾�¾{òµ¿
×µ¥u¢�ò ¢ Ù 79.0 × ¥�¢�ò ¢ Ù

� -CDD, ã thr ¦�Ð�ò Ð�Ç , trained on ¸É×yÃO¤"Ã Ù
�^¦O¥ 61.6 ×µ¥¹ò ¢ Ù 58.7 × ¥»ò ¢ Ù 48.0 × ¥¹ò ¢ Ù 53.7 ×µ¥¹ò ¢ Ù 50.9 × ¥!ò ¢ Ù 72.5 ×µ¥¹ò ¢ Ù�^¦�ñ 65.5 ×Xñ�ò ¢ Ù 66.0 ×9ñ�ò ¢ Ù 75.2 ×9ñ�ò ¢ Ù 76.7 ×Xñ�ò ¢ Ù 65.7 ×9ñBò ¢ Ù 73.2 ×Xñ�ò ¢ Ù�^¦O¥¹¥ 74.4 × ¥»¥!ò ¢ Ù 74.6 × ¥¹¥¹ò ¢ Ù 76.1 ×µ¥¹¥¹ò ¢ Ù 78.7 × ¥»¥¹ò ¢ Ù 73.6 ×µ¥¹¥!ò ¢ Ù 76.9 × ¥»¥!ò ¢ Ù�^¦ Ù ¥ 76.2 × Ù ¥!ò ¢ Ù 76.8 × Ù ¥¹ò ¢ Ù 78.7 × Ù ¥¹ò ¢ Ù 81.1 × Ù ¥¹ò ¢ Ù 76.3 × Ù ¥!ò ¢ Ù 81.0 × Ù ò ¢ Ù�^¦Kï:¥ 77.5 ×wï�¥!ò ¢ Ù 78.1 ×wï:¥¹ò ¢ Ù 82.0 ×£ï:¥¹ò ¢ Ù 83.2 ×wï�¥¹ò ¢ Ù ¾n¿�ò Ð�×wï�¥!ò ¢ Ù 82.9 ×£ï:¥!ò ¢ Ù�^¦>ì�¥ ¾,¿�òg¾
×9ì�¥!ò ¢ Ù ¾,¿�òg¾
×9ì�¥!ò ¢ Ù ¿�È�ò Ð
×9ì�¥¹ò ¢ Ù ¿,À�òµÈ
×9ì�¥¹ò ¢ Ù 77.9 ×£ì:¥!ò ¢ Ù ¿,È�òC¼¢×£ì:¥!ò ¢ Ù

� -NNDD, ã thr ¦�Ð�ò Ð�Ç , trained on ¸É×yÃO¤"Ã Ù
�^¦O¥ 73.4 × ¥�¢�ò ¢ Ù 74.5 × ¥u¢�ò ¢ Ù 76.4 ×µ¥u¢�ò ¢ Ù 78.6 × ¥�¢�ò ¢ Ù 73.2 ×µ¥u¢�ò ¢ Ù 77.0 × ¥�¢�ò ¢ Ù�^¦>ç 77.9 × ¥�¢�ò ¢ Ù 78.6 × ¥u¢�ò ¢ Ù 79.4 ×µ¥u¢�ò ¢ Ù 79.4 × ¥�¢�ò ¢ Ù 79.0 ×µ¥u¢�ò ¢ Ù 80.1 × ¥�¢�ò ¢ Ù�^¦�ñ 78.3 × ¥�¢�ò ¢ Ù 79.4 × ¥u¢�ò ¢ Ù 79.9 ×µ¥u¢�ò ¢ Ù 79.7 × ¥�¢�ò ¢ Ù 78.5 ×µ¥u¢�ò ¢ Ù 79.7 × ¥�¢�ò ¢ Ù
�^¦O¥ 76.6 × Ù ì�ò ¢ Ù 77.6 × Ù ì�ò ¢ Ù 79.7 × Ù ì�ò ¢ Ù ¿â¼�òµ½
× Ù ì�ò ¢ Ù 77.5 × Ù ì�ò ¢ Ù 81.7 × Ù ì�ò ¢ Ù�^¦>ç ¾,½�òg¾
× Ù ì�ò ¢ Ù ¿�Ð�òµÈ�× Ù ì�ò ¢ Ù ¿�Ð�ò À�× Ù ì�ò ¢ Ù ¿â¼�òµ½
× Ù ì�ò ¢ Ù ¿�Ð�ò Ð
× Ù ì�ò ¢ Ù ¿�Ä{òµÅ
× Ù ì�ò ¢ Ù�^¦�ñ ¾,½�òg¾
× Ù ì�ò ¢ Ù 80.2 × Ù ì�ò ¢ Ù ¿�Ð�ò À�× Ù ì�ò ¢ Ù 81.4 × Ù ì:ò ¢ Ù 79.9 × Ù ì�ò ¢ Ù 82.1 × Ù ì�ò ¢ Ù� -NNDD, ã thr ¦�Ð�ò Ð�Ç , trained on ¸É×yÃO¤"Ã Ù ; Ø Ãwä Ø ¦YÇÓ¼	À
�^¦O¥ 80.0 80.4 ¿�Å�òg¾ ¿�¿�ògÄ 80.4 ¿�Ç{òg¾�^¦�ñ ¿â¼�ò Ð ¿â¼�ò À 85.7 86.2 ¿â¼�òÉ¼ 84.9�^¦O¥¹¥ 80.9 81.3 84.8 85.2 80.8 84.3�^¦ Ù ¥ 80.7 81.1 84.0 84.4 80.4 83.6�^¦Kï:¥ 80.1 80.6 83.2 83.6 80.0 82.8�^¦>ì�¥ 79.9 80.3 82.8 83.0 79.8 82.3
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Table 8.5: AUC measure (in �w2#A�A ) of the OCCs for the Gower distance representation and its transformations
describing the heart disease problem. The OCCs are trained either on ÝßÞ�à~áâà�ã or on ÝßÞN� áâà�ã (in case of
the LP classifiers), where � is a training set of both target and outlier examples and à J � consists of the
targets only. N àON ä�
g and N �LNÎäõ2� f . In parenthesis, either the average number of support objects for the LP
classifiers or the effective number of objects from à determining the boundary of the OCCs are shown. The
results are averaged over @BA runs. The standard deviations of the AUC �w2#A�A means are less than A±ë @ .

LPDD, �E¦�Ð�ò Ð�Ç , trained on¸É×yÃO¤"Ã Ù ¸�×NÂP¤"Ã Ù
Original 82.3 (49.5) 85.3 (25.3)
Power; ¬I¦>¢�ò ñ 83.9 (62.6) ¿�Ç�ò Å (44.6)
Power; ¬I¦>¢�ò ç ¿�Ç{òÉ¼ (70.4) 85.2 (69.2)
Sigm-I; © ¦K¢:ò ñ È	àTá # 83.6 (61.3) 85.5 (42.7)
Sigm-I; © ¦ È àTá # 82.6 (53.0) 85.4 (29.2)
Sigm-II; © ¦>¢�ò ñ È	àTá # 84.4 (70.4) 84.6 (68.3)
Sigm-II; © ¦ È àTá # 81.7 (37.5) 84.9 (16.9)

LPDD-II, �E¦�Ð�ò Ð�Ç , trained on¸É×yÃO¤"Ã Ù ¸�×NÂP¤"Ã Ù
Original 86.7 (34.4) 81.4 (53.6)
Power; ¬I¦>¢�ò ñ 87.6 (45.6) 82.4 (72.8)
Power; ¬I¦>¢�ò ç ¿�¾{òµ¿ (57.1) 83.4 (80.9)
Sigm-I; © ¦K¢:ò ñ È àTá # 87.5 (45.4) 82.2 (71.1)
Sigm-I; © ¦ È	àTá # 87.0 (37.3) 81.5 (58.5)
Sigm-II; © ¦>¢�ò ñ È àTá # 84.4 (70.4) 84.6 (68.3)
Sigm-II; © ¦ È	àTá # 81.7 (37.5) ¿nÀ*ò ½ (16.9)

GMDD, ã thr ¦>Ð�ò Ð�Ç , trained on ¸É×yÃ�¤«Ã Ù
Original 85.7 (8.0) 85.9 (13.0)
Power; ¬I¦>¢�ò ñ 85.7 (8.0) ¿�Å�òµÄ (13.0)
Power; ¬I¦>¢�ò ç 85.4 (8.0) 85.8 (13.0)
Sigm-I; © ¦K¢:ò ñ È àTá # 85.6 (8.0) 85.9 (13.0)
Sigm-I; © ¦ È àTá # ¿�Å�ò Ð (8.0) 85.8 (13.0)
Sigm-II; © ¦>¢�ò ñ È	àTá # 84.8 (8.0) 85.5 (13.0)
Sigm-II; © ¦ È àTá # 85.5 (8.0) 85.8 (13.0)

� -NNDD, ã thr ¦�Ð�òC¼ , trained on ¸É×yÃO¤"Ã Ù
�^¦O¥ 74.8 (8.0) 75.0 (13.0)�^¦>ç 80.5 (8.0) 80.1 (13.0)�^¦�ñ 82.3 (8.0) 82.2 (13.0)�^¦Îî ¿�Ä�ò ¿ (8.0) ¿�È�ògÇ (13.0)ã thr ¦>Ð�òÉ¼ � -CDD � -NNDD
�^¦O¥ ¿�Ä�òµÄ (1.0) 76.1 (84.0)�^¦�ñ 75.4 (5.0) 81.0 (84.0)�^¦>ð 74.5 (8.0) 82.3 (84.0)�^¦O¥uç 74.2 (13.0) 83.6 (84.0)�^¦ Ù ¥ 74.7 (21.0) 84.8 (84.0)�^¦>ç�¥ 74.7 (31.0) 85.6 (84.0)�^¦�ñ�¥ 75.2 (51.0) ¿,Å�ò È (84.0)

they need more support objects for this.

4. Here, we only present the GMDD based on 2#A objects determined by the mean-resemblance
(see section 8.2.2), since they are nearly the same as the results obtained by the GMDD trained
on the complete set à ( @&2<g objects). This suggests that the target class is rather compact.
Although the GMDD is not a flexible classifier, its performance is better or the same as of
the LP classifiers trained on the target class. When compared to 2�2 -CDD (hence based on a
similar number of objects), it reaches a better performance. However, when a larger Û is used,
the Û -CDD gives better results.

5. The best result for OCCs trained on the target class is obtained for the 2 -NNDD on Ý 2der�-� �
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(AUC is 9¢ë 4 ). When outlier information is used, then the LPDD behaves similarly well,
however, additionally, it allows for a significant reduction in computation. In the best case,
the LPDD selects at most g�g support objects (out of @&2<g in the set à ) for the sigmoidal-I
transformation of the Ý 2der�-� � reaching the AUC of 9¢ë V or 2 f support objects for the power
transformation of the same DR, reaching the AUC of 9¢ë g . The 2 -NNDD relies on dissimilar-
ities to all @&2<g objects.

8.3.3 Experiment III: Heart disease data

In this experiment, we will analyze the heart disease data, which provide information on ill and
healthy patients. The goal is to detect the presence of a heart disease. There are

f A f instances, where
2 f V correspond to healthy patients. Since the data consist of mixed types: continuous, dichotomous
and categorical variables, a Gower’s dissimilarity, as defined in section 5.1, can be computed.

In our study, all the data are @BA times randomly split into the training set � and the test set �E+ ; in
the ratio of kBA�.�g�A , respectively. The training set consists of both target and outlier examples, while
the representation set à J � contains only the target examples. N àON�äå
g , N �ÎN¹äa2� f and N �^+ ; N�ä\2!4BA
( @�@ healthy patients and k
g diseased patients). The OCCs relying on the target information only
are trained on Ý Þ�à~áâà�ã . If the information on outliers can be incorporated to the classifier in the
learning stage, the OCCs are trained on Ý ÞN� áâà�ã . In a testing stage, Ý ÞN�^+ ; áâà�ã is used in both cases.
The results are shown in Table 8.5. Since there are more diseased patients than the healthy ones, we
have also tried to design an OCC by assuming that the ill patients form the target class. However,
the results have become worse, so they are not presented here.

The problem is difficult, since the target class cannot be easily distinguished from the outliers,
which suggests that the measurements, based on which the Gower dissimilarity is derived, do not
have enough discriminative power. Such a conclusion can be drawn because of the following facts:ô The LP classifiers need many support objects, on average around kBAnm of the target objects.ô The LPDD-II decreases its performance when it is trained using the outlier information as

well. This suggests a high overlap of the target and outlier classes.ô The Û -NNDD improves its performance with growing Û , while Û -CDD not.ô The GMDD outperforms the Û -NNDD (which is often a very good classifier).

This all suggests that the target class can be described by one cloud ( 2 -CDD is the best), but the
outliers lie ’in-between’ the targets. It seems that in such a case, the GMDD may perform relatively
well. When defined on a reduced set à ; of eight or 2 f objects, it performs comparably to the best
LPDD-II.

8.4 Conclusions
This chapter is devoted to one-class classifications problems. Such problems are identified in many
real applications, such as health diagnostics, machine condition monitoring or industrial inspection.
Given training examples, the goal is to describe the target class such that resembling objects are
accepted as targets and outliers (non-targets) are rejected. Such a detection has to be performed
in an unknown or ill-defined context of alternative phenomena. The target class is assumed to
be well sampled and well defined. The alternative outlier set is usually ill-defined: it is badly
sampled (even not present at all) with unknown and hard to predict priors. Since the non-target
class is ill-defined, in complex problems, an effective set of features discriminating between targets
and outliers cannot be easily found. Hence, it seems appropriate to build a representation on the
raw data. The dissimilarity representation, describing objects by their dissimilarities to the target
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examples, may be effective for such problems since it naturally protects the target class against
unseen novel examples.

For such types of problems one-class classifiers (OCCs) designed as boundary descriptors might be
suitable. Here, examples of three types of OCCs built on dissimilarity representations are consid-
ered: neighborhood-based, in an embedded space and in a dissimilarity space. We proposed two
classifiers: the GMDD, a simple OCC in an embedded space defined by the distance to the mean
and the LPDD and the LPDD-II, OCCs defined as hyperplanes in a dissimilarity space. In both
cases, sparse solutions can be obtained, meaning that the OCCs are ultimately based on a relatively
small number of target objects. For the LPDD, they are detected automatically by solving the linear
programming formulation, while for the GMDD they can be forced by choosing a specified frac-
tion of objects to represent the target class. These OCCs are compared to the neighborhood-based
OCCs: the Û -CDD and Û -NNDD.

Three different problems are analyzed here: machine monitoring, lesion diagnostics and heart dis-
ease diagnostics. The following conclusions can be made. When the outliers do not heavily overlap
with the target objects, and some outliers are used for training, the LPDDs provide the best solu-
tions as a trade-off between the performance and the computational aspect (the effective number
of target objects which define the boundary). The Û -NNDD, based on the average dissimilarity to
the Û -nearest neighbors, is a good classifier and may outperform the LPDDs, yet, it requires many
more target objects for the good definition of its boundary. When there is a high overlap between
the targets and outliers, the GMDD, as a weak classifier, may become good, since it relies on global
information, i.e. the distance to the mean (in an embedded space), instead of the local information,
as e.g. the Û -NNDD does.

Concerning dissimilarity measures, the best measures in machine monitoring and lesion diagnostics
are non-metric

ý �-� �
distances between some intermediate representations. This is an interesting

point, since it supports our idea that non-metric dissimilarities can be beneficial for learning, which
is currently partly neglected to think in this direction.



9. Classification
Inanimate objects are always correct and cannot, unfortunately, be reproached with
anything. I have never observed a chair shift from one foot to another, or a bed rear
on its hind legs. And tables, even when they are tired, will not dare to bend their knees.
I suspect that objects do this from pedagogical considerations, to reprove us constantly
for our instability.

”OBJECTS”, ZBIGNIEW HERBERT

The challenge of automatic classification is to develop computer methods which learn to distinguish
among a number of classes. Each class is represented by a set of example objects. When an appro-
priate mathematical representation of objects is found, here based on dissimilarity representations,
a decision rule is constructed. Usually, standard two-class classification problems are studied first,
since multi-class problems are often solved by combining two-class discrimination functions.

To construct a dissimilarity-based classifier, in general, a training set � of cardinality Ü and a rep-
resentation set à of cardinality F will be used. à is a collection of prototypes objects from � . In
a learning process, a classifier is constructed on the Ü hõF dissimilarity representation Ý ÞN� áâà�ã ,
relating all training objects to all prototypes. The information on a set �E+ ; of h new objects is pro-
vided by their dissimilarities to the examples from à , i.e. as a hßh7F dissimilarity matrix ÝßÞN�E+ ; áâà�ã .
Similarly as in chapter 8, dissimilarity representations are interpreted in three different ways, in pre-
topological spaces, in embedded spaces and in dissimilarity spaces. All these approaches together
with particular discrimination functions are introduced and described in chapter 4.

Many interesting questions can be formulated for dissimilarity-based classification, so we can only
discuss some of the most intriguing problems. Basically, we will demonstrate that the Û -nearest
neighbor ( Û -NN) method can be outperformed by alternative classifiers built on dissimilarity repre-
sentations, especially for small representation sets. When the dissimilarity measure is discriminative
and the classes are densely sampled, then in a close neighborhood of an object (measured by the
given dissimilarity), there will be many objects of the same class. This is the reason why the Û -
NN rule is expected to perform well1 for sufficiently large sample sizes. Thereby, it becomes our
reference method.

Other essential questions refer to the selection of an informative representation set from a given
training set, the use of non-metric dissimilarity measures and their possible corrections to make
them metric and the usefulness of monotonic transformations. The results presented here come
from our experiments conducted on various data sets. They are supported by articles [108, 109] and
our earlier publications [103, 106, 290, 291, 293–296, 300, 301, 315].

9.1 Proof of principle
In this section, simple decision rules in dissimilarity spaces and in embedded spaces are considered
to provide the ’proof of principle’ that alternative dissimilarity-based classifiers are beneficial. This
section aims at explaining our way of thinking and a general set-up of experiments. It plays an
introductory role to the subsequent sections, where a more advanced study has been conducted.

1 Under the assumption of sampling from the same probability distribution, the � -NN rule in a Euclidean space (with
metric distances computed there) reaches asymptotically the error of at most twice the Bayes error.
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Our experiments will demonstrate that the tradeoff between the recognition accuracy and the com-
putational effort can be significantly improved by using a linear (or quadratic) classifier built in
dissimilarity or embedded spaces, instead of the Û -NN rule. Such a linear classifier is constructed
from a training set described by the dissimilarities to the representation set. If this set is small, it has
the advantage that only a small set of dissimilarities has to be computed for its evaluation, while it
may still profit from the accuracy offered by a large training set.

9.1.1 Nearest neighbor rule and alternative dissimilarity-based classifiers

The Û -NN rule [71], assigning an object to the class most frequently represented among its Û nearest
neighbors, is a simple and intuitive approach. Hence, it is commonly practiced in pattern recogni-
tion. It does not require any training, except for the choice of Û . Conventionally, in a feature space,
the Û -NN rule relies either on the (appropriately weighted) Euclidean or city block distance, derived
from the feature-based representations. For metric distances, it is known to be asymptotically op-
timal in the Bayes sense [87, 187]. It can learn complex boundaries and generalize well, provided
that an increasing set of training objects � is available and the volumes of Û -neighborhoods become
close to zero. However, for a given finite training set (e.g. when the data points are sparsely sampled
or have variable characteristics over the space), the classification performance of the Û -NN method
may significantly differ from its asymptotic behavior. To handle such situations, many variants of
the NN rule as well as many distance measures have been invented or adopted for the feature based
representations. They often take the local structure into account or weight the neighbor contribu-
tions appropriately; see e.g. [6, 89, 189, 251, 288, 331, 421]. So, such approaches are designed
to optimize either the parameters of the distance measure over the feature space or the number of
nearest neighbors Û .

In this dissertation we study dissimilarity representations derived either from sensor measurements
or from some other intermediate representations (e.g. string-descriptions, shapes or feature spaces).
Consequently, we cannot always refer to the accompanying feature-based representation for the
analysis of the NN rule, since such a space may not exist or might not be given. The dissimilar-
ity measure is designed for a proper comparison of objects and, when derived, it serves for the
construction of dissimilarity representations. In this sense, it is not optimized any longer.

For a test set ��+ ; , the Û -NN rule makes a decision by ranking the dissimilarities Ý ÞN�^+ ; áâà�ã , whereàm. ä¥� , and applying the voting mechanism. Although based on local Û -neighborhoods, this method
is still computationally expensive, since dissimilarities to all training examples have to be found.
Another disadvantage is that it potentially decreases its performance when the training set is small.
Also, the classification performance may be affected by the presence of noisy prototypes. Such
limitations can be overcome by classifiers constructed either in dissimilarity spaces or in embedded
spaces, which become ’more global’ by making use of all representation objects. The advantage of
such an approach is that the dissimilarity information is captured in some appropriate vector space,
where many traditional classifiers can be adopted. Moreover, such a decision rule can be optimized
by using a training set larger than the given representation set.

Many dissimilarity measures are based on sums of differences between (pre-processed) measure-
ments. If such differences have approximately the same distributions (which may be a case for the
standardized feature-based data or for the normalized image or spectra representations), their sum
is approximately normally distributed. Hence, Bayesian classifiers assuming normal distributions,
the (R)NLC or (R)NQC, (Regularized) Normal density based Linear or Quadratic Classifiers, as
described in section 4.4.1, should perform well in such dissimilarity spaces. In practice, even if
the assumption on normality is violated, such classifiers tend to work well. They may perform
much better than the Û -NN method, especially when the number of representation objects is small,
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since they are less local in their decisions. By using weighted combinations of dissimilarities, they
suppress the influence of noisy examples as well.

Since the training can be done off-line, here we are only concerned with the computational effort
needed for the evaluation of a new object. Given F examples in the representation set and the
computed F dissimilarities, the additional complexity of the RNLC is æyÞXF�ã (products and sums),
while the complexity of the RNQC is æyÞXF é ã 2. The 2 -NN rule requires æyÞXF�ã comparisons and theÛ -NN rule needs at least æyÞXF�ã and at most æyÞXFçadc9e�ÞXF�ãÏã comparisons. Thereby, the Û -NN rule might
seem to be preferable3. However, our point is that the Û -NN method requires a larger à than the
RNLC/RNQC to reach the same accuracy. If the cost of computing dissimilarities is very high
(dissimilarities are computed for data with a large amount of measurements such as images or
spectra or applied in the template matching process), the cardinality of à is crucial for judging the
computational complexity. Therefore, we claim, that the RNLC can improve the Û -NN rule with
respect to the recognition accuracy and computational effort. The same holds for the RNQC if à is
small.

The other approach to dissimilarities relies on a linear embedding4 into a pseudo-Euclidean space` � ü 
 � � , where ç � Uõä � . Hence, the objects are represented as points in this space such that the
pseudo-Euclidean distances between them reflect the original dissimilarities. Traditional discrimi-
nation functions operating in vector spaces can be adopted to make use of indefinite inner products.
The details of such a construction can be found in section 3.3.3. The projection of a test objectÝßÞ�h�áâà�ã onto ` � ü 
 � � requires æyÞXF�ã operations and the evaluation of a linear classifier needs æyÞ � ã
operations (since we have an � -dimensional space), � � F , so the total complexity is æyÞXF � ã ; see
also section 3.3.5. Consequently, this approach might be more computationally expensive than the
use of dissimilarity spaces if � is large. The projection is unsupervised, i.e. no class information
is used in the embedding (how to use it is an interesting point for a further study). The embedded
space simply spatially reflects the dissimilarity information. By using linear or quadratic classifiers
there, a better performance may be reached than by the Û -NN applied to the original dissimilarities.

In summary, the Û -NN rule operates on the dissimilarities directly, so by the use of local neighbor-
hoods, it works in a pretopological space, section 4.3. The discrimination functions in dissimilarity
spaces treat ÝßÞN�ðáâà�ã as ’input features’, hence build their decision based on (non-)linearly weighted
dissimilarities Ý Þ��¸áâà�ã . The embedded spaces allow us to represent objects as points such that the
distances are preserved. In this way (if the compactness hypothesis holds), we expect that the classes
become relatively compact clouds of points. If the assumption on the true representation holds, then,
additionally, there would be no overlap between the classes. Since an embedded space is a vector
space, vector-based classifiers can be constructed there.

In the coming sections, we will present the results of two experiments. The first one shows the be-
havior of some classifiers in the three frameworks discussed above, as applied to square dissimilarity
representations. The second experiment further explores the dissimilarity space approach.

2 We assume that the number of classes è is very small with respect to � , cardinality of   , and that a è -class problem
is solved by combining the result of è classifiers trained one-against-all. Hence é�×yè�� Ù ¦åé�× � Ù and éõ×Nè�� ( Ù ¦kéõ×y� ( Ù .

3 Since the � -NN method is often applied to metric distances, to avoid the expensive computation time, there has
also been interest in approximate and fast NN search. Many algorithms have been proposed, usually making use of the
triangle inequality. Examples can be found in [21, 179, 270, 271, 273, 313]. In our study, assuming general, possibly
non-metric dissimilarities, we focus on the exact NN methods.

4 There exist a number of nonlinear embeddings (usually with some distortion) into a Euclidean or
ú Ö -space. Some

of them were used in chapter 6 to visualize the dissimilarity data as 2D spatial configurations. Here, we focus on the
linear embedding, mainly due to the computational aspect. Nonlinear mappings often require more operations than the
linear ones. The study of the use of nonlinear mappings is left for future research.
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Zongker NIST digits Polygon data
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Fig. 9.1: Generalization error (averaged over 4�@ runs) of the decision functions in the dissimilarity and
embedded spaces and the Û -NN rule directly applied. The classifiers are trained on two dissimilarity repre-
sentations: the Zongker NIST digits based on deformable template matching distance (left) and the Hausdorff
distance between the polygon corners (right). In general, the standard deviations of the means are less than
A±ë A�A:b and in the majority of cases, less than A±ë A�A f .
9.1.2 Experiment I: learning from square dissimilarity representations

The following example illustrates the use and benefits of dissimilarity-based classifiers over the di-
rect use of the Û -NN rule. Two data sets are chosen for this purpose; see section A.2 for details.
The first data are the NIST handwritten digits [420], consisting of 4BA�A�A images of ten evenly prob-
able classes. The similarity measure based on deformable template matching, as defined in [207]
serves for building the non-metric dissimilarity representation. The second data refer to randomly
generated polygons, consisting of 4BA�A�A polygons, evenly distributed over two classes of convex
quadrilaterals and irregular heptagons. The polygons are compared by computing the Hausdorff
distance, Def. 5.3, between their corners.

In both cases, the entire data set is randomly split into the design set ê of 2!@BA�A examples and the
test set ��+ ; of @BA�A examples. Growing representation sets à (such that à ultimately becomes ê ) are
randomly chosen from the design set ê . Hence, for a growing set à , the following classifiers are
built on Ý Þ�à~áâà�ã and tested on Ý ÞN��+ ; áâà�ã ; see section 4.4.1 for the classifier descriptions:

1. The Û -NN rule is applied to Ý ÞN��+ ; áâà�ã directly.
2. Two linear classifiers in a dissimilarity space ÝßÞ�à~áâà�ã : the linear programming classifier

(LPC), formulation (4.15), with the trade-off parameter of ëåä\2 and the RNLC with a fixed
regularization parameter of p ä0A±ë A{2 . The regularization is necessary, since otherwise the esti-
mated covariance matrix becomes singular. Additionally, also the SQRC (strongly regularized
quadratic classifier) is used for the NIST digits.

3. The Fisher linear classifier (FLD) in an embedded pseudo-Euclidean space. For the NIST
digits, the dimensionality of the pseudo-Euclidean space is related to a fixed fraction of the
preserved generalized variance, section 3.3.4, hence it will grow with a growing à . For the
polygon data, the dimensionality is fixed to g:@ . These are two different approaches, since the
number of eigenvalues significantly different from zero, determined in the embedding process
(hence estimating the intrinsic dimensionality) seems to be fixed for the polygon data, while
not for the deformable template matching distance on the NIST digits.

The results are shown in Fig. 9.1. For comparison, the test results of the best Û -NN ( Û�äm2Åá f á ë ë ëÅá!2!@ )
rule are presented as well. These figures make clear that the alternative dissimilarity-based decision
functions may perform well, much better than the best Û -NN rule.
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split the entire set into the design set ê and the test set � { ´
define a vector of the cardinalities 59ì for the representation set à
for 1 ä 2 to N 5�ì%N do

randomly select à^]íê of the cardinality 5:ì ÞX1 ã
error î�ïñð�ðÇÞX1 ã�ä test Þ�Û -NN áâÝ ÞN� { ´�áâà�ãÏã
for �iäM1 to N 5�ì%N do

choose the training set � of the cardinality 5:ì Þ��¶ã such that�yäyà � objects randomly selected (per class) from ê�}wà
train Þ RNLC/RNQC á
ÝßÞN�ðáâà�ãÏã
errorRNLC/RNQC ÞX1âá��¶ã ä test Þ RNLC/RNQC á�Ý ÞN� { ´�áâà�ãÏã

end
end

Fig. 9.2: Pseudo-code for a single experiment in section 9.1.3.

9.1.3 Experiment II: the dissimilarity space approach

The experiments are conducted to compare the results of the Û -NN rule and the RNLC and the
RNQC built on dissimilarity representations5. They are designed to observe and analyze the behav-
ior of these classifiers in relation to different sizes of both representation and training sets. We are
concerned with possible gains of using small representation sets à and large training sets. A smallà is of interest, because of both storage and computational aspects (the evaluation for new objects
should be cheap).

Two different dissimilarity measures are studied for the NIST digit sets [420], represented by 4BA�A�A
binary images, 4BA�A images per class. The measures are: the Euclidean distance between Gaussian
smoothed images (images are blurred to make the measure be somewhat robust against tilting and
thickness) computed in a pixel-wise way and the modified Hausdorff distance, Def. 5.6, between
the shape contours. The experiments are performed 4�@ times for randomly chosen training and test
sets for each à under investigation. In a single experiment, each data set is randomly split into
two equal-sized sets consisting of 2#A�A�A objects: the design set ê and the test set �^+ ; . ê serves for
obtaining both the representation set à and the training set � . After à is chosen, a number of
training sets of different sizes are then considered. First, � is identical to à and then it is gradually
enlarged by adding random objects until it becomes ê .

There are many ways of selecting the representation set à out of the design set ê ; some of them
will be discussed in the subsequent sections. Here, we do not study the best possible set à for the
given problem, instead, we focus on illustrating our approach. Therefore, the representation objects
are chosen randomly. Additionally, the condensed nearest neighbor (CNN) is used for the selection.
In a single experiment, initially, a subset of the design set ê is used for representation. Then, it is
increased gradually by randomly adding new objects until it is equivalent to the complete set ê . In
this way a number of representation sets of different sizes can be studied.

The CNN criterion is based on the condensed nearest neighbor method [86, 187] developed to re-
duce the computational effort of the 2 -NN rule. The CNN method finds a subset of the training
set so that the 2 -NN rule gives a zero error when tested on the remaining objects. Here, the rep-
resentation set à becomes the condensed set found on the design set ê . In contrast to the random
selection, cardinality of à is automatically determined by the CNN method and it is fixed in a single
experiment. However, since the training sets differ in all experiments, the number of representation
objects may vary. Therefore, the size of à is averaged over all runs when reported in Table 9.1.

5 The results presented here come from [293].
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Both the RNLC and the RNQC, assuming normal distributions with equal or different class covari-
ance matrices respectively, are built for different training sets. The regularized versions are used to
prevent the estimated covariance matrices from being singular (e.g. in the case of the RNLC, when
N �LN approaches N àON ). Regularization takes care that the inverse operation is possible by emphasizing
the variances with respect to the covariances; see also section 4.4.1. When N �ÎN ã N àON , then the esti-
mation of the covariance matrices is poor. In such cases, different regularizations may significantly
influence the performance of the RNLC/RNQC. For sufficiently large training sets, these matrices
are well defined and no regularization is needed. In our experiments, the regularization parameters
are fixed values of at most A±ë A{2 for training sets such that N �ÎN ã N àON . Since they are not optimized,
the results presented here might not be the best possible.

The pseudo-code for a single experiment is schematically shown in Fig. 9.2. In case of the Û -NN
rule, the following fixed choices of Û�äi2Åá f á5@¢áub and V have been studied. Additionally, we have tried
to optimize Û via the leave-one-out procedure on ÝßÞN� áM��ã . However, the Û determined in such a way
was always found to be one of the fixed, odd Û mentioned above. For both digit sets, the best Û -NN
test results are found either for Û äi2 or Û ä f . In the experiments below we will report only the best
test results for the studied values of Û .

Since for the CNN criterion the cardinality of à is automatically determined by the method itself,
the outer loop in the pseudo-code 9.2 is superfluous. The training sets are chosen differently than
in case of a random selection. Here, the classes are likely to be unequally present in the determined
set à , therefore the training set is constructed from à by adding objects, randomly selected from
all the remaining examples in ê . The generalization errors are averaged over the experiments and
serve for making the plots.

Results. The generalization error rates of the Û -NN rule and the RNLC/RNQC are presented in
Fig. 9.3. The Û -NN results, marked by ’*’, are presented on the 5 i äeF i line. The RNLC’s (RNQC’s)
curves are lines of the constant classification error (on independent test sets) relating the sizes of
the representation and training sets. Additionally, Table 9.1 summarizes the results of the study.
Given the fixed cardinality of à , the worst and the best results, depending on the training set size,
are reported for the RNLC/RNQC. The CNN selection provides only a single set à of a fixed size.

The � -NN rule versus the RNLC. When � and à are identical, the RNLC (with error curves starting
on the 5 i ämF i line in Fig. 9.3, left plots), generally yields a better performance than the equivalentÛ -NN rule based on the same à (compare also the Û -NN results with the worst cases of the RNLC
in Table 9.1). When 5 i is fixed (i.e. in the horizontal directions of Fig. 9.3), the classifiers yield
the same computational complexity for an evaluation of new objects. However, larger training sets
reduce the error rate of the RNLC by a factor of 4 in comparison to the Û -NN error (based on the
same à ). For instance, in Fig. 9.3(a), we observe that the classification error of A±ëw2� is reached
by the Û -NN rule based on 5 i ä 2#A prototypes for which the RNLC offers a higher accuracy of
ã A±ëw2!k if trained also with F i äj2#A objects, reaching A±ë A�V when F i increases to 2#A�A . In other words,
for a chosen representation set à (hence a fixed computational complexity for an evaluation of a
new object) the RNLC error, with the increase of training size, decreases significantly to the values
that can only be obtained by the Û -NN method if it is based on a much larger à . For instance, in
Fig. 9.3(c), the RNLC built on 5 i ä 2#A prototypes (and the training set of F i ä\2#A�A objects) reaches
an accuracy (an error of A±ëw2!4 ) for which the Û -NN rule needs g�A objects in its representation set.
The computational load with respect to the number of computed dissimilarities of the RNLC for the
same classification accuracy is thereby reduced to 4�@:m .

Following the RNLC’s curves of constant error, it can be observed that for large training sets much
small representations sets are needed for the same performance. The RNLC may sometimes demand
only half the computational effort for the evaluation of new objects when compared to the Û -NN
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(a) The RNLC on the Euclidean DR (b) The RNQC on the Euclidean DR
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(c) The RNLC on the modified-Hausdorff DR (d) The RNQC on the modified-Hausdorff DR

Fig. 9.3: Generalization errors (averaged over 4�@ runs) for the blurred Euclidean (top) and modified-
Hausdorff (bottom) dissimilarity representations derived on the pixel-based NIST digit set. The lines cor-
respond to the averaged generalization error lines of the RNLC (left) and the RNQC (right) in dissimilarity
spaces. The Û -NN results are indicated by ’*’. All the representation sets are chosen randomly. If a horizontal
line is drawn at the fixed 5	ò , then its crossing points with the error lines determinate the number of training
objects F)ò needed for reaching a specific performance. For instance, in subplot (c), for 5,òväj4BA , the RNLC
needs F�ò ã f A training objects to reach the error of A±ëw2!@ and Fóò�änV�@ objects to reach the error of A±ëw2 . TheÛ -NN error equals A±ëw2¹b for F'ò&. ä¥5-òoäÞ4BA .
method. Also, for the fixed, possibly large training set (i.e. in the vertical directions of the considered
figures), the RNLC constructed on a small à , might gain a similar or higher accuracy than the Û -NN
rule, but now based on the complete Ý ÞN� áM��ã . This is observed, e.g. in Fig. 9.3(a) for F i äeg�A . The Û -
NN method yields an error of A±ë A�V f and the RNLC reaches a smaller error when trained on Ý ÞN� áâà�ã
with à consisting of 5 i �a4BA .
Since the best Û -NN results for both digit data sets are found for Û ä�2 or

f
[293], the results

of the 2 -NN rule based on the CNN criterion can be compared to the results of the Û -NN rule
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Table 9.1: Averaged generalization error (in m ) with its standard deviation for the Û -NN rule and the
RNLC/RNQC in dissimilarity spaces for the blurred NIST digit data set and a random selection of the rep-
resentation set à with 5¬ò objects per class. Additionally, à is also selected by the CNN criterion. Here, the
presented RNLC/RNQC errors refer either to the worst (left column) or to the best (right column) results
achieved for a fixed 5¬ò .

Euclidean dissimilarity representation
Random selection5 ò Û -NN RNLC RNQC

10 17.5 (0.4) 15.6 (0.3) 8.6 (0.1) 19.0 (0.5) 4.4 (0.1)
20 12.5 (0.3) 10.2 (0.1) 7.1 (0.1) 10.3 (0.2) 4.6 (0.1)
50 8.3 (0.2) 6.6 (0.2) 5.5 (0.1) 5.6 (0.2) 4.7 (0.1)
70 7.1 (0.2) 5.8 (0.1) 5.1 (0.1) 5.0 (0.1) 4.6 (0.1)
90 6.4 (0.1) 5.1 (0.1) 5.0 (0.1) 4.6 (0.1) 4.6 (0.1)

CNN selection5-ò 2 -NN RNLC RNQC
20 10.6 (0.2) 8.5 (0.2) 5.7 (0.1) 8.7 (0.4) 4.6 (0.1)

Modified-Hausdorff dissimilarity representation
Random selection5 ò Û -NN RNLC RNQC

10 24.4 (0.4) 21.3 (0.3) 11.1 (0.2) 34.9 (0.8) 8.0 (0.2)
20 17.1 (0.2) 15.6 (0.3) 9.8 (0.2) 21.2 (0.5) 7.4 (0.2)
50 10.6 (0.2) 10.3 (0.2) 9.0 (0.2) 9.9 (0.2) 7.2 (0.2)
70 8.9 (0.1) 9.2 (0.2) 8.7 (0.2) 8.2 (0.2) 7.2 (0.2)
90 7.9 (0.2) 8.5 (0.2) 8.2 (0.2) 8.2 (0.2) 8.3 (0.2)

CNN selection5-ò 2 -NN RNLC RNQC
24 12.8 (0.2) 12.6 (0.3) 9.5 (0.2) 12.3 (0.4) 6.8 (0.2)

based on a random selection of à . The former are better than the latter, probably because the
CNN representation set is optimized for the 2 -NN. Also, as observed in Table 9.1 and in Fig. 9.3,
the RNLC defined on the CNN representation set generalizes better than the RNLC defined on a
random representation set.

The RNLC versus the RNQC. In general, the RNQC performs better than the RNLC for both dis-
similarity data sets; compare the results in Fig. 9.3, left plots versus right plots. Since the RNQC
relies on the class covariance matrices in a dissimilarity space, a larger number of samples is needed
than for the RNLC to obtain reasonable estimates. The RNQC may reach a worse accuracy than
the RNLC for identical � and à . However, following the curves of the RNQC’s constant error,
both smaller representation and training sets are needed for the same error when compared to the
RNLC. The RNQC’s curves are simply much steeper than those of the RNLC. Thereby, the RNQC
outperforms the RNLC for large training sets (and small à ). The most significant improvement can
be observed for a small à . For instance, the training set of F i ä 2#A�A examples allows the RNLC to
reach the error of A±ë ABg:V when based on 5 i �Ìb
A prototypes, see Table 9.1, where the RNQC requires
only between @ and

f A prototypes for a similar performance; see Fig. 9.3(c). When the largest train-
ing sizes are considered (the best results in Table 9.1) for the fixed set à , the error of the RNQC
decreases, yielding better results than the Û -NN rule. Still, when the smallest errors of the RNLC
and RNQC are compared, the RNQC generalizes better. Also, for the fixed training set � , i.e. in
the vertical directions in Fig. 9.3, subplots (b) and (d), a small representation set à often allows the
RNQC (trained on ÝßÞN� áâà�ã ), to reach a better performance than the Û -NN rule based on ÝßÞN� áM��ã .
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9.1.4 Discussion

Our experiments indicate that indeed a good classification performance can be reached by dissi-
milarity-based classifiers, an alternative to the Û -NN method. Even if the classifiers are trained in
F -dimensional dissimilarity space ÝßÞ�à~áâà�ã determined by the dissimilarities to F prototypes, they
may work better than the Û -NN rule defined on the same à .

The experiments focus further on the dissimilarity-space approach and the role of the representation
set à . They show that the RNLC constructed on the dissimilarity representations ÝßÞN�ðáâà�ã may
significantly outperform the Û -NN rule based on the same à . This holds for the RNQC as well,
provided that each class is represented by a sufficient number of training objects (they are needed
to estimate the class covariance matrices reliably). Since for the evaluation of new objects the
computational complexity (here indicated by the number of prototypes) is an important issue, our
experiments are done with such an emphasis. We have found out that for the fixed representation set,
larger training sets improve the performance of the RNLC/RNQC. When such results are compared
to the Û -NN based on the same à , they are often better. Also, for the fixed training set � , smaller
(than � ) representation sets allow the RNLC/RNQC, trained on ÝßÞN� áâà�ã , to gain a high accuracy.
When à is only somewhat smaller than � , such classification errors can be smaller than the ones
reached by the Û -NN based on the entire training set � , i.e. Ý ÞN��+ ; áM��ã .
The potentially good performance of the RNLC can be understood as follows. The RNLC is in
fact a weighted linear combination of the dissimilarities between an object W and the prototypes.
It seems practical to allow a number of representation examples of each class to be involved in
a discrimination process. This is already offered by the Û -NN rule, however, this decision rule
provides an absolute answer (due to a mechanism based on the majority voting). The Û -NN method
is sensitive to noise, so the Û nearest neighbors found might not include the best representatives of
a class to which an object should be assigned. The training process of the RNLC, using a larger
training set � , emphasizes prototypes which play a crucial role during discrimination, but it still
allows other prototypes to influence the decision. The importance of prototypes is reflected in the
classifier weights. In this way, a classifier is built, which takes all prototypes into account.

The RNQC includes also a sum of the weighted products between pairs of dissimilarities to à .
By doing this, some interactions between the prototypes are emphasized. The RNQC is based on
the class covariance matrices in a dissimilarity space, estimated separately for each class. Those
matrices may really differ from class to class. Therefore, this decision rule might achieve a higher
accuracy than the RNLC, where all class covariance matrices are averaged. However, a larger
number of samples (with respect to the size of à ) is required to obtain reasonable estimates for all
covariance matrices, and, thereby, a good generalization ability of the RNQC.

9.2 Selection of the representation set: the dissimilarity space
approach

In the dissimilarity space approach decision rules are functions of dissimilarities to the selected
representation objects (prototypes). Assuming that the entire dissimilarity representation ÝßÞN�ðáM��ã
is available, the question now arises how a small representation set à should be selected out of �
to guarantee a good tradeoff between the recognition accuracy and the computational complexity.
We know that a random selection of prototypes may work well [286, 287, 293, 296, 301], as also
indicated in the previous section. Here, we will analyze some systematic procedures6. Since the
selection of prototypes is usually investigated in the context of metric Û -NN rules, before we move
on, we will briefly discuss this point.

6 The results presented here come from [300].
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In the basic setup, the Û -NN rule uses the entire training set as the representation set, hence à ä�� .
Therefore, the usual criticism points at a space requirement to store the complete set � and a high
computational cost for the evaluation of new objects. The Û -NN rule also shows sensitivity to out-
liers, i.e. noisy or erroneously labeled objects. To alleviate these drawbacks, various techniques
have been developed in feature spaces to tackle the problem of prototype optimization. So, some
research efforts have been devoted to this task; see e.g. [78, 187, 330, 422]. From the initial pro-
totypes (say, all training objects), the prototype optimization method chooses or constructs a small
portion of them such that a high classification performance is achieved.

Two main types of algorithms can be identified: prototype generation and prototype selection. The
first group focuses on merging the initial prototypes (i.e. the prototypes represented as vectors in
a feature space are replaced e.g. by their average vector) into a small set of prototypes such that the
performance of the Û -NN rule is optimized. Examples of such techniques are the Û -means algorithm
[97] or a learning vector quantization algorithm [219]. The second group of methods aims at the
reduction of the initial training set and/or the increase in the accuracy of the NN predictions. This
leads to various editing or condensing methods. Condensing algorithms try to determine a signifi-
cantly reduced set of prototypes such that the performance of the 2 -NN rule on this set is close to
the one reached on the complete training set [78, 187, 422]. This is the consistency property [78].
Editing algorithms remove noisy samples as well as close border cases, leaving smoother decision
boundaries [86, 422]. They aim to leave homogeneous clusters in the data. Basically, they retain all
internal points, so they do not reduce the space as much as other reduction algorithms do. Usually,
they are followed by condensing methods.

Although the Û -NN rule is often practiced with metric distances, there are problems when the
designed dissimilarity measures are non-metric, such as the modified Hausdorff distance and its
variants [93], Mahalanobis distance between probability distributions [97] or the normalized edit-
distance [47, 262, 410]; see also chapter 5. Such non-metric measures seem to naturally arise in
template matching processes applied e.g. in computer vision [93, 206]. If the dissimilarity measure
is meaningful, the principle behind the voting among the nearest neighbors can be applied to non-
metric dissimilarities and the Û -NN rule may work well; see e.g. [296] or the subsequent sections. It
is simply more important that the measure itself is discriminative and describes the classes in a com-
pact way than its strict metric properties. However, many traditional prototype optimization meth-
ods are not appropriate for non-metric dissimilarities, especially if no accompanying feature-based
representation is available, as they can be based on the triangle inequality, for instance. Moreover,
there are also situations, where the classes are badly sampled due to the problem characteristics as
e.g. in machine or health diagnostics, or due to the measurement costs. In such cases, the Û -NN
rule, even for a large Û and a very large training set will suffer from noisy examples. Yet, we think
that much more can be gained when other discrimination functions, such as linear classifiers in a
dissimilarity space, are constructed. In general, as pointed in the previous section, such classifiers
make their decisions by averaging the information from a number of prototypes and they seem to
be more robust against local distortions.

9.2.1 Prototype selection methods

The selection of a representation set for the construction of classifiers in a dissimilarity space serves
a similar goal as the selection of prototypes to be used by the NN rule: minimization of a set of
dissimilarities to be measured for the classification of new incoming objects. There is, however, an
important difference with respect to the demands. Once selected, the set of prototypes defines the
NN classifiers independently of the remaining part of the training set. The selection of the represen-
tation set, on the other hand, is less crucial, as it will define a dissimilarity space in which the entire
training set is used to train a classifier. For this reason, even a randomly selected representation
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set may work well [293]. That is why, the random selection will serve as a basic procedure for
comparing more advanced techniques.

Similar objects will yield a similar contribution to the representation. It may, thereby, be worthwhile
to avoid the selection of objects with small dissimilarity values. Moreover, if the data describe
a multi-modal problem, it may be advantageous to select objects related to each of the modes.
Consequently, the use of procedures like vector quantization or cluster analysis can be useful for the
selection of prototypes.

Assume ; classes S è á ë ë ë�áTS i . Let � be a training set and let �uô ¤ denote the training objects of the classS � . Each method selects £ objects for the representation set à . If the algorithm is applied to each
class separately, then Û objects per class are chosen such that ; Û�äK£ . The following procedures will
be compared for the selection of a representation set: Random, RandomC, KCentres, ModeSeek,
LinProg, FeatSel, KCentres-LP and EdiCon.

Random. A random selection of £ objects from the training set � .

RandomC. A random selection of Û objects per class (equal class prior probabilities are assumed).

KCentres. This is a representation-based clustering procedure, described in section 7.1.2. For each
class S � , this algorithm chooses a set à@ô ¤ of Û objects such that they are evenly distributed with
respect to the dissimilarity information Ý ÞN�tô ¤ áM�âô ¤ ã . Since the final result depends on the initial-
ization, some precautions are taken. To determine à ô ¤ , we start from one center for the entire setÝßÞN�ñô ¤ áM�âô ¤ ã and then more centers are gradually added. At any point, a group of objects belongs to
each center. à�ô ¤ is enlarged by splitting the group of the largest radius into two and replacing its
center by two other members of that group. This stops, when Û centers are determined. The entire
procedure is repeated

f A times, resulting in
f A potential representation sets. The final set àÚô ¤ is the

one which yields the minimal of the largest subset radii. The representation set à consists of all
sets à�ô ¤ .
ModeSeek. For each class S � the mode seeking algorithm [63] looks for a set àÆô ¤ consisting of
the estimated modes of class distribution with respect to Ý ÞN�tô ¤ áM�ñô ¤ ã . The final cardinality of à>ô ¤
depends on the specified neighborhood size C . The larger the neighborhood C , the smaller àÚô ¤ . If a
representation set of a particular cardinality is searched, we select C such that it generates the largest
set which is not larger than the demanded one. This algorithm is a clustering algorithm and it was
introduced in section 7.1.2.

The procedures above may be called unsupervised, in spite of the fact that they are used in a class-
wise way. They aim at various heuristics, but they do not consider the quality of the resulting
representation set in terms of the class separability. A standard procedure to do that is by feature
selection.

FeatSel. In traditional pattern recognition, the feature selection method determines an optimal set
of £ features according to some class separability measure. It is often done in the forward selec-
tion process [207] by using either the Mahalanobis distance or the leave-one-out 2 -NN error. This
standard approach is modified here to make use of a given dissimilarity representation. The entire
dissimilarity matrix ÝßÞN� áM��ã is reduced to Ý ÞN� áâà�ã by selecting an optimal set of £ prototypes ac-
cording to the leave-one-out 2 -NN error. There is, however, a difference with respect to the standard
feature selection procedure. Features are considered in a dissimilarity space, but the 2 -NN error is
computed on the given dissimilarities ÝßÞN�ðáM��ã directly, and not by the Euclidean distances derived
from the given dissimilarity representation. The method is, thereby, fast as it is entirely based on
comparisons and sorting. Ties can easily occur by the same number of misclassified objects for dif-
ferent representation sets. They are solved by selecting the set à for which the sum of dissimilarities
is minimum.
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LinProg. The selection of prototypes is done automatically by training a properly formulated sep-
arating hyperplane ��Þ�ÝßÞXW�áâà�ãÏã�ä � ì�#8 è � � � ÞXW�á�ç � ã � � � äç� Û ÝßÞXW�áâà�ã � � �

in a dissimilarity spaceÝ ÞN� áâà�ã . à can be chosen identical to the training set � , but it can also be different. Here, we as-
sume that àm. ä�� . This linear function is obtained by solving a linear programming problem, where
a sparse solution is imposed by minimizing the

ý è -norm of the weight vector � , N N �mN N è»ä � ì�#8 è N � � N .
Such a minimization task is described in section 4.4.1. We focus on the formulation (4.15).

As a result, since a sparse solution � is obtained, many weights �Ó� tend to become zero. The
objects from the initial set à . äk� corresponding to non-zero weights are the selected prototypes,
i.e. the representation set à\õâö . Although the prototypes are found in the optimization for a particular
separating hyperplane, they can be used by other discrimination functions as well. We have found
out that the choice of the tradeoff parameter as U�ä\2 , see (4.15), seems to be reasonable for many
problems, so we fix it in our experiments.

Such a prototype selection method is similar to a selection of features by linear programming in
a standard classification task [41]. The important point to realize is that we do not have a control
over the number of selected prototypes. This can be slightly influenced by varying the constantU (hence influencing the tradeoff between the classifier norm N N �mN N è and the training classification
errors), but not much. From the computational point of view, this procedure is advantageous for
two-class problems, since multi-class problems may result in a large set à õâö . This occurs since
different prototypes are often selected by different classifiers when a multi-class classifier is derived
in the one-against-all strategy or even more severely in the pairwise strategy.

KCentres-LP. The KCentres algorithm is applied to a square dissimilarity representation ÝßÞN� áM��ã to
pre-select a representation set à\÷ þ . This is then followed by a reduction based on the LinProg
procedure applied to ÝßÞN� áâà ÷ þ ã . In this way, the number of resulting prototypes can be somewhat
influenced. Still, if à ÷ þ is not sufficiently large, the linear programming will make no reduction.
Hence, this procedure reduces to the KCentres approach for a small à ÷ þ .

EdiCon. An editing and condensing algorithm [86] is applied to the entire dissimilarity representa-
tion Ý ÞN� áM��ã , resulting in a representation set à . Editing takes care that the noisy objects are first
removed so that the prototypes can be chosen to guarantee a good performance of the 2 -NN ( Û -NN)
rule. Similarly as in the case of the LinProg, the number of prototypes is automatically determined.

9.2.2 Experimental setup

If a good dissimilarity measure is found, and a training set is sufficiently large and representative
for the problem at hand, then the Û -NN rule (based on àm. äK� ) is expected to perform well. In other
cases, a better generalization can be achieved by a linear or quadratic classifier built in dissimilarity
spaces. The weights of such decision rules are optimized on a training set and large weights (in
magnitude) emphasize prototypes which are essential for discrimination. In the previous section,
as well as in our studies [293, 296, 301], we have found out that the linear and quadratic normal
density based classifiers, the NLC and NQC, respectively, perform well in dissimilarity spaces.

Some experiments are conducted to compare various prototype selection methods for the classifi-
cation in dissimilarity spaces. Smaller representation sets are of interest, because of a lower com-
plexity for both representation and evaluation of new objects. Both linear (the NLC) and quadratic
(the NQC) classifiers are considered in dissimilarity spaces. Here, we will present only the results
for the NQC, since it generally performs better than the NLC. In higher-dimensional dissimilarity
spaces, i.e. for larger representation sets, the NQC is, however, computationally more expensive
than the NLC. Since we decided to compare all selection strategies by the performance of a single
classifier, as a result, the LinProg was simply used for the selection of à and not as a discrimination
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Table 9.2: Characteristics of the data sets used in experiments. ( stands for the fraction of objects selected
for training in each repetition.

Data ø classes ø objects per class (in total) ( per class
Polydisth 2 2 � 2000 0.25
Polydistm 2 2 � 2000 0.25
NIST-38 2 2 � 1000 0.10
Zongker-12 2 2 � 100 0.50
GeoSam 2 2 � 500 0.50
GeoShape 2 2 � 500 0.50
Wine 3 59/71/48 0.60
Ecoli-p08 3 143/77/52 0.60
ProDom 4 878/404/271/1051 0.35
Zongker-all 10 10 � 100 0.50

Table 9.3: Properties of the data sets used in experiments. The following abbreviations are used: M - metric,
E - Euclidean, nM - non-metric, nE - non-Euclidean. The values 5�ù	úû�û and 59ù¬úü ´"ý indicate the deviations from
the Euclidean behavior, as defined in formula (9.1) and 5 ù Ð{ ü describes the percentage of disobeyed triangle
inequalities.

Data Dissimilarity Property 5 ù	úû�û �gm>� 5 ù	úü ´«ý �gm>� 5 ù Ð{ ü �gm>�
Polydisth Hausdorff M, nE 25.1 38.1 0.00
Polydistm Mod. Hausdorff nM 11.0 31.4 0.01
NIST-38 Euclidean E 0.0 0.0 0.00
Zongker-12 Template-match nM 13.3 30.1 0.70
GeoSam SAM [239] M,nE 0.1 0.1 0.00
GeoShape Shape

ý þ
M, nE 2.6 7.2 0.00

Wine Euclidean distance E 0.0 0.0 0.00
Ecoli-p08

ý ~�ÿ � distance nM 13.4 24.7 3.84
ProDom Structural nM 1.3 0.9 2#A ï L
Zongker-all Template-match nM 38.9 35.0 0.41

function. (otherwise it would not be comparable to the performance of the NQC for based on some
other representation set.)

In each experiment, each data set is divided into a training set � and a test set �^+ ; . The NQC is trained
on the dissimilarity representation ÝßÞN� áâà�ã and tested on ÝßÞN��+ ; áâà�ã . à J � is a representation set
consisting of £ prototypes chosen according to some specified criterion, as described in section
9.2.1. The 2 -NN and the Û -NN results defined on the entire training set (hence tested on ÝßÞN� + ; áM��ã
are provided as reference. Also, as a comparison, the Û -NN rule is directly applied to Ý ÞN�E+ ; áâà�ã , withà selected by the KCentres algorithm and to the Euclidean distances computed in the representationÝßÞN��+ ; áâà�ã . (This corresponds to the Û -NN performed in the dissimilarity space). The Û -NN rule
optimizes Û over the training set � in the leave-one out manner [101].

Specification of the data sets. In all our experiments the data sets are divided into training and test
sets of various sizes; details can be found in Table 9.2. We have chosen a number of problems
possessing various characteristics: defined by both metric (Euclidean or non-Euclidean) and non-
metric dissimilarity measures, as well as, concerning small and large sample size problems. Seven
data sets are used in our study: randomly generated polygons, NIST scanned digits, geophysical
spectra proteins and their localization sites and wine types, resulting in ten dissimilarity representa-
tions (for some data sets, two different measures are considered). The data sets refer to two-, three-,
four- and ten-class classification problems. All data sets are described in Appendix A.1 and A.2.
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Fig. 9.4: Left: approximate 2D embedding of the dissimilarity representations ÝßÞN�ðáM��ã for the polygon data.
Right: all the eigenvalues derived in the embedding process.

If a dissimilarity
�

is Euclidean, then the square Ü h Ü dissimilarity representation Ý ÞN� áM��ã can
be perfectly embedded in a Euclidean space. This means that a configuration à can be found such
that the Euclidean distances between the vectors of à correspond to the original ones. This is
equivalent to the statement that the Gram matrix þ äi$ èé -vÝ  é - , where Ý  é ä Þ � é��� ã and -�ä � $ èì Ú�Ú Û ,
is positive semidefinite i.e. all its eigenvalues are nonnegative. A non-Euclidean representation Ý
can be embedded in a pseudo-Euclidean space. The configuration à is determined in this space by
eigendecomposition of the Gram matrix þ as þ äRÿÚë�ÿ Û , where ë is a diagonal matrix of decreasing
positive eigenvalues followed by decreasing (in magnitude) negative eigenvalues and then zeros, andÿ is an orthogonal matrix of the corresponding eigenvectors. à is found as à ä ÿ � N ë � N è _ é , where� corresponds to the number of non-zero eigenvalues. See section 3.3 for details.

Let the eigenvalues be denoted by p ’s. Hence, the magnitude of negative eigenvalues indicates the
amount of deviation from the Euclidean behavior. This is captured by the following indices:5 ì ��Ê� ä S � © ¤ � S� © à�� �:2#A�A5 ì �" ; ñ ä ��� ¤	� z S � ¤ S��
ÅÏª»Ö S � Å S ��2#A�A±ë (9.1)

5 ì ��Ó� is the ratio of the smallest negative eigenvalue to the largest positive one, while 5 ì �" ; ñ describes
the contribution of negative eigenvalues. Additionally, an indication of the non-metric behavior can
be expressed by the percentage of disobeyed triangle inequalities, 5 ì O+ " .

Table 9.3 provides suitable information on the Euclidean and metric aspects of the measures consid-
ered. The Hausdorff representation of the polygon data are strongly non-Euclidean. The modified
Hausdorff representation of the polygon data, as well as template-matching representation of the
digits data are moderately non-Euclidean and non-metric. Concerning the geophysical data, the
shape dissimilarity representation is slightly non-Euclidean, while the SAM representation is nearly
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Fig. 9.5: Left: approximate 2D embedding of the dissimilarity representations Ý ÞN� áM��ã for the NIST data.
Right: all the eigenvalues derived in the embedding process.

Euclidean. Both are metric. For the Ecoli data, the non-metric
ý��-� �

distance representation is used.
ProDom representation is slightly non-metric and slightly non-Euclidean. The remaining two data
sets: NIST digits and Wine have Euclidean representations.

For the purpose of visualization also 2D approximate embeddings of dissimilarity representations
have been found. They rely on linear projections from the corresponding Gram matrices, as de-
scribed above; see also section 3.3. The sum of the first two largest eigenvalues with respect to the
total sum of all eigenvalue magnitudes indicates how much of the original dissimilarities is reflected
in the projections. This can be observed in figures 9.4 - 9.9. There we also show all the eigenval-
ues of the Gram matrices (derived from the dissimilarity matrices), hence the deviation from the
Euclidean behavior can be visually judged. The number of eigenvalues significantly different from
zero indicates the intrinsic dimensionality of a problem. The approximate embeddings are used for
the purpose of exploratory data analysis. As judged from two-class problems, figures 9.4 - 9.9, the
polygon data seem the most complex, while the Zongker-12 data seem the easiest. On the other
hand, the ten-class Zongker-all data are the most complex.
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Fig. 9.6: Left: approximate 2D embedding of the dissimilarity representations Ý ÞN� áM��ã for the geophysical
spectra data. Right: all the eigenvalues derived in the embedding process.
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Fig. 9.7: Left: approximate 2D embedding of the dissimilarity representation Ý ÞN� áM��ã for the Wine data.
Right: all eigenvalues derived in the embedding process.

9.2.3 Results and discussion

The results of our experiments are presented in Fig.9.10 - 9.16. They show the generalization errors
of the NQC as a function of the number of prototypes chosen by various selection methods. These
error curves are compared to some variants of the NN rule. Note that in order to emphasize a
small number of prototypes, the horizontal axis is logarithmic. The prototype selection methods
mentioned in the legends are explained in section 9.2.1. Concerning the NN methods, the following
abbreviations are used. The 2 -NN-final and the Û -NN-final stand for the NN results obtained by
using the entire training set � , hence such errors are plotted as horizontal lines. They are our
reference. Û -NN is the Û -NN rule directly applied to Ý ÞN� áâà�ã , while the Û -NN-DS is the Euclidean
distance Û -NN rule computed in Ý ÞN� áâà�ã dissimilarity spaces (this means that a new Euclidean
distance representation is derived from the vectors Ý ÞXW áâà�ã ). In both cases, the representation set
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Fig. 9.8: Left: approximate 2D embedding of the dissimilarity representations ÝßÞN� áM��ã for the Ecoli-p08
data. Right: all the eigenvalues derived in the embedding process.
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Fig. 9.9: Left: approximate 2D embedding of the dissimilarity representation Ý ÞN� áM��ã for the ProDom data.
Right: all the eigenvalues derived in the embedding process.

à is chosen by the KCentres algorithm. EdiCon- 2 -NN presents the 2 -NN result for the prototypes
chosen by the editing and condensing (EdiCon) criterion. The optimal parameter Û in all the Û -
NN rules used is determined by the minimization of the leave-one-out error on the training set.
Sometimes, Û is found to be 2 and sometimes, some other value.

The performances of all procedures mentioned in the legends, from the Random to EdiCon selec-
tions are based on the NQC in the dissimilarity space defined by the selected set of prototypes à .
So, they need just the computation of the reduced set of similarities for testing purposes, but they
profit indirectly from the availability of the entire training set � .

To enhance the interpretability of the results, the following patterns are used in the plots. The
supervised methods, the KCentres-LP and FeatSel are plotted by continuous lines, the unsupervised,
clustering selections are plotted by dash-dotted lines and the random methods are plotted by dashed
lines.

Our experiments are based on
?

repetitions, that is
?

random selections of a training set.
? äj2#A

for the Prodom and Zongker-all dissimilarity data and
? ä04�@ , otherwise. The remaining part of the

data is used for testing. Different selection procedures used the same collections of the training and
test sets. The averaged test errors are shown in the figures. We do not present the resulting standard
deviations to maintain the clarity of the plots. In general, we found that the standard deviations vary
between

f m and b9m of the averaged errors.

Fig. 9.10 presents the results for the two dissimilarity measures derived from the same set of poly-
gons. Remember that the Polydisth is metric and Polydistm is not. The first striking observation
is that in spite of its non-metric behavior, the Polydistm results are better: lower NN errors, less
prototypes needed to yield a good result. Just 4BA prototypes out of 2#A�A�A objects are needed to obtain
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Fig. 9.10: Polygon data. Average classification error of the NQC* and the Û -NN classifiers in dissimilarity
spaces, as well as the direct Û -NN as a function of the selected prototypes.

a better error than found by the NN rules. In the Û -NN classifiers, the average optimal Û appeared
to be 2!4�b (Polydisth) or 2!V
g (Polydistm). These large values correspond to the observation made
before in relation to the scatter plots (Fig. 9.4) that this is a difficult data set. Nevertheless, in the
case of the Polydistm data, the linear programming technique finds a small set of @�@ prototypes for
which the NQC error is very low ( A±ë g,m ). The systematic procedures KCentres (KCentres-LP) and
FeatSel perform significantly better than the other ones. The feature selection is also optimal for
small representation sets. Notice also the large difference between the two results for editing and
condensing. They are based on the same sets of prototypes, but the classification error of the 2 -NN
rule (in fact a nearest prototype rule), EdiCon-1-NN, is much worse than of the NQC, the EdiCon,
which is trained on ÝßÞN�ðáâà�ã . This also remains true for all considered problems, as can be observed
in other plots.

Fig. 9.11 shows the results for two of the NIST digit classification problems. The NIST-38 data set
is based on a Euclidean distance measure, while the Zongker-12 relies on a non-metric shape com-
parison. The Û -NN classifier does not improve over the 2 -NN rule, indicating that the data set sizes
( 2#A�A objects per class) are too small to model the digit variabilities properly. Again. the systematic
procedures do well for small representation sets, but they are outperformed by the KCentres routine
for a larger number of prototypes. The KCentres method distributes the prototypes evenly over the
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Fig. 9.11: NIST digit data. Average classification error of the NQC* and the Û -NN classifiers in dissimilarity
spaces, as well as the direct Û -NN as a function of the selected prototypes.

classes in a spatial way, that is related to the dissimilarity information. For small training sets (here
2#A�A examples per class), this may be a better than an advanced optimization.

Fig. 9.12 presents the results for the two dissimilarity representations of the geophysical data sets.
From other experiments it is known that they are highly multi-modal, which may explain the good
performance of the ModeSeek for the GeoShape problem and the KCentres for the GeoSam prob-
lem. Editing and condensing does also relatively well. Feature selection works also well for a small
number of prototypes. Overall, the linear programming yields good results. Recall that we take the
KCentres results as a start (except from the final result indicated by the square marker that starts
from the entire training set), so the KCentres curve is for lower numbers of prototypes underneath
it. In this problem we can hardly improve over the NN performance, but still need just @:m $�2#Anm
of the training set size for prototypes. In the next subsection, however, it is shown that these results
can still be significantly improved by modifying the dissimilarity measure.

So far, we have focused on two-class problems. In illustrate what may happen in multi-class situa-
tions, the following problems are also considered: the three-class Wine and Ecoli data, the four-class
ProDom data and the ten-digit Zongker-all data. Although the Wine and Ecoli data are originally
represented by features, their

ý ü distance representations can be used to show our point. In all the ex-
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Fig. 9.12: Geophysical data. Average classification error of the NQC* and the Û -NN classifiers in dissimilar-
ity spaces, as well as the direct Û -NN as a function of the selected prototypes.

periments with the NQC, a small regularization is used pÕä0A±ë A{2 ; see section 4.4.1. A regularization
is necessary since for large representation sets, the number of training objects per class is insuffi-
cient for a proper estimation of the class covariance matrices. For instance, 2#A�A training examples
per class are used for the Zongker-all data. The results for à with more than 2#A�A prototypes are
based on the NQC trained in more than 2#A�A dimensions. The peak for exactly 2#A�A prototypes, see
Fig. 9.16, upper plot, is caused by a dimension resonance phenomenon that has been fully examined
for the linear normal density based classifier in [314]. When a larger regularization is used in this
case, the NQC performs much better, as observed in the bottom plot of the same figure.

Fig. 9.13 shows the results for the Euclidean representation of the Wine data. The ModeSeek seems
to work the best, however since the number of test objects is small ( b
A in total), all the selection
procedures behave similarly for more than 2#A prototypes. The latter observation also holds for the
Ecoli-p08 data, as observed in Fig. 9.14. The number of test objects is also small ( 2#A:b in total).
Here, however, the NQC does not improve over the Û -NN on the complete training set. Still, 4BA (or
less) prototypes are needed for the same performance.

Fig. 9.15 illustrates the study on prototype selection for the ProDom data. The data are multi-modal,
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Fig. 9.13: Wine data. Average classification error of the NQC* and the Û -NN classifiers in dissimilarity
spaces, as well as the direct Û -NN as a function of the selected prototypes.
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Fig. 9.14: Ecoli-p08 data. Average classification error of the NQC* and the Û -NN classifiers in dissimilarity
spaces, as well as the direct Û -NN as a function of the selected prototypes.

as it can be judged from the 2D approximate embedding shown in Fig. 9.9. Some of the modes in
the data seem to be very small, possibly some outliers. This may cause the ModeSeek procedure to
focus on such examples, and be worse than the class-wise random selection. The KCentres and the
FeatSel methods perform the best. For 2#A�A (an more) prototypes, the NQC reaches the error of theÛ -NN on a complete training set, however, it does not improve it. This might be partly caused by
unequal class cardinalities and too-small regularization parameter.

The Zongker-all data are highly non-Euclidean and non-metric. When a proper regularization ( p¤ä
A±ë A�@ ) is used, the NQC significantly outperforms the best Û -NN rule. However, when the size of the
representation set is too large ( g:@BA prototypes in bottom plot), the NQC starts to suffer. Only

f m of
the training examples allow this decision rule to reach the same performance as the Û -NN rule on
the entire training set. In general, the KCentres works the best. Edited and condensed set seems to
give a good representation set, as well.

Some observations are of interest for multi-class problems. First, in contrast to the two-class prob-
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Fig. 9.15: Four-class ProDom problem. Average classification error of the NQC* and the Û -NN classifiers
in dissimilarity spaces, as well as the direct Û -NN as a function of the selected prototypes. The result for the
LinProg is not visible, since it finds a representation set of g:V&2 objects.

lems, a suitable regularization is necessary, since it can significantly influence the performance of
the NQC. If the regularization is appropriate, a significant improvement over the Û -NN results on
the complete training set may be found by the use of a regularized NQC. Next, as in the two-class
problems we find that just

f m $§2!4:m of the training set gives a sufficient number of prototypes for
the NQC to reach the same performance as the Û -NN rule. Like before, systematic selections of
prototypes perform best. Finally, the EdiCon works well and tends to determine less prototypes
than the LinProg.

In summary, we see that systematic selections perform better than the random selection, but the
differences are sometimes small. The way we have ranked the algorithms in the legends from the
Random to the KCentres-LP selections, roughly corresponds to the way they globally perform over
the set of conducted experiments.

Concave transformations of dissimilarity representations. Concave transformations of dissimilar-
ity representations may improve the discrimination properties between the classes, when linear or
quadratic classifiers are used in dissimilarity spaces. An example can be given by the sigmoidal
transformation � sigm ÞXW�ã�ä�4�Y±ÞZ2 �l[ W³ç ÞZ$èW é YBC é ãÏã $Õ2 applied to the square dissimilarities in an element-
wise way. The transformed representation becomes then Ý sigm ä Þ�� sigm Þ � é�v� ãÏã . A nonlinear transfor-
mation is applied to square dissimilarities, which significantly changes the original dissimilarities.
Note that the sigmoidal transformation is monotonically increasing, so the Û -NN rule behaves iden-
tically as for the original dissimilarities.

To illustrate possible benefits of a sigmoidal transformation, an experiment for the GeoSam repre-
sentation has been performed for a fixed number of £ ää4BA and £ ääkBA prototypes. From Fig. 9.12,
top row, we can observe that for 4BA prototypes, the best average performance of the NQC is ap-
proximately 2#Anm . When a suitable parameter C of the sigmoidal transformation is chosen, the best
average performance of the same classifier is k:m , which can be improved to g,m when kBA prototypes
are considered. This can be observed in Fig. 9.17. So, the gain in performance is significant. TheÛ -NN error based on the entire training set � of @BA�A objects (hence tested on ÝßÞN�E+ ; áM��ã ) is V¢ë k:m .
Note, however, that such nonlinear transformations do not immediately guarantee the improved
performance. It is simply related to the discriminative properties of the dissimilarity measure used.

The parameter C has been investigated in the range of � A±ë @ � � ; á!2#A � � ; � , where
� � ; is the average
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Fig. 9.16: Ten-class Zongker problem. Average classification error of the NQC, with the regularization of
p¤ä�A±ë A{2 (upper plot) and p¤ä�A±ë A�@ (bottom plot), and the Û -NN classifiers in dissimilarity spaces, as well as
the direct Û -NN as a function of the selected prototypes.

distance of the original representation ÝßÞN� áM��ã . The best classification accuracy is reached for C ãf � � ; . It may be observed, however, that a specific choice of C is not very crucial. For a range of
possible values of C , a significant performance improvement is achieved compared to the original
representation. The NQC defined on the representation set à determined by the KCentres algorithm
performs somewhat worse than in the case of a randomly selected à .

The interesting point is that the transformed dissimilarity representations are strongly non-metric
and non-Euclidean. When C is very small, however, then Ý sigm is nearly metric and nearly Eu-
clidean. For C /õ� � � ; áGg � � ; � , on average b
A±ë�:m of triangle inequalities are disobeyed. The deviation
of the Euclidean behavior is on average 5 ì �" ; ñ äo49¢ë 4 and 5 ì ��Ê� ä f A±ë @ , which suggests large negative
eigenvalues of the corresponding Gram matrices.

Conclusions. Prototype selection is an important topic for dissimilarity-based classification. By us-
ing a few, but well chosen prototypes, it is possible to achieve a better classification performance in
both speed and accuracy than by using all the training samples. Usually, prototype selection meth-
ods are investigated in the context of the metric Û -NN classification considered for feature-based
representations. In our proposal, a dissimilarity representation Ý ÞN� áM��ã is interpreted as a vector
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Fig. 9.17: GeoSam: classification error (averaged over 4�@ runs) of the NQC in a dissimilarity space based
on 4BA prototypes (left) and kBA prototypes (right) chosen either randomly or by the KCentres algorithm. The
prototypes are selected for both the original dissimilarity representation (Orig) and its sigmoidal transforma-
tion (Sigm) as a function of the parameter C . The horizontal lines correspond to the classification errors for
the original representations based either on 4BA or kBA prototypes. The standard deviations of the means are
less than A±ë @:m . The Û -NN error defined on the training set � of @BA�A examples, i.e. derived from Ý ÞN� { ´�áM��ã is
V¢ë k:m for the GeoSam. Since the sigmoidal transformation is monotonic, the Û -NN results remain unchanged.

space, where each dimension corresponds to a dissimilarity to an object from � . This allows us to
construct traditional decision rules, such as linear or quadratic classifiers on such representations.
Hence, the prototype selection relies on the selection of the representation set à J � such that the
chosen classifier performs well in a dissimilarity space ÝßÞ��¸áâà�ã . Since the classifier is then trained
on Ý ÞN� áâà�ã , a better accuracy can be reached than by using the Û -NN rule defined on the set à .

Various random and systematic selection procedures have been empirically investigated for the nor-
mal density based quadratic classier (NQC) built in dissimilarity spaces. The Û -NN method, defined
both on a complete training set � and a representation set à is used as a reference.

The following conclusions can be made from our study with respect to the investigated data sets:

1. By building the NQC in dissimilarity spaces just a very small number of prototypes (such asf m - 2!4:m of the training set size) is needed to obtain a similar performance as the Û -NN rule
on the entire training set.

2. For large representation sets, consisting of, for instance 4BAnm of the training examples, sig-
nificantly better classification results are obtained for the NQC than for the best Û -NN. This
holds for two-class problems and not necessarily for multi-class problems, unless a suitable
regularization parameter is found.

3. Overall, a systematic selection of prototypes does better than a random selection. Concerning
the procedures which have a control over the number of selected prototypes, the KCentres
procedure performs well, in general. In other cases, the linear programming performs well
for two-class problems, while editing and condensing sets should be preferred for multi-class
problems.

In our investigation, multi-class problems are more difficult as they need a proper regularization for
the NQC discrimination function. Moreover, this classifier becomes computationally more expen-
sive. Therefore, there is a need for a further research to study more suitable classifiers and other
prototype selection techniques for multi-class problems.
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9.3 Selection of the representation set: the embedding approach
In the embedding approach, one considers an embedding of the symmetric dissimilarity dataÝßÞN�ðáM��ã into a Û -dimensional pseudo-Euclidean space A . ä¥` � ü 
 � � , Û�äiç � U such that the original dis-
similarities are perfectly preserved. However, many dimensions can turn out to be non-informative
since the variance in the data are close to zero. The variances of the projected data are specified
by the eigenvalues derived in the embedding; see sections 3.3.3 - 3.3.6 for details. In fact, one
determines the dimensionality � ä ç� � U�� based on eigenvalues which are significantly different
from zero. The remaining Ûè$ � dimensions are simply neglected as corresponding to noise and
non-significant information. If � is much smaller than Ü äõN �ÎN , then the question arises whether Ü
objects are necessary to determine the � -dimensional space. In fact, only � � 2 objects can define
a linear space: one object will serve as a reference to the origin and � objects will correspond to
the basis vectors. This is computationally attractive, since only dissimilarities to these � � 2 objects
need to be computed. The task can now be formulated as follows. Given the representation à in` � ü 
 � � that preserves the original dissimilarities, choose the representation set à of � � 2 objects
such that the projection defined by à , (hence the space defined by Ý Þ�à~áâà�ã with the remaining �Æ}wà
objects projected later to this space) gives a configuration which is close to à (according to some
criterion). A set à , spanning the space ` � ä ` � ü 
 � � such that ` � is defined by � leading principal
axes, might not, however, exist. To avoid an intractable search over all possible subsets, an error
measure between the approximated and original configurations can be defined to be minimized,
e.g. in a greedy approach [409]. Here, our ultimate goal, however, is not the best approximation of
the given configuration à , but, good classification results in an embedded space. In fact, à should
be chosen such that the discrimination between the classes is preserved or even improved. The fol-
lowing procedures are considered for the selection of à : Random, KCentres, MaxProj, APE, LAE,
Pivot objects and NLC-err, as explained below.

Random. � � 2 objects are randomly chosen from all training objects.

KCentres. � � 2 center objects are chosen such that they minimize the maximum of the dissimilarities
over all training objects to their nearest neighbors; see also section 9.2.1.

Note that the two procedures above do not guarantee a faithful representation of the originally
embedded à . The procedures below focus more on this aspect. We start our reasoning from à ,
whose mean vector coincides with the origin. To simplify the approach, the origin of the embedded
space will now be fixed to the projection of the object ç �

which is the closest to the origin. Such
an object is easily detected as the one whose average square dissimilarity to � is the smallest [152,
293, 301]. Having determined ç �

, the entire configuration à is shifted to the new origin. So, since
now on, à refers to a shifted configuration. Starting from ç �

, objects are now successively added
in each step until � � 2 objects are found. In each step, an object is selected that minimizes a
specified criterion. This does not guarantee the overall optimal solution, however, it guarantees the
best immediate solution.

Let à � ä æÏç � í and let àè� � è be the representation set after the Þ x&$�2�ã -th step.To assure that the chosen
objects are linearly independent and to make the selection a feasible process, in the x -th step, only

?
objects � � ä æ-� � è á ë¸ë¸ë¸á�� � O í J �\}wà � � è with the largest (in magnitude) projections on the x -th principal
axis are pre-selected to be tested against the specified criterion.

?
is assigned to e.g. 2#Anm of the

training size. This holds for all criteria introduced below.

MaxProj. In each step, this criterion chooses an object yielding the largest (in magnitude) projection
on the x -th dimension.

Average Projection Error (APE). Let A�� � è be a x -dimensional subspace of the complete embedded
space Al. ä~` � ü 
 � � (ç � U ä Û ), where A�� � è is determined by àß� � è äjæÏç � á�çvèwá ë ë ë�á�ç�� � è í . Based on the
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properties of the inner products and the embedding, and given that ç �
is projected as ��è at the origin,

the square pseudo-Euclidean distance between a vector �`��/\` ï and its projection �
E Å Å Ö� onto A�� � è ,

the approximation error can be expressed as:

[ apr ÞX�^�ÎãêäoN N �E�E$m� E Å� N N éE äoN N �E�uN N éE $lN N � E Å� N N éE Å ä � é Þ ç*�Ïá�ç � ã¾$ Þ�� � ì �� � ã Û þ � è � � ì �� � á (9.2)

where � � ì �� � is the 1 -th column of the cross-Gram matrix þ � ì � and þ is the Gram matrix, where bothþ and þ � ì � refer to the representations in A � defined by pairwise dissimilarities between x � 2 objects
(i.e. the origin and the basis)7. Having chosen the set àß� � è ä æÏç � á�ç èwá ë¸ë¸ë¸á�ç�� � è í , in the x -th step,
an object �Ì/�� � is selected as ç&� such that the average projection error

� �)¤ ý Û [ apr ÞX�E�Îã onto the
space A � , defined by æ�à � � è á��±í (hence A � is determined by projecting Ý ÞG� à � � è á��B��á¹� à � � è á��B�Òã ) is the
smallest.

Largest Approximation Error (LAE). Having chosen the set àØ� � è ä æÏç � á�çvèÅá ë¸ë¸ë¸á�ç�� � è í , in the x -th step,
an object �Ø/�� � is selected as ç � as the one which yields the largest approximation error (9.2) of �
onto the space A � � è , defined by àß� � è . Since in the first step, the inner products cannot be defined
yet, [ apr ÞX�^�Îã is assumed to be equal to

� é Þ ç��âá�ç � ã , where ç �
is the object closest to the origin in the

embedded space, as described before.

NLC-err. Starting from à ä æÏç � í , in the x -th step, an object �K/�� � is selected as ç&� as the one for
which the embedded configuration à�� of ÝßÞN� áâàè�¶ã allows for reaching the smallest @ -fold cross-
validation error of the NLC (or other chosen classifier). In case of ties, an object with the largest
projection on the x -th axis is chosen.

Pivots. Choose � YB4 times two pivot objects as described in the FastMap algorithm in section 3.4.1.

The above criteria select the representation set à as appropriately defined by à � . Their results
can be judged by various measures. For instance, to see how much distortion was introduced by
the approximation step (hence the selection of à ), the mean square error between the original and
approximated dissimilarities can be computed. Another possibility is the computation of the average
between-class square distance to the average within-class square distance, again on both original
and approximated dissimilarities. It gives an indication on the class separability. Since, in fact, our
purpose is the classification task, it is not crucial that the distances are well preserved when the
classification performance is good. For this reason, we focus on the resulting classification error.

9.3.1 Experiments and results

Most of the data sets that are used in our study are the one analyzed for prototype selection methods
in the dissimilarity space approach; see section 9.2.2. The experiments are performed

? ä04�@ times
for two-class data and

? ä 2#A times for multi-class data, and the results are averaged. In each
run, data sets are randomly split into the training and test sets, as indicated in Table 9.2. In each
experiment, � � 2 prototypes are either directly selected by the Random or the KCentres approaches,

7 Given a symmetric matrix ùù×y Ê¤"  Ù , a linear embedding into ��� ¦ � © ¦ � ¼����	� ��� ¿ can be constructed such
that the origin coincides with the vector representation of e.g. � Ö . Since by our assumption

Ø Ø � ¤ Ø Ø (� ¦ Ø Ø � ¤ ÖÐ Ø Ø (� ¦ È»(� ×y� ¤ ¤"� Ö Ù ¦ È
( × ¬ ¤ ¤£¬�z Ù holds, then the Gram matrix (a matrix of inner products)  ¦"!$# ¤ Å&% for the vec-
tor representation !D� Ö ¤5ò�òvò�¤I� � %(' � is expressed by using the pseudo-Euclidean distances as # ¤ Å ¦*) � ¤ ¤I� Å,+ ¦Ö Ö(.- È»( × � ¤ ¤I� Å Ù�Ö È
( × � ¤ ¤"� Ö Ù�Ö È»( × � Å ¤"� Ö Ù0/ . By the eigendecomposition of  n¦�13241ØêK¦ ×51 Ø 2 Ø Ö ½ ( Ù76 �8� ×91 Ø 2 Ø Ö ½ ( Ù ê ,:

can be represented in the space � as
: ¦;1 © Ø 2 © Ø Ö ½ ( , where � reflects the number of eigenvalues, significantly

different from zero. Novel objects ù ¼ � ¿ � ¦lùù× ¨ ¼ � ¿ ¤"  Ù are then orthogonally projected onto � as
: ¼ � ¿ . Based on the

matrix of inner products  ¼ � ¿ ¦(!8# ¼ � ¿¤ Å % consisting of # ¼ � ¿¤ Å ¦ Ö Ö( æ È»( × � ¼ � ¿¤ ¤I� Å Ù`Ö È»( × � ¤ ¤I� Ö ÙIÖ È»( × � ¼ � ¿Å ¤I� Ö Ù é , : ¼ � ¿ is
given by

: ¼ � ¿ ¦< ¼ � ¿ : Ø 2 Ø Å Ö 6 �$� or
: ¼ � ¿ ¦� ¼ � ¿  Å Ö : . This is similar the projection presented in section 3.3 with

the difference that a specified object is mapped to the origin.
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Table 9.4: Dissimilarity data sets used in the experiments. � and � { ´ correspond to the training and test sets,
respectively. NG�<N stands for the set cardinality. A rough estimation of the effective intrinsic dimensionality � Ý
relies on the number of significant eigenvalues in the embedding of ÝßÞN�ðáM��ã , while ID refers to the number
of indicative dimensions, in general.

Data Dissimilarity Property Effective ID ID
Polydisth Hausdorff M, nE 18 60
Polydistm Mod. Hausdorff nM 13 50
NIST-38 Euclidean E 7 20
Zongker-12 Template-match nM 6 15
GeoSam SAM [239] M,nE 5 8
GeoShape Shape

ýµþ
M, nE 6 10

ProDom Structural nM 18 80
Zongker-all Template-match nM 10 80
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Fig. 9.18: Polygon data: classification error (averaged over 4�@ runs) of the NLC in an � -dimensional em-
bedded space as a function of � for the Polydisth data (left) and the Polydistm data (right). Except for ’ALL’,
other criteria choose a representation set à of � � 2 objects, which serves for the determination of an embed-
ded space and training the NLC there. ’ALL’ stands for the NLC results, where the � -dimensional embedded
space is found by using all training objects. The NN results are based on àm. ä�� , i.e. kBA�A objects and are given
as a reference. For the Polydisth data, the error curve corresponding to the random selection is not visible,
since it lies above the given scale. Additionally, also the classification error of the NQC for the Polydisth is
shown for à chosen as pivot objects or by MaxProj criterion.

or based on the dissimilarity matrix Ý ÞN� áM��ã . First the complete Û -dimensional representation ofÝßÞN�ðáM��ã is found and then the set à of � � 2 objects is chosen according to some specified criterion.
Next, the approximated space, defined by objects from à is determined (i.e. the mapping based onÝßÞ�à~áâà�ã only), where additional �Æ}wà objects are projected. The NLC (equivalent to the FLD for
two equally probable classes) is then trained both in the reduced and approximated spaces and the
generalization error is computed for the test set. Here, we have decided for a fixed and simple
classifier, the NLC, although, in some cases it is not the best choice. As a reference, the results
of the 2 -NN and the best Û -NN rule on the entire training set � , i.e. determined by Ý ÞN�E+ ; áM��ã , are
provided.

The results of our experiments are presented in Fig. 9.19 - 9.22. The standard deviations are not
shown there to maintain the clarity of the plots. In general, the standard deviations vary from
4:m to b9m of the averaged classification errors. The number � of important dimensions (hence an
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Fig. 9.19: NIST data: classification error (averaged over 4�@ runs) of the NLC in the � -dimensional embedded
space as a function of � for the NIST-38 data (left) and the Zongker-12 data (right). All, but ’ALL’ criteria
choose a representation set à of � � 2 objects, which serves for the determination of an embedded space
and training the NLC there. ’ALL’ stands for the NLC results, where the � -dimensional embedded space is
found by using all training objects. The NN results are based on à�. äk� , i.e. 4BA�A objects and are given as
a reference. Note that scale differences.

indication on the cardinality of the set à , since N àON ä � � 2 ) is related to complexity of the given
classification problem. This is somewhat related to the intrinsic dimensionality. As observed in
Fig. 9.4 -9.6, every dissimilarity problem has a different intrinsic dimensionality � (determined by
significant eigenvalues in the embedding). By a visual judgment, the estimations can be made; see
Table 9.4. So, ideally, our selected representation set à could consist of � � 2 objects. This, however,
might not be sufficient, simply, because an approximation is made by using only the set à (instead
of � ) to define an embedded space. Moreover, the additional difficulty arises when the classes
are not linearly separable. If the linear classifier is not adequate for the embedded configuration
(because the boundary is e.g. quadratic), the classification error might be large. So, the choice of
the representation set as well as the discrimination function plays a significant role in solving the
classification task for the given à . In our study, the NLC has been selected, which might not be
optimal.

As observed before in Fig. 9.4 - 9.9, the following observations are important for the embedded
space approaches:ô Both Polydisth and Polydistm dissimilarity data are strongly non-Euclidean. The intrinsic

dimensionality is smaller for the Polydistm than for the Polydisth. Also, as judged from the 2D
spatial maps, the classes for these problems are overlapping (in a 4 -dimensional approximate
embedding space), yet, they are more compact for the Polydistm than for the Polydisth. For
the Polydisth embedding, the classes may seem to be uniformly distributed.ô The NIST digits appear to be linearly separable as shown in Fig. 9.5 for the 2D approximate
embeddings. The intrinsic dimensionality is small for the NIST-38 case, while larger for the
Zongker-12 data.ô The multi-modality of the geophysical data can be observed in cluster tendencies that are
visible for the 2D approximate embeddings. Both sets seem to have a low intrinsic dimen-
sionality.ô The ProDom data are nearly Euclidean.

Concerning the classification performance in embedded spaces, as observed in Fig. 9.18, the Poly-
disth problem is more difficult than the Polydistm problem. Indeed, the Polydistm classes are linearly
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Fig. 9.20: Geophysical data: classification error (averaged over 4�@ runs) of the NLC in the � -dimensional
embedded space as a function of � for the GeoSam data (left) and the GeoShape data (right). All, but ’ALL’
criteria choose a representation set à of � � 2 objects, which serves for the determination of an embedded
space and training the NLC there. ’ALL’ stands for the NLC results, where the � -dimensional embedded
space is found by using all training objects. The NN results are based on àq. äl� , i.e. @BA�A objects and are
given as a reference. Additionally, also the performance of the NQC is shown for the GeoShape and à chosen
by the KCentres procedure.
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Fig. 9.21: Four-class Prodom data: classification error (averaged over 4�@ runs) performance of the NLC in
the � -dimensional embedded space as a function of � . All, but ’ALL’ criteria choose a representation setà of � � 2 objects, which serves for the determination of an embedded space and training the NLC there.
’ALL’ stands for the NLC results, where the � -dimensional embedded space is found by using all training
objects. The NN results are based on àq. äí� , i.e. V&2 f objects and are given as a reference. The lack of a
proper regularization in the NLC makes some of the error curves grow up.

separable and the effective intrinsic dimensionality is small. The NLC based on all objects gives
nearly a zero-error. The same can be achieved for g�2 prototypes in the representation set à . Only
2<g - 4BA objects in the set à , chosen in some systematic way, allow the NLC to perform better than the
best Û -NN rule defined on àåäÞkBA�A objects.

Since there is a ’big gap’ between the NLC error curve in an embedded space defined on all training
examples and the NLC error curves in an embedded space determined by a number of prototypes
only, we tend to think that the NLC might be not the most suitable classifier for the problem.
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Fig. 9.22: Ten-class Zongker data: classification error (averaged over 4�@ runs) performance of the NLC in
the � -dimensional embedded space as a function of � . All, but ’ALL’ criteria choose a representation set à
of � � 2 objects, which serves for the determination of an embedded space and training the NLC there. ’ALL’
stands for the NLC results, where the � -dimensional embedded space is found by using all training objects.
The NN results are based on àm. ä�� , i.e. 2#A�A�A objects and are given as a reference.

Additionally, the NQC error curve is presented for the MaxProj and Pivots selection criteria ofà (they correspond to the best results). The generalization error decreases, however it does not
improve over the NLC result found in an embedded space defined by all objects. The representation
set à of b
A objects chosen by the Pivots or by the MaxProj method allows the NLC to reach a similar
performance as the Û -NN based on all training objects. Note also that the NLC-err criterion should
be preferred selects for small representation sets, however.

As observed in Fig. 9.19, the NLC in an embedded space defined by 2#A prototypes for the NIST-38
data and defined by @ prototypes for the Zongker-12 data outperforms the best Û -NN defined on
all ( 4BA�A ) training objects. The Zongker-12 problem is linearly separable and the NLC defined on
N àON¢äR4BA objects reaches a nearly zero error for the Pivots and the LAE selection methods. The
prototype selection procedures also seem to work well to fit the NIST-38 data, since both systematic
and random approaches allow one to reach an accuracy close to the one reached by the NLC in an
embedded space based on all training examples.

From our earlier observations, we already know that the geophysical data are multi-modal. This
means that a linear classifier in an embedded space will not fit the problem well. Yet, as observed
in Fig. 9.20, the classes can be reasonably separated for the GeoSam problem. The representation
set à of

f A examples defines an embedded space such that the NLC constructed there outperforms
the best Û -NN rule based on @BA�A training objects. However, for the GeoShape problem, the NLC
performs much worse than for the GeoSam. In fact, the NLC does not outperform the best 2 -NN
rule. This becomes, however, possible, when a quadratic classifier is used (see Fig. 9.20, right) for
the KCentres criterion.

In four-class Prodom problem, Fig. 9.21, some error curves grow with the increasing � . This is the
side-effect of the lack of proper regularization in the NLC. The KCentres and the APE criteria seem
to work well, however, in this case, the Û -NN rule based on all training examples is the best.

Concerning the ten-class Zongker problem, Fig. 9.22, at least 2!4BA objects in the representation set à
are needed such that the NLC in an embedded space defined on ÝßÞN�ðáâà�ã outperforms the Û -NN.

All in all, there is no single selection method that works the best for all � (which is also the size of
the representation sets). For small representation sets, the NLC-err, the supervised selection based
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on the cross-validation NLC error in an embedded space is always the best. This is not surprising,
since an embedded space is chosen to guarantee the best NLC performance. However, for larger
representation sets, this method may become significantly worse than the other systematic selec-
tion procedures. The KCentres approach seems to be good for multi-modal problems (the GeoSam,
the GeoShape and the the-class Zongker data), since the found prototypes represent the clusters.
The two methods that especially focus on the preservation of the original embedded configuration,
i.e. the APE and the LAE, are not significantly better than the other approaches. This again may
suggest that the goal of classification should determine the way the objects are chosen for à . In
principle, all systematic approaches considered here may work well. The random selection, al-
though not best, but it is also never the worst.

In comparison to the prototype selection methods investigated in the dissimilarity space approach,
section 9.2, somewhat different conclusions can be drawn with respect to the specific data (compare
plots in section 9.2.3 with the plots in the current section). The GeoSam is judged as an easier
problem than in the dissimilarity space approach, while the GeoShape, the other way around. Also,
the Polydisth problem seems to be better attacked by the dissimilarity space approach, while the
NIST-38 can be better discriminated in an embedded space. Such observations indicate that both
dissimilarity and embedding space approaches should be studied for choosing the best recognition
strategy.

Conclusions. Important conclusions can be drawn from our study on dissimilarity data embedded
in pseudo-Euclidean spaces. First of all, the NLC, built in an embedded space defined by all training
objects can significantly outperform the Û -NN rule. Secondly, a representation set à of less than
4BAnm of the training size can be selected, on which the approximated space is defined. In such an
approximated embedded space, the NLC can reach the same or even a much higher accuracy than
the best Û -NN rule based on all training objects (this holds for the GeoShape provided that the NQC
is considered instead). Thirdly, the KCentres procedures work well for multi-modal data. For a
small number of prototypes and a non-separable classification problem, the criterion based on the
classification error (here, the NLC-err) should be recommended. Finally, we have observed that
similarly as in the dissimilarity space approach, a random selection is also beneficial.

In this study, � � 2 objects were used to define an � -dimensional approximated embedded space. It
is also possible to use more objects, which remains an issue for further research.

9.4 On corrections of dissimilarity measures
In the dissimilarity space approach or the embedding approach we do not require metric properties
of a dissimilarity measure

�
(
�

should be nonnegative and obey the reflexivity condition, Def.2.30).
We demand that the compactness hypothesis is fulfilled by designing a measure which yields small
values for objects that share many commonalities. This guarantees that such a measure is meaning-
ful for the problem, i.e. the classes of objects will have some compact description. Ideally, we would
like to guarantee a true representation which requires that by a comparison of dissimilar objects, a
large dissimilarity value is obtained. More research is needed to study these issues.

Although our approaches to dissimilarity representations can handle arbitrary measures, an open
question refers to possible benefits of correcting the measure to make it metric or even Euclidean
[70, 319]. Metric or Euclidean distances can be interpreted in appropriate spaces, which posses
many useful algebraical properties and where an arsenal of discrimination functions exists. This
might also be interesting for the Û -NN rule, since metric properties allow for a construction of a
faster approximation rule; see e.g. [273]. Here, we investigate some ways of making a dissimilarity
measure either ’more’ Euclidean or ’more’ metric and the influence of such corrections on the
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performance of some decision rules8. We will experimentally show that the corrected measures do
not necessarily guarantee a better discrimination.

9.4.1 Going more Euclidean - an experimental investigation

From section 3.3, it is known that the Gram matrix þ äq$ èé -uÝ  é - is positive semi-definite (psd)
iff a symmetric distance matrix Ý is Euclidean. Consequently, if þ has ç positive and U negative
eigenvalues, Ý is non-Euclidean and a perfectly embedded Euclidean configuration à cannot be
constructed. However, Ý can be corrected such that it becomes Euclidean, which is equivalent to
making the corresponding Gram matrix þ psd. Some possible approaches to address this point were
discussed in section 3.3.2. Here, they are briefly mentioned:ô Clipping. Only ç positive eigenvalues are considered yielding a ç -dimensional configura-

tion à äRÿ ü ë è _ éü . Now, after neglecting the negative contributions, the resulting Euclidean
representation overestimates the actual dissimilarities.ô Adding 4B� . There exists a positive �p�Þ$Óp>=3?�@ , where pA=3?�@ is the smallest (negative) eigenvalue
of þ , such that ÝÊé � äa� Ý  é � 4`��Þ Ú*Ú�Û $ � ãµ�  è _ é is Euclidean [171, 301]. This means that the
corresponding þ � is positive definite. In practice, the eigenvectors of þ and þ � are identical,
but the value � is added to the eigenvalues, giving rise to the new diagonal eigenvalue matrixë � . äKëòï � � � . The original dissimilarities are distorted significantly if � is large.ô Adding á . There exists a positive á �Mp =CB$D , where p =CB�D is defined in Theorem 3.40, such
that such that ÝFE�ä Ý � á Þ Ú�Ú�Û $ � ã is Euclidean. The corresponding Gram matrix þGE has the
eigenvalues and eigenvectors which are different than these of the original Gram matrix þ .ô Power or Sigmoid transformation. There exists a parameter ç such that Ý ü ä Þ5H»Þ � �v�JIêç�ãÏã is
Euclidean for a concave function H defined as H»ÞXWuã�ä§W ü with ç�� 2 or as a sigmoid H»ÞXW�ã�ä
4�Y±ÞZ2 � [ �^]�_ H ã
$�2 [70]. In practice, ç is determined by a trial and error.

These approaches transform the problem such that a Euclidean configuration can be found. It is,
however, still possible that the applied corrections are less than required for imposing the Euclidean
behavior. In such cases, the measure is simply made ’more’ Euclidean (hence, also ’more’ metric),
since the influence of negative eigenvalues become smaller after some proper transformations. An
additional point to realize is that in case of approximate embeddings of a fixed dimensionality the
spaces derived from Ý and Ý é � will differ. This is caused by the fact the dimensions corresponding
to the negative eigenvalues become now the less important (by adding � to all eigenvalues, the
negative ones become the closest to zero) in the latter case, so they will not be selected. So, if
the negative eigenvalue contributions are large, the corresponding eigenvectors will represent the
space obtained from Ý . This means that the spaces obtained from an approximate embedding of
the original dissimilarity data and the corrected ones are very different if the dissimilarity measure
is highly non-Euclidean.

Five dissimilarity data are used in our study; see appendix A for details. The first two sets refer to
the dissimilarity representations built on the contours of pen-based handwritten digits [31]. The dig-
its are represented by strings of vectors between the contour points for which an edit distance with
a fixed insertion and deletion costs and with some substitution cost is computed. The substitution
costs such as an angle and a Euclidean distance between the vectors lead to two different represen-
tations [47], denoted as Pen-dist and Pen-angle, respectively. Both measures are non-Euclidean and
non-metric. Here, only a part of the data consisting of

f gn9 examples, is considered. The values
are also scaled by some constant to bound the dissimilarities. The digits are unevenly represented;
the class cardinalities vary between

f�f g and
f k f . Another dissimilarity data set consisting of 4BA�A�A

8 The results presented here come from [296]
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Table 9.5: Non-Euclidean and non-metric aspects of some dissimilarity representations used for experiments
in section 9.4.1. The ranges of 5 ûjû , 5 ù ´7K and ; indicate the smallest and largest values found for Ý Þ�à~áâà�ã ,
where N àON varies between

f A $õ@BA�A or 2#A $j4BA�A for the digit and polygon data, respectively. As a reference,
the last two columns present the average and maximum dissimilarity for the complete data.

D à 5 ù¬úûjû [ m ] 5 ù	úü ´«ý [ m ] ; avr. dissim. max dissim.
Pen-angle � 2#A±ë k¢á!2!4¢ë 4»� �
V¢ë gµá54
gµëw2�� � A±ë A±á²A±ë f � b¶ëw2 4BA±ë A
Pen-dist � 2 f ë�¢á!2<gµë f � � 2<gµë 4¢á54�b¶ë�»� � A±ë f á!2Åë A
� gµë A 2!4¢ë @
Zongker � 4�b¶ë @¢á f @¢ë @»� � 2#A±ë k¢á f @¢ë @»� � A±ëw2Åá²A±ë @»� A±ë k 2Åë A
Polydisth � 2 f ë A±á54�@¢ë @»� �
@¢ë gµá f 2Åë k»� A 2Åë 4 f ëw2
Polydistm �
@¢ë A±á!2 f ë A
� ��2Åë�¢á54
gµë k»� � A±ë A±á²A±ëw2�� A±ëvb 2Åë k

examples evenly distributed over ten classes describes the NIST digits [420]. Here, the dissimilarity
measure based on deformable template matching [207] is used. The data are referred as the Zongker
dissimilarity data. The last two representations are derived for randomly generated polygons. They
consist of convex quadrilaterals and irregular heptagons. The polygons are first scaled and then
the Hausdorff and modified Hausdorff distances, defined in section 5.4, between their vertices are
computed, yielding the Polydisth and the Polydistm dissimilarity data. The two classes are equally
represented by 4BA�A�A objects.

If the dissimilarity
�

is Euclidean, then for a symmetric Ý ä Þ � �v� ã , all eigenvalues p � of the corre-
sponding Gram matrix þ are non-negative. Hence, the magnitudes of negative eigenvalues show
the deviation from the Euclidean behavior. An indication of such a deviation is given by 5 ì ��Ê� . ä
N p � � ì N Y�p � � ] �G2#A�A , that is the ratio of the smallest negative eigenvalue to the largest positive one. The
overall contribution of negative eigenvalues can be estimated by 5 ì �" ; ñ . ä � � ¤0L � N p � N Y � ì�#8 è N p � N»��2#A�A .
Both these indices come from formulas (9.1). Any symmetric Ý can also be made metric by
adding a suitable value ; to all off-diagonal elements of Ý . Such a constant can be found as
;ðä ö��
	 ü 
 � 
 +EN � ü � � � ü +{$ � � +!N . A smaller value imposing a metric behaviour of Ý was determined
by us in a binary search. Table 9.5 provides suitable information on the Euclidean and metric as-
pects of the measures considered. The following observations can be made:ô The Pen-angle data set is moderately non-Euclidean and nearly metric.ô The Pen-dist data set is both moderately non-Euclidean and non-metric.ô The Zongker data set is highly non-Euclidean and highly non-metric.ô The Polydisth data set is highly non-Euclidean, yet metric.ô The Polydistm data set is moderately non-Euclidean and slightly non-metric.

The experiments are repeated @BA times for the representations sets of various cardinalities and the
results are averaged. The representation objects are randomly selected. The cardinality N àON varies
from

f
to @BA examples per class (ten classes) for the digit data sets and from @ to 2#A�A examples

per class (two classes) for the polygon data. For each N àON , two cases for the training set � are
considered: � ä à and � consisting of 2#A�A or 4BA�A objects per class for the digit and the polygon
dissimilarity representations, respectively. In the latter case, the ratio of N �ÎN Y{N àON becomes smaller
with the growing N àON . The test sets consist of 4
gn9 , 2#A�A�A or

f kBA�A examples for the pen-digit, NIST
digit and polygon data, correspondingly. For each dissimilarity representation, the Û -NN rule is
considered, as well as the linear discriminant, the NLC, built in both embedded and dissimilarity
spaces. The embedding is derived from ÝßÞ�à~áâà�ã , but additional objects � \ à , if available, are
projected there and used for constructing the classifiers. To denoise the data and avoid the curse
of dimensionality, the dimensionality of the embedded space was fixed to A±ë f N àON , so the dimensions
corresponding to insignificant (small in magnitude) eigenvalues are neglected. Also the principal
component analysis (PCA) [97, 138] was applied in the dissimilarity space ÝßÞ��¸áâà�ã to reduce the
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Fig. 9.23: Averaged (over @BA runs) classification error of the NLC (top and middle rows) and the SQRC
(bottom row) for the Pen-angle dissimilarity data as a function of the number of representation objects.

dimensionality to A±ë f N àON . In both cases, although the dimensionalities are reduced, the spaces are
defined by all representation objects à .

9.4.2 Results and conclusions

Adding a constant to the dissimilarities or applying a concave transformation preserves their order,
hence it does not influence the behavior of the Û -NN rule. However, during clipping (where all
negative eigenvalues are neglected in the embedding process), the recomputed Euclidean distances
non-monotonically differ from the original ones, hence the Û -NN rule will behave differently. Also
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Fig. 9.24: Averaged (over @BA runs) classification error of the NLC (top and middle rows) and the SQRC
(bottom row) for the Pen-dist dissimilarity data as a function of the number of representation objects.

both embedded and dissimilarity spaces change, so a linear classifier will change as well9. In
our experiments, we study the influence of such corrections on the given measures for various
representation sets à . For this purpose, a proper á and a proper � guaranteeing the Euclidean
behavior are determined. Two concave transformations are also additionally considered: the square

9 Adding a constant is not worth doing in a dissimilarity space, since a constant shift is then applied to all ù ¤ Å , but
the self-dissimilarity stays the same, that is ù ¤C¤ ¦�¢ . Because of that, the classifier performance is expected to stay the
same or worsen somewhat. On the other hand, if we apply the shift © to all dissimilarities, the constructed classifiers
should be the same, since all vectors ùù×µív¤«  Ù are shifted by the same vector © ¼ .
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Fig. 9.25: Averaged classification error of the NLC (top and middle rows) and the SQRC (bottom row) for
the Zongker dissimilarity data as a function of the number of representation objects.

root (which makes the dissimilarity measures closer to Euclidean, yet still non-Euclidean) and the
sigmoid with the slope C being the average dissimilarity between the representation objects. The
measures are non-Euclidean, but less than the ones originally given as judged by the magnitudes of
negative eigenvalues in the linear embeddings.

The results of our experiments compare the averaged performance of the NLC and the 2 -NN rule
and the best Û -NN rule (if ÛÌD�2 ). They are presented in Fig. 9.23-9.27. The standard deviations (for
all the data) reach on average A±ë f m and maximally A±ë�Î$�2Åë g,m for very small à . Additionally, the
performance of the SRQC (strongly regularized quadratic classifier with the regularization of A±ë 4 ;
see section 4.4.1) for the digit data is shown in Fig. 9.23 - 9.25 to indicate that such a classifier can
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Fig. 9.26: Averaged (over @BA runs) classification error of the NLC for the Polydisth dissimilarity data as a
function of the number of representation objects.

reach even a better accuracy than the linear one. The legends refer to the following transformations:ô orig - the original dissimilarities; no transformation is applied.ô add á / add 4B� - a constant value is added to the off-diagonal dissimilarities; Ý Þ�à~áâà�ã becomes
Euclidean.ô sqrt/sigm - a square root or a sigmoidal transformation of the dissimilarities; ÝßÞ�à~áâà�ã becomes
’more’ Euclidean.ô clip - only positive eigenvalues from the linear embedding are used to derive the Euclidean
distance representation.

The Û -NN rules are directly applied to the dissimilarities ÝßÞN�^+ ; áâà�ã to derive the classification error.
The clip Û -NN rules operate on the Euclidean distances derived from the clipped version of the
linear embedding of Ý obtained by taking only the positive contributions (neglecting the negative
eigenvalues).

Conclusions. By analyzing our results in Fig. 9.23 – 9.27, the following conclusions can be made:

1. The correction of Ý based on adding 4B� to all square dissimilarities different than the self-
dissimilarities yields worse results than by adding á to the dissimilarities, while the NLC is
trained in the corresponding embedded spaces. The former results are missing on some plots
since they are worse than the chosen scale.

2. The NLC and the SRQC in the (corrected or not) dissimilarity spaces perform similarly or
better than in the pseudo-Euclidean spaces. It can be observed by comparing right and left
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Fig. 9.27: Averaged classification error of the NLC for the Polydistm dissimilarity data as a function of the
number of representation objects.

plots in all figures.
3. For large � and small à J � , the NLC and the SRQC in both the embedded and dissimilarity

spaces (original or transformed by the square root or sigmoidal transformation) significantly
outperforms the Û -NN and the clipped Û -NN rules. This can be observed in the bottom rows
in all figures. For � ä à , this phenomenon is much less pronounced; the Û -NN might even
become somewhat better the alternative classifiers, as seen for the Pen-angle data in Fig.9.23,
bottom row.

4. Concave transformations (here the square root and the sigmoid function) have minor effect
with respect to the original dissimilarities, when the NLC or the SRQC are built in dissimi-
larity spaces. On the contrary, these classifiers deteriorate their performance while they are
constructed on the ’clipped’ Euclidean distance spaces.

5. Concave transformations of the dissimilarities seem beneficial for the NLC and the SRQC
in the corresponding pseudo-Euclidean spaces. These classifiers may perform better in such
spaces than in embedded spaces derived from the original dissimilarities or in the Euclidean
spaces obtained from the embedding of otherwise corrected dissimilarities. Interestingly, the
results of the NLC and the SRQC in the original dissimilarity spaces are comparable or even
better. In general, the square root transformation seems to work well.

If for small representation sets the Û -NN is far from optimal, linear (quadratic) classifiers built in
both embedded or dissimilarity spaces can significantly outperform the Û -NN rule. Concave trans-
formations of dissimilarities are somewhat beneficial for the classifiers built in embedded spaces,
however, they may have no essential effect in dissimilarity spaces (as judged from right plots in all
figures). None of the transformations considered here allows the NLC and the SQRC for reach-
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ing a considerably better performance than reached in original dissimilarity spaces. Thereby, we
conclude that the potential advantages of the imposed Euclidean behavior are doubtful, that is they
cannot be always guaranteed. It is more important that the measure itself describes compact classes
than its strict Euclidean or metric properties. This can be influenced by concave transformations
which aim at diminishing the relative effect of large dissimilarities and not by making them really
Euclidean10.

9.5 Some remarks on a simulated missing value problem
We think that dissimilarity representations are suitable for handling missing value problems. In
order to study their applicability for that purpose, a missing value problem has been simulated for
the recognition of the NIST digits

f
and  [420]. Here, images re-sampled to a 2!k%h�2!k raster are

studied. To analyze the performance of classifiers as a function of the number of missing values, the
images of

f
and  have been randomly corrupted. The level of corruption (degradation) is governed

by a probability d that a particular image pixel is unknown. Four different degradation levels are
used in our experiments, i.e. d ä æ¹A±ë A±á²A±ë 4¢á²A±ë gµá²A±ë k¶í ; see Fig. 9.28. Because the images are binary, the
missing values can be just assigned to the background pixels. This is in agreement with one of the
approaches to the missing value problem, where the unknown value becomes either the average or
the most common value among all other present values.

No degradation; d ä�A d ä�A±ë 4 d ä�A±ë k
Fig. 9.28: Simulation of a missing value problem by degradation. Degradation of 2!kÜhÎ2!k binary images of
digits

f
and  . The level of degradation is governed by the probability d that an individual pixel is set to

background.

The usual way of computing dissimilarities on the binary data is to construct a similarity measure
first and then to transform it to the corresponding distance. For the binary objects 1 and x the
similarity measures are often based on the variables Q�á$M�á²; and

�
reflecting the number of elementary

matches between the objects, as explained in section 5.1. Three dissimilarity measures were chosen
for the analysis: Jaccard,

� �v� äON 2è$ �� 7 = 7 i (Euclidean), simple matching,
� �v��än2Ø$ � 7 ?� 7 = 7 i 7 ? (non-

Euclidean metric) and Yule,
� �v� än2è$ � ? � = i� ? 7 = i , (non-metric); see also Table 5.1. The Jaccard measure

is of interest, since it is the overlap ratio excluding all non-occurrences, and, thereby, disregarding
the information on matches between the background pixels. On the contrary, the simple matching
measure describes the proportion of the matches with respect to the total number of pixels. Hence,
it counts the matches between the background pixels, where some of them are in fact the unknown
value. The Yule dissimilarity is a cross-product ratio.

Our aim is to compare the behavior of the classification methods on these dissimilarities. For each
level of degradation, complete distance representations were computed. We assume that the training

10 Note that the beneficial effect of a nonlinear transformation of dissimilarities for a random prototype selection and
the NQC trained in transformed dissimilarity spaces has been already observed in Fig. 9.17.
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Fig. 9.29: Comparison of classification approaches in embedded spaces (left) and in dissimilarity spaces
(right) on three different dissimilarity representations: Jaccard (top), simple matching coefficient (middle)
and Yule (bottom). The standard deviations of the averaged results are less than A±ë 4:m for the degradation
level do��A±ë 4 and less than A±ë g,m for the larger d .

and the test sets are degraded in a similar way. A training set of a fixed size of 2#A�A samples per class
was randomly chosen. All the classifiers are tested on an independent test set of @BA�A samples per
class. The testing procedure is repeated 4BA times and the results are averaged. Both the training and
testing sets have now the fixed sizes and the varying quantity is the level of image degradation.

The Fisher linear discriminant (FLD), section 4.5, is trained in embedded spaces: the Euclidean
space created by the restriction of the complete pseudo-Euclidean embedding, pseudo-Euclidean
embedded space and the corrected Euclidean space (section 3.3.2). All the spaces are retrieved with
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a large dimensionality corresponding to the V�V¢ë V:m of the preserved variance; see section 3.3.4. In the
dissimilarity space approach, the following classifiers were used: the RNLC with the regularization
of p ä7A±ë A{2 and both sparse and non-sparse linear programming classifiers (LPC) built on the entire
dissimilarity representations ÝßÞN�ðáM��ã , formulations (4.14) and (4.15), respectively. The sparse LPC
selects, in fact, its own representation set. The NLC was also built on the representation Ý ÞN� áâà�ã
with à consisting of 4�@:m randomly chosen objects out of � .

Fig. 9.29 presents the generalization error rate as a function of the increasing data degradation for the
Jaccard, simple matching and Yule measures and three approaches: the 2 -NN rule, the embedding
approach and the dissimilarity space approach. The following conclusions can be drawn:ô The performance of all considered decision rules deteriorate with the increasing corruption

(missing information) level. Still, the best decision rules reach the error of :m $ 2#Anm for
d äÌA±ë k , while the 2 -NN rule reaches the error of ã 2�:m for the same degradation level.ô Most of the linear classifiers, both in the embedded and dissimilarity spaces, outperform the
2 -NN rule. They are also more robust against the missing values. Comparing all results, the
2 -NN rule deteriorates the most.ô The NLC in a dissimilarity space defined by à based on 4�@:m randomly chosen training ex-
amples often yields worse results than the other classifiers (right column of Fig. 9.29).ô On average, the Jaccard dissimilarity allows for a better separability of classes than the Yule
and simple matching distances. Two methods give identical errors: the RNLC and the LPC
(both with àåä�� ) in dissimilarity spaces. They also achieve the smallest overall errors, which
for the non-degraded images equals 2Åëvb9m .

As a reference, we report the best results for other, more sophisticated representations based on the
Euclidean distance between the Gaussian-smoothed 2!49�hL2!49 images and the modified-Hausdorff
between the digit contours. For the training set of 2#A�A objects per class, the best linear classifiers in
the embedded and dissimilarity spaces reach ã g,m for the Euclidean representation and k:m for the
modified-Hausdorff representation, while the 2 -NN error is ã k:m for both of them; see also [301].

It is interesting that a simple distance measure (like Jaccard), operating on binary images of digits,
outperforms the modified-Hausdorff dissimilarity, computed on the contours. A possible expla-
nation is that the Euclidean and modified-Hausdorff dissimilarities are computed on the original
2!49Þh\2!49 images, while in the first case, the images were rescaled to a lower raster and by this,
the digits became aligned. The binary dissimilarity measures are also considerably robust against
the data degradation. The FLD in an embedded space and the RNLC and the LPC in dissimilarity
spaces applied to the degraded images at the level of d äõA±ë 4 still perform comparably to the best
results on the Euclidean or modified-Hausdorff distances. This still remains true for the degradation
level of d äÌA±ë g and the Jaccard distance representation.

In summary, we conclude that the presented binary dissimilarity measures (especially the Jaccard
one) are robust against missing (corrupted) information, when the classifiers are built in the em-
bedded or dissimilarity spaces. Among the classifiers considered, the 2 -NN rule shows the highest
sensitivity to data degradation, which is to be expected due to its sensitivity to noisy examples.
For imperfect dissimilarity measures, the 2 -NN method can be outperformed by more sophisticated
classifiers, taking into account a number of representative objects, thus becoming more global in
their decisions.

9.6 The existence of zero-error dissimilarity-based classifiers
In the statistical approach to pattern recognition numerical features are used to describe objects as
vectors in a vector space. Usually, such features are reduced descriptions of objects. Some (sig-
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nificant) information is lost and, as a consequence, essentially different objects may be represented
as the same vectors in the feature space. If this occurs for objects of different classes, the classes
overlap. There is no way of distinguishing such objects in the feature space and, thereby, any recog-
nition scheme based on such a feature representation has a non-zero classification error. As a result,
an error free recognition system is even asymptotically (for infinite training sizes) impossible. To
handle this, traditional statistical classifiers estimate the class probability density functions and built
the decision rules by minimizing the estimated class overlap.

A dissimilarity-based approach to pattern recognition relies on the dissimilarities computed be-
tween pairs of objects, while making use of their biological variability in the training set (which is
observed by the variations in the dissimilarities). If the dissimilarities are directly found on the raw
measurements (which contain all significant information on the objects), the loss of information by
the reduction to features, may be avoided. Under some circumstances, an assumption of a zero-
error classification (hence no class overlap) holds for dissimilarity representations11. Here, we will
discuss when such an assumption holds.

The NN rule is often practiced on the dissimilarity data, usually metric distances. In such a case,
the training set � can be used for the selection of prototypes à , but when à is chosen, the remain-
ing objects �u}Òà are not used for training. Other decision rules constructed either in embedded or
dissimilarity spaces make use of all training objects. They may demand less prototypes than the
NN rule for reaching the same performance and, thereby, a smaller computational complexity. As
mentioned above, under some conditions, the class overlap related to the use of feature spaces can
be avoided by the use of dissimilarities. The question arises whether it is possible to build classifiers
that exploit this in practice. In other words, whether we can construct classifiers that have asymp-
totically (for increasing training set sizes) a zero classification error. Note that for non-overlapping
classes (and metric dissimilarities), the asymptotic error of the 2 -NN rule is zero [87]. This may be,
however, impractical to reach, since it may demand an infinite training set to be stored and handled.

9.6.1 Asymptotic separability of classes

If the dissimilarity measure is zero if and only if the corresponding objects are identical, and if real
objects can be unambiguously labeled, then the class overlap may be avoided. This assumption can
be exploited by trying to construct zero-error classifiers [103], which should make use of the prop-
erty of non-overlapping classes and define the decision function in the ’gap’ between them. In fact,
this implies that the 2 -NN rule will constitute such a zero-error classifier. It may demand, however a
very large training set. As classifiers in both dissimilarity and embedded spaces appear to be much
more efficient than the 2 -NN by requiring a small number of prototypes for the construction, the
question arises whether these classifiers may also have an asymptotic zero-error.

Assumptions. The discussion is based on the following assumptions:

(1) Real, physical classes of objects are separable, i.e. there is no physical object that belongs to
more than one class.

(2) Raw measurements of objects are such that this separability is maintained12.
(3) The dissimilarity measure

� ÞXW áG�
ã between the objects W and � constructed on their raw mea-
surements (e.g. scanned images) is such that

� ÞXW áGWuãêäÌA and
� ÞXW áG�
ã��QPID�A if W and � belong to

different classes. This assumption states that there exists some ’gap’ between the classes of
the P -size: the objects of different classes have a dissimilarity of at least P .

11 This section relies on [103]. The idea of dissimilarity-based zero-error classifiers comes from dr Robert Duin.
12 One way to inspect this is to let the objects be labeled by humans based on the measurements (e.g. a video screen

that displays the object image to be used for a further processing). The possibility of labeling objects correctly should
still exist after scanning and display.
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(4) The raw measurements of objects W and � are continuous functions of the parameters R that in-
fluence their generation (e.g. lighting conditions, small rotations or sensor deviations). Hence,
the dissimilarity

� ÞXW Þ0Rvã�áG�uÞ0RvãÏã is continuous in R . The noise is such that for any two measure-
ments W and W � of the same physical object

� ÞXW�áGW � ã��SP holds.
(5) The digitalization of the measurements and, thereby, the computer representation of the ob-

jects is such that the minimum class gap is preserved.

In general, the role of a dissimilarity measure is to capture the notion of commonality or closeness
between the objects, i.e. it should be small for similar objects, and possibly large for distinct objects.
Consider now a set of objects à . A possible formalization of the notion of closeness between the
objects can be achieved by the use of neighborhoods, i.e. a collection of subsets of à for each
element WÊ/èà . Neighborhoods provide a general tool for describing relations between the elements
of à . Such neighborhoods can be defined by the use of dissimilarities as a special case; see sections
2.1 and 2.2 for details. The � -ball neighborhood of W is given as M&ToÞXW�ã�ä æ!� />à . � ÞXW�áG�µã)���êí . The
nested neighborhood basis becomes A ÞXW�ãuä æ�M T ÞXWuã .*���ÄA¢í and the space ÞXàåáTA ã is pretopological;
see Theorem 2.44.

Elements of each neighborhood show a specific level of similarity and in practical applications only
neighborhoods for some chosen, data dependent values of � can be considered. Since, later on, we
want to define classifiers on finite sets, we will restrict ourselves to a local basis. The neighborhood
basis of W , A T � ÞXW�ã is the set of all � which belong to the � ] -ball centered at W , i.e. A T � ÞXWuã�äUM T � ÞXWuã
for some specified � ] DâA . Note that � ] may depend on W . � ] is chosen such that there exists
a distinct object W � in the same class for which

� ÞXW�áGW � ã��í� ] holds (e.g. � ] äÄ2Åë A�A�A{2�� � ÞXW áGF�F ÞXW�ãÏã ,
where

� ÞXW�áGF�F ÞXW�ãÏã is the dissimilarity to the nearest neighbor of W ). Consequently, Ü /�VÊÞXà ã is
a neighborhood of W if A T � ÞXW�ãk] Ü and the neighborhood system � ÞXW�ã is the collection of all
neighborhoods of W . Consider now two classes of objects, denoted as S è and S é .
Observations. Based on our assumptions, the following observations can be made:

(1) For a sufficiently small positive � ] and any object W in the class SI� , there exists a dis-
tinct object in the same class such that the dissimilarity between them is smaller than � ] ,W ] ý ô ¤YX T � , � XJZ ý ô ¤ ÞX�Ê=äÌW\[ � ÞXW áG�
ã���� ] ã8I 1wäi2Åá54¢ë

(2)
W ] ý ô ¤ X Z ý ô ¤ W � ý�] � ] � ÞX�i=äMW^[e�e/åÜ ã8I 1wäi2Åá54¢ë

(3) The neighborhood basis of all W in S è contains no elements of S�é , that is
W ] ý ô Ö W Z ý ô{(��m=/A_T � ÞXWuã`[eW�=/pAaT ° ÞX�
ã and vice versa.

(4) All W from the class S è have a neighborhood that contains no elements of the class S é ,W ] ý ô Ö X � ýb] � ] � ÜdcKS é�ä�e . Equivalently,
W ] ý ô{( X � ý�] � ] � ÜdcKS�èµä�e .

This brings us to the existence of a rule that correctly assigns each WL/\SÕè to the class S è and each
WÓ/pS é to the class S é . The objects outside S è 6pS é will be mainly rejected. Some of them, sufficiently
close (in terms of neighborhoods) either to Sòè or S é , will be assigned to these classes. All objects
form the classes S è and S é will, however, be correctly classified. This is a zero-error classifier (with
a rejection option), provided that we only deal with the objects from either S è or S é .
Theorem ¢ 9.1 Assume two classes S è and S é . The following decision rule correctly classifies any
W for WÓ/oS è or WÓ/oS é :

1. If X � ý�] � ] � Üfc¥S�è
ä�eg[ÉÜhc�S é�ä�e , then reject W ,
2. else if X � ý�] � ] � Üfc¥S é ä�e , then assign W to the class S è ,
3. else if X � ý�] � ] � Üfc¥S�è�ä�e , then assign W to the class S é .

Proof. Assume that WÓ/pS þ . By observation (1), one has
W ð3ikjFlnmpo X_q i	ð �ä=ä�W.[��%/pS þ . Hence, Ürc�S þ =ä�e

and consequently, rule 1 does not apply. However, by observation (3), X ðCi,jQlsmpo Ü"cwS � ä�e , which means that
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Fig. 9.30: Digits misclassified by the NN rule (top row), their nearest neighbor of the ’3’-class (middle row)
and their nearest neighbor of the ’8’-class (bottom row) for the Hamming-NIST-38 data.

the rule 2 applies. As a result, W is assigned to the class S þ . If WÓ/oS þ , rule 1 does not apply, since some of its
neighborhoods have just elements in S þ . Assume now that W /@S � , then as a consequence of rule 3, as rule 2
does not apply, W is classified as a member of the class S � . t
Theorem 9.1 just shows that an error-free classifier exists. It does not describe how such a decision
rule may be constructed based on a finite set of training examples. Rule 1 above should take care
that the objects not belonging to one of the two classes, W�=/�Sòè¾6¥S é , are rejected. Some W�=/�S è`6KS é ,
however, having sufficiently small dissimilarities to the objects of at least one of the classes will also
be classified either as S è or S é . This does not contradict the theorem as it considers the elements
Wl/�S è 6�S é only. In other words, rule 1 rejects all objects that belong neither to the closure of S è
nor to the closure of S é . Rule 2 assigns W to S è if W does not belong to the closure of S é . Rule
3 assigns W to S é if W does not belong to the closure of S è . Rule 4 rejects W if it does not belong
to both closures. Furthermore, for each subset t of Sòè , the closure ; ý Þ t ã of t will be classified asS è (objects which belong to the border of Sòè have neighborhoods with no elements of S�é and vice
versa). So, the classes become closed sets.
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Fig. 9.31: The scatter-plot of the
distances to the nearest neighbors
of both classes for the Hamming-
NIST-38 data.

Experimental investigation. Consider the binary images of the dig-
its

f
and  from the NIST database [420]. A Hamming distance

(section 5.3) representation Hamming-NIST-38 is derived between
the

f 4äh f 4 re-sampled images. The first question that arises is
whether this set fulfills the assumptions formulated above. All
the nearest neighbor relations are checked for this purpose. In
Fig. 9.30, the objects misclassified by the NN rule together with
their nearest neighbors in both classes are presented. For some ob-
jects, it may be concluded that they are badly segmented as they
contain isolated dots. As a consequence, they do not fulfill the as-
sumption 4. Object representations based on segmentation errors
are not expected to have close neighbors. In a practical situation,
they may be removed from the training set. New objects, hav-
ing such defects, are, thereby, expected to be misclassified. For
practical problems, it might be, therefore, difficult to construct a
zero-error classifier.

In Fig. 9.31, the distances to the nearest neighbors in the Hamming distance representation are
shown for a part of the data. In a very few cases, the nearest neighbor belongs to a different class.
This causes a classification error. The total leave-one-out 2 -NN error estimate is 2Åë��@:m . The figure,
however, suggests that except for a few cases, a gap between the classes exists. In the following
experiments, we try to construct some classifiers in this area. We use a fixed training set of @BA�A
objects per class. The remaining @BA�A objects per class are used for testing. The following classifiers
are considered. The Fisher linear discriminant (FLD) in a dissimilarity space and the FLD in an em-
bedded space, both defined by systematically growing representation sets, chosen from the training
set � . Starting from a few objects in the set à , the systematic selection is done iteratively. In each
step, the FLD is trained and the training object that is the closest to the current decision boundary is
added to the à . For the construction of an embedded space, the eigenvectors corresponding to the
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Fig. 9.32: The performance of the FLD in a dissimilarity space (top row) and in an embedded space (bottom
row) as a function of the cardinality of à per class for the Hamming representation of the NIST-38 digits
(left) and the Polydistm data (right). à is a systematically growing subset of � . Both training and test errors
are shown. The 2 -NN error on the representations set is given as a reference. Note the scale differences.

largest eigenvalues, jointly explaining b
Anm of the generalized variance are used. The classifiers are
trained on Ý ÞN� áâà�ã .
In Fig. 9.32, the classification errors on the training set and test set are plotted as functions of the
cardinality of à . The test errors for the 2 -NN rule on ÝßÞN��+ ; áâà�ã are presented as well. This figure
shows that a zero-error classifier can be constructed for the training set, but it appears difficult to
obtain this result also for the test set. Since the assumption 4 is not fulfilled for these data (some
nearest neighbors belong to different classes), this might be an indication of its importance. To
judge it fully, however, other experiments are needed. Note the instability of the results for the
embedding procedure (bottom plots) for small representation sets.

Additionally, the two-class Polydistm polygon data of randomly generated convex quadrilaterals and
irregular heptagons is considered; see also section 9.2.2. The care is taken that the heptagons do not
degenerate to quadrilaterals. In our experiments with growing representations sets, @BA�A objects per
class are used for training and the remaining 2!@BA�A objects per class are used for testing. The results
are shown in the right plots of Fig. 9.32. It can be observed that in a dissimilarity space a zero-error
classifier can be constructed for the training objects. Although the generalization error oscillates
in the neighborhood of zero, a perfect discrimination is not reached for the test data. It should be,
therefore, concluded that an error-free classification on an independent test set is hard to obtained.
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Fig. 9.33: Error curves for the 2 -NN rule and the exponential classifier for the discrimination on the Convex
polygon data represented by the Hausdorff (left) or modified-Hausdorff distances (right).

Further considerations. A zero-error classifier operating on non-Euclidean dissimilarities represent-
ing two classes of convex polygons, the Convex polygon data, was constructed more carefully. Two
classes of polygons are considered: pentagons (class S è , based on hêä0@ points) and heptagons (classS é , huäjb ). For the generation of a polygon, h vertices (points) are first regularly positioned on the
unit circle, i.e. the distances between two consecutive vertices are equal. Next, two-dimensional
noise is added to each vertex to perturb the polygons; see appendix A.1. A training set of 4���2#A�A
polygons and a test set of 4K�:2#A�A�A polygons are generated. Two dissimilarity measures are studied,
the Hausdorff and the modified Hausdorff distances, as defined section 5.4. The distance of a poly-
gon to itself is zero and it is positive for any pair of non-identical polygons. Distances vary in a
continuous way with the changes in the vertex positions.

The classifier defined in Theorem 9.1 can be described as a continuous function of the dissimi-
larities to a finite set of objects. Any object can be correctly classified using a rule based on the
nearest neighbors. The function ��Þ � Þ��µáGWuã8I²c ã�ä � ] ý ô>uv 	JwÇÞZ$ � Þ��µáGW�ãGY
c ãß$ � ] ý ô ( v 	_wiÞZ$ � Þ��µáGWuãGY
c ã
is a continuous decision function assigning � to the class SÕè iff ��Þ�Ý Þ��µáGW�ã8I²c ã�DjA and to the classS é iff ��Þ�Ý Þ��µáGWuã8I²c ãj� A . It performs the same classification. It classifies any object correctly if c
is sufficiently small, i.e. if AÎ�§cå� Þ0P�$b�wãGY<a c9e�Þ�ö��
	 Þ²N d)ô u N á»N d�ô{(&N�ãÏã as for that value of c the term
with the nearest neighbor object dominates. In fact, this is a linear classifier after an exponential
transformation, hence we will denote it here as exponential classifier.

Hausd. mod.-Hausd.Ý�0ô u 0.306 0.207Ý� ô ( 0.297 0.170ÝP 0.360 0.225
Fig. 9.34: Estimated values of �pxJy ,� x{z and P .

In Fig. 9.34 the maximum within-class NN distances (
Ý��ô u andÝ�³ô ( ) and the minimum between-class NN distances (

ÝP ) are listed.
These numbers may be interpreted as the approximations of the� -balls in the neighborhood bases ��ô u ä æ�M T8| © ·�} à u ÞXW�ã¹í and �³ô{( äæ�M8T | © ·�} à ( ÞXWuã¹í for the two classes and P is the ’gap’ between the
classes as discussed in our assumption list. They indicate that a
zero-error classifier may be constructed for both training and test-
ing sets, since

Ý�³ô u � ÝP and
Ý�0ô�()� ÝP . With the increase of the number

of training samples,
Ý��ô~u and

Ý�³ô ( will decrease to zero, but
ÝP will approach P . Therefore, for suffi-

ciently large training sets, the assumptions can always be satisfied. In our case, 2#A�A training objects
in total appears to be sufficient.

Random subsets of � polygons per class ( 4K� � �\2#A�A ) are drawn from the training set, resulting
in a 4 � h 4 � dissimilarity representation. A sigmoidal classifier is then trained. Test polygons
are classified on the basis of their 4 � dissimilarities to the training objects. The experiment is
repeated 4BA times (different random subsets of the same training set). The averaged errors are
presented in Fig. 9.33 for the Hausdorff and modified-Hausdorff distances for some chosen values
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of the scaling parameter c . Errors are compared with those of the 2 -NN classifier. It shows that the
linear classifier may perform better, in agreement with our earlier findings [293, 295, 301] and that
zero-error classifiers on the tests sets are found for small representation sets.

Discussion. The overlap of pattern classes may be avoided by a dissimilarity representation con-
structed from the data if the assumptions as listed in section 9.6.1 are fulfilled. We showed that
linear classifiers in dissimilarity spaces can outperform the nearest neighbor rule, even for large
training set sizes for which a good performance of the NN-rule may be expected. Although the
classes are separable, we cannot always succeed in our attempts to construct a zero-error solution
for the test set. This result certainly depends on the distance measure, the cardinality of à in relation
to the chosen classifier. At the moment, a suitable gap is constructed, a zero-error classification is
possible.

The challenge, we see for the future, is to construct more locally sensitive classifiers that need just
a fraction of the training examples for the representation set. Further research is needed to find
out how distance measures may be constructed such that the potentially zero-error result can be
obtained in practice.

9.7 Discussion
This chapter discusses classification aspects on dissimilarity representations. Dissimilarity mea-
sures with different properties: Euclidean, non-Euclidean metric and non-metric have been analyzed
for this purpose. Our approaches to dissimilarity representations allow one to handle non-metric
measures as well. In our experiments, we have demonstrated that simple linear or quadratic classi-
fiers constructed either in dissimilarity or embedded spaces can significantly outperform the Û -NN
rule for small representation sets, irrespectively of the properties of the dissimilarity measure. We
argue that, in fact, it is more important that the measure itself is discriminative for the problem than
its metric or Euclidean properties.

Various prototype selection procedures have been studied for both approaches, indicating that sys-
tematic procedures, where prototypes are chosen in a supervised way, by making use of the label
information, are beneficial, especially for a small number of prototypes. The selection based on the
KCentres procedure can be considered as a good approach, since it is fast and works on average
well. Also the prototypes (support objects) chosen by the sparse LP formulation are a candidate
for a good representation set in dissimilarity spaces. To gain some control over the number of se-
lected prototypes, the KCentres-LP procedure can be considered as it combines the advantages of
both procedures. In embedded spaces, the prototypes chosen as the ones which yield the largest
approximation error may be an alternative selection to the KCentres. Additionally, we have ob-
served that for the representation sets consisting of 4BAnm of the training objects, a random selection
is advantageous in both dissimilarity and embedded spaces.

In conclusion, our results encourage us to explore meaningful dissimilarity information in new,
advantageous ways, of which our proposals are an example. Under some constraints on the unam-
biguous labeling of objects and properties of the dissimilarity measure, the 2 -NN rule will allow
for zero-error recognition. This, however, might require very large training sets, hence infeasible
in practice. The study of proper dissimilarity measures and suitable domain-based classifiers (like
the 2 -NN rule, yet less local in their decisions), instead of probabilistic reasoning is open for further
research.





10. Combining

What is a committee? A group of the unwilling, picked from the unfit,
to do the unnecessary.

RICHARD HARKNESS IN THE NEW YORK TIMES, 1960

Fusing information from different sources or combining individual learning strategies may be effec-
tive for designing a good-performing pattern recognition system. The basic idea (and assumption)
is that an assembly of experts (say classifiers, approaches) tends to make a better decision than a
single one does. This can be expected if the experts are different, possibly independent in their
opinions, i.e. if their decisions are based on different principles. In classification, it means that the
sets of misclassified examples should differ among the classifiers such that if an individual classifier
makes a mistake, the others are able to correct it. Therefore, instead of relying on a single strategy,
all suitable strategies can be used for the derivation of the final consensus.

Combining is usually done for the increase in efficiency and/or accuracy of the classification sys-
tems. The former can be met by designing hierarchical combination rules, where simple and compu-
tationally inexpensive classifiers are used first for the recognition of non-difficult objects and more
advanced classifiers are applied to more specific cases later on. To increase the performance (hence
also the robustness), a care should be taken that the individual (base) classifiers differ. This can
be achieved, for instance, by using various feature-based representations or different training sets,
e.g. sampled versions of the original one [42, 196, 367]. An important study on classifier diversity
measures has been conducted by Kuncheva et al; see e.g. [231–233].

Two basic classifier combination scenarios can be distinguished. In the first case, the individual
classifiers are designed on the same representation or its various subsets. The classifier outputs can
be interpreted e.g. as fuzzy membership values, evidence values or posterior probabilities, or trans-
formed as such. In the probabilistic framework, classifiers can be assumed to estimate the same
posterior probability. Practically, it means that classifier ensembles are constructed in the same
feature space (having the same type of features) or based on the same dissimilarity description.
In the second scenario, the classifiers are built on different representations derived from physically
different types of measurements (sensors), e.g. audio- and video-related representations of a biomet-
rical identification, or from a focus on different aspects of raw measurements, e.g. representations
defined for shape and color characteristics in images. Since classifiers operate in different measure-
ment spaces, the estimated posterior probabilities do not refer to the same principal value.

A common theoretical framework for classifier combination has been discussed in [217], where
fixed rules such as the sum rule, product rule, min rule, max rule, median rule and majority voting,
are derived for general cases. Fixed combining rules operate on the classifier outputs and use some
strategy (like a sum) for the final decision. Alternatively, the classifier outputs can be considered as
new features on which a final output classifier is trained [100].

Many combination schemes have been proposed in feature spaces and it has been experimentally
demonstrated that some of them consistently outperform the single best classifier, see e.g. [230, 266,
267]. So, we do not aim at developing new approaches, but we rather focus on the specific type of
representations that we are dealing with. A learning problem can be now approached by using a set
of classifiers on a chosen dissimilarity representation. In practice, however, it is advantageous to
use various dissimilarity measures focusing on different data aspects or even different measurement
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data, especially, if the provided information is complementary. This leads to various dissimilarity
representations. As discussed above, except for combining various classifiers designed on a single
representation, we can combine classifiers built on different representations. One may go even a step
further to combine not the classifiers, but the representations themselves, which was our proposal
[292, 305]. It is believed that discriminative properties of different1 representations can be enhanced
by a proper fusion.

In this chapter, we study both the combined dissimilarity representations, on which a single classifier
is trained, as well as fixed and trained combiners applied to the outputs of the base classifiers, trained
on single representations. An experimental assessment is performed for the one-class and two-class
classification problems, as also published in [292, 305]. Our results show that both combining
approaches allow for a significant improvement in a classification performance over the results
achieved by the best single classifiers. Concerning the computational cost, the use of combined
representations might be more advantageous.

In the process of combining classifiers, variability between base classifiers is essential for construct-
ing a robust ensemble. Although various measures and many combining rules have been already
suggested, the problem of designing optimal combiners is still heavily studied. The diversity be-
tween the base classifiers is therefore important. We propose to analyze the conceptual dissimi-
larity representation describing the pairwise diversity between the classifiers judged e.g. by their
disagreements. The classifier projection space obtained as a spatial configuration of the diversities
is proposed by us as a visualization tool for analyzing the differences between base classifiers and
as an argument for the selection of good combining rules. This relies on our publication [304].

10.1 Combining in one-class classification problems
As studied in chapter 8, a one-class classification (OCC) problem is characterized by the presence
of the target class. Additionally, non-target examples may be provided, yet, they are known to be
non-representative or with unknown priors2. Since the non-target class is ill-defined, in complex
problems, an effective set of features for the discrimination between targets and non-targets cannot
be easily found. Hence, it seems appropriate to build a representation on the raw data. The dis-
similarity representation, describing objects by their dissimilarities to the target examples, may be
effective for such problems, since it naturally protects the target class against unseen novel exam-
ples. Optimal representations and dissimilarity measures cannot be found if one class if provided
and the other is missing or badly sampled. On the other hand, when one analyzes a particular phe-
nomenon, the model knowledge can be captured by various dissimilarity representations describing
different problem characteristics. In this way each additional representation may incorporate use-
ful information and a problem is tackled from a wider perspective. Moreover, it seems logical to
follow if no convincing arguments exist to prefer one dissimilarity measure over another. Com-
bining OCCs becomes, thereby, a natural technique needed for solving ill-defined (or unbalanced)
detection problems.

Although such problems are often met in practice, representative standard data sets do not yet ex-
ist. Our procedures here are not intended for general multi-class problems for which other, more
suitable, techniques exist. Our methodology is applicable to difficult problems where the target
examples are provided with or without additional outlier examples. For that reason, the effective-
ness of the proposed procedures is illustrated with just a single, yet complex, application. Given

1 We want to emphasize that by different representations, we mean not only mathematically different formulations,
but more importantly, representations based on different principles of the given phenomenon or different measurements.
For instance, in the support vector learning, one may consider kernels with various nonlinearity aspects.

2 Remember that standard two-class classifiers should be preferred if the non-target class is well represented.
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autofluorescence spectra, the aim is to detect diseased mucosa in an oral cavity.

10.1.1 Combining strategies

As before, dissimilarity representations Ý ÞN� áâà�ã will be interpreted in three learning frameworks:
the pretopological approach, where the dissimilarity values directly denote the neighborhoods, the
embedding approach, which builds on an embedded pseudo-Euclidean configuration and the dis-
similarity space approach, where the the features are defined by the dissimilarities to particular
representative objects. See sections 4.3- 4.4 for more details. Here, we assume that the represen-
tation set à consists of the target objects only. The following OCCs are considered as examples
of the three approaches: the nearest neighbor data description (NNDD), defined in section 8.2.1,
the generalized mean-class data description (GMDD), introduced in section 8.2.2 and the linear
programming dissimilarity data description (LPDD), described in section 8.2.3.

To study the behavior of the one-class classifiers, a ROC curve [41, 389] is applied. It is a function
of the true positive (target acceptance) ratio versus the false positive (outlier acceptance) ratio. To
compare the performance of various classifiers, when misclassification costs are not exactly known,
the AUC measure is used [40]; see section 8.1. In our experiments, we will present the AUC
performance as tG� îÌ� 2#A�A .
Two approaches are compared within this application. The first one focuses on combining dissimi-
larity representations into a single one, while the second approach considers a combiner operating
on the outputs of the OCCs.

Combined representations. Given various feature spaces (representations), one usually combines
the classifier outputs of classifiers trained on different representations. Learning from distinct dis-
similarity representations (DRs) can be realized by fusing them into a new representation, followed
by training a single OCC. As a result, a more powerful representation is hoped to be obtained, allow-
ing for a better discrimination. Suppose that á representations Ý � � �H ÞN� áâà�ã , � ä 2Åá54¢á ë ë ë�á á , all based
on the same representation set à , are given. The dissimilarity measures are similarly bounded, since
they have been scaled appropriately by a non-decreasing functions � � (such as linear, logarithmic
or sigmoidal functions), i.e. Ý � � �H ÞN� áâà�ã ä�� � Þ�Ý � � � ÞN� áâà�ãÏã . This step is important, since only then
the dissimilarity values can be related to each other; otherwise, we would need to compare not the
direct values, but the corresponding percentiles. The dissimilarity representations can be combined
into Ý i B �>= in the following ways:

Ý avr Þ�hÏ�¹á�ç��³ã ä 2
á

E6
� 8 è ( � Ý � � �H Þ�h��Ïá�ç��³ã (10.1)

Ý prod Þ�h � á�ç � ã ä E6
� 8 è adc9e�ÞZ2 � ( � Ý � � �H Þ�h � á�ç � ãÏã (10.2)

Ý min Þ�h � á�ç � ã ä öùøûú� æ�( � Ý � � �H Þ�h � á�ç � ã¹í (10.3)Ý max Þ�hÏ�¹á�ç��³ã ä ö��
	� æ�( � Ý � � �H Þ�hÏ�âá�ç&�³ã¹í (10.4)

The nonnegative weights ( � are additionally used to emphasize the importance of some measures.
Ideally, they should be learned for the problem at hand. If an OCC is built by using both target and
outlier examples, the importance of each representation can be weighted by its overall performance
(the AUC measure) on the training data (or the validation data, if available). Having the AUC
measures Q � , 1«ä 2Åá54¢á ë ë ëwá á in a training (or validation) stage, the DRs can be weighted by their
normalized versions ( � ä�Q���Y � E�98 è Q:� . If the target examples are only provided for training or if
there is no a priori knowledge, all the weights ( � are assumed to be equal.
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The DRs can be seen are combined into one representation by using fixed rules, usually applied
when the outputs of two-class classifiers are combined. The reason behind the use of a combined
representation is the fact that DRs can be interpreted as a collection of weak classifiers, where each
of them is understood as a dissimilarity Ý � � �H Þ��¸á�ç � ã to a particular object ç � . In contrast to proba-
bilities, a small dissimilarity value Ý � � �H Þ�h��¢á�ç*�Îã is an evidence of a good ’performance’, indicating
here that the object h � is similar to the target ç � . In general, different dissimilarity measures focus
on different aspects of the data. Hence, each of them estimates a proximity Ý � � �H ÞXW á�ç��rã of an object
W to the target ç � in its own way, so to say, by using partial knowledge. Combining such estimates
by fixed rules is recommended [217]. So, Ý avr yields an average proximity estimator. When, the
dissimilarity measures are independent (e.g. one built on statistical and the other on structural object
properties), the product combiner is of interest. Logically, both Ý avr and Ý prod should integrate the
strengths of various representations. Here, Ý prod is expressed by a logarithmic transformation of
the product of the dissimilarities, so that very small numbers (hence numerical inaccuracies) can be
avoided when close-to-zero dissimilarities are multiplied. The öùøûú operator chooses the minimal
dissimilarity value Ý � � � ÞXW á�ç � ã , �òän2Åá ë ë ë�á á , hence the maximal evidence for an object W resembling
the target h � . The ö��
	 operator works the other way around.

Combined classifiers. OCCs are in practice realized by some proximity function � prox ÞXW�áTS Û ã of an
object W to the target class S Û . To decide whether an object belongs to the target class or not, a
threshold U on � prox should be determined. A standard way is to supply a fraction 5 fn of (training)
target objects to be rejected by the OCC (a false negative ratio) [387, 389]. So, U is set up such thatZ W�Þ�� prox ÞXW áTS Û ã�DYUuã � ¦ ÞXW�ãêä¥5 fn, where ¦ is some measure.

One usually combines classifiers based on their posterior probabilities. However, the OCCs do not
directly estimate the posterior probabilities, since they rely on the information on a target class.
Moreover, the soft (proximity-related) outputs of the OCCs trained on different representations
might not be comparable. One possibility is to convert such proximities (e.g. distances to the class
boundary) to the estimates of probabilities. This can be achieved e.g. by the following heuristic
mapping

Ýç Þ�S Û N Wuã�ä [ $Ø� prox ÞXW�áTS Û ãGYBC , where C is a parameter to be fitted based on training objects,
as proposed in [389]. Note that 2{$ Ýç Þ�S Û N Wuã is an estimation that W is an outlier. Consequently, stan-
dard fixed combiners, such as mean, product and majority voting, can be considered. Additionally,
the raw or transformed proximity outputs can be further used as features for training a final OCC
combiner.

10.1.2 Data and experimental setup

The data consist of autofluorescence spectra acquired from healthy (target) and diseased (outlier)
mucosa in the oral cavity. The measurements were taken by using six different excitation wave-
lengths

f k�@ , f �@ , g�A�@ , g:4BA , g f @ and g:@BA nm. After preprocessing [406], each spectrum consists of
2!V�V bins. In total, �@�k and 2 f 4 spectra representing healthy and diseased tissue, respectively, were
obtained for each excitation wavelength. This means that one deals with six different measurement
data:

? èwá ë ë ë�á ? r , corresponding to six excitation wavelengths. The spectra are normalized so that
they yield a unit area; see also section A.2. The measurement sets are divided into the training and
testing sets in the ratio of kBA\.¾g�A with respect to both target and outlier class. So, there are @�V
g
training ( @&2<g target and BA outlier) examples and

f V�k testing (
f g:4 target and @�4 outlier) examples.

Two cases are here investigated: combining various dissimilarity representations derived for the
spectra of a single excitation wavelength of

f k�@ nm (experiment I) and combining representations
derived for all excitation wavelengths (experiment II). In both experiments, the combined represen-
tations and the combined classifiers are used. The basic difference between these lies in the use of
single measurement data or multiple measurement data. So, in the experiment I, the derived dissim-
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Table 10.1: Experiment I: AUC measure (AUC �w2#A�A ), averaged over
f A runs, derived either for the OCCs

built on the combined DRs or for fixed and trained combiners applied to the OCC outputs. All dissimilarity
representations are considered for a single measurement data (the excitation wavelength of

f k�@ nm). SO
denotes support objects. The standard deviations of the means are given in parenthesis.

Single DRs: OCCs trained on a single DR
DR � ® Å NNDD � GMDD � LPDD � SO � out

LPDD � SO
ù u 80.9 (0.5) 77.0 (0.6) 72.3 (0.7) 2.5 79.6 (0.5) 5.5ù deru 86.0 (0.4) 78.4 (0.5) 72.0 (0.7) 2.8 83.1 (0.5) 5.8ù 2deru 86.7 (0.4) 78.1 (0.6) 78.1 (0.7) 2.9 84.2 (0.5) 5.3ù SAM 81.8 (0.5) 76.6 (0.6) 68.0 (0.9) 2.9 80.2 (0.5) 6.1ù BH 85.5 (0.4) 77.3 (0.5) 75.1 (0.6) 2.1 80.1 (0.5) 2.5

Ia. Combined DRs: OCCs trained on ù combù comb � ® Å NNDD � GMDD � LPDD � SO � out
LPDD � SO

ù avr 95.5 (0.2) 94.6 (0.3) 93.0 (0.3) 4.1 93.4 (0.3) 5.1ù prod 95.7 (0.2) 94.9 (0.3) 93.6 (0.3) 4.6 93.6 (0.4) 7.6ù min 85.6 (0.4) 84.6 (0.4) 84.7 (0.5) 14.6 87.1 (0.9) 15.7ù max 93.5 (0.3) 90.6 (0.4) 84.7 (0.8) 7.1 89.0 (0.6) 10.5
Ib. Fixed combiners applied to the OCC outputs from ù u Ö ù���

Combiner � ® Å NNDD � GMDD � LPDD � out
LPDD

Mean 98.0 (0.2) 94.4 (0.4) 90.7 (0.6) — 93.8 (0.3) —
Prod 98.0 (0.1) 81.3 (0.6) 87.8 (0.5) — 91.1 (0.3) —
Min 93.3 (0.2) 91.0 (0.3) 88.8 (0.4) — 92.0 (0.3) —
Max 89.6 (0.4) 79.0 (0.5) 74.1 (0.6) — 81.9 (0.4) —
Voting 98.3 (0.1) 95.9 (0.2) 95.5 (0.2) — 97.0 (0.2) —

Ic. Trained combiners built on the LPDD outputs from ù u Ö ù �>�
Combiner � ® Å NNDD � GMDD � LPDD � SO � out

LPDD � SO
LPDD — — 90.1 (0.5) 4.9 95.8 (0.2) 5.0ñ -means — — 88.0 (0.4) — 91.1 (0.4) —
Parzen — — 90.5 (0.4) — 94.5 (0.3) —

Table 10.2: Experiment II: AUC measure (AUC �w2#A�A ), averaged over
f A runs of single OCCs built on DRs for

six measurement data sets (six excitation wavelengths). Only the worst and the best AUC values are provided.
’ALL’ refers to the results on all kÌh f (six wavelengths and three measures) dissimilarity representations.
The number of support objects in LPDDs varies between 4 and b .

Single DRs: OCCs trained on single DRs for the measurement data � u - ���
ù u ù deru ù 2deru ALL� ® Å NNDD 80.9 - 84.8 (0.5) 82.8 - 87.0 (0.5) 83.5 - 88.8 (0.5) 80.9 - 88.8 (0.5)� GMDD 77.0 - 79.4 (0.7) 77.9 - 81.7 (0.6) 75.4 - 81.6 (0.6) 75.4 - 81.7 (0.7)� LPDD 62.8 - 72.4 (0.8) 65.5 - 72.8 (0.8) 70.7 - 77.5 (0.8) 62.8 - 77.5 (0.8)� out

LPDD 78.3 - 81.7 (0.9) 73.5 - 83.1 (0.7) 77.7 - 83.2 (0.6) 73.5 - 83.2 (0.6)

ilarity representations are different with respect to the measure applied to the data
? è , while in the

experiment II, the computed dissimilarity representations are basically different with respect to the
data sets

? èÅá ë ë ë�á ? r , so in fact a single measure might be used for their computation. Hence, all
combining scenarios (combining classifiers on the combining representations, each considered on
the same or different measurement data sets) are captured in our experiments.

Five dissimilarity representations are used for the normalized spectra in experiment I (the wave-
length of

f k�@ nm); see also section 8.3.2, where some of these representations were already in-
vestigated. The first three DRs are based on the

ý è (city block) distances computed between the
smoothed spectra themselves ( Ý�è ) and their first and the second order Gaussian-smoothed ( cyä f
samples) derivatives ( Ý derè and Ý 2derè , respectively). Ý SAM is based on the spherical geodesic dis-
tance, also known as spectral angular mapper [239],

�
SAM ÞX��áTÔ�ãväj�	ÕGÖ³Ö0c:×�ÞX� Û Ô ã . Ý Ø P is based on
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the Bhattacharyya distance, a divergence measure between two probability distributions as defined
in section 5.2. This measure is applicable, since the normalized spectra can be considered as uni-
dimensional histogram-like distributions. As a result, all dissimilarity representations emphasize
different aspects of the spectra.

In experiment II, dissimilarity representations are derived for six measurement data:
? è - ? r . Only

the first three measures Ý è , Ý derè and Ý 2derè , described above are used.

As mentioned in the previous section, three base one-class classifiers are considered: the near-
est neighbor data description, the generalized mean-class data description (GMDD) and the linear
programming dissimilarity data description (LPDD). The classifiers will be denoted as V � � NNDD,V GMDD and V LPDD. Additionally, since the LPDD is able to incorporate the information on outlier
examples, if they are used, the resulting classifier will be denoted as V out

LPDD.

To describe the experiments more clearly, the following division is introduced:ô Ia or IIa denotes the experiments with the combined representation Ý i B �@= for which a single
OCC is trained. The dissimilarity representations are first scaled by the largest training value
and then combined into Ý i B �@= according to (10.4). Although the weights were estimated
based on the AUC performance on the training set (using outlier objects), they yielded little
variability. So, for simplicity, equal weights are assumed (we have also found experimen-
tally that the results for a weighted average are not significantly different than from a usual
average). In the experiment II, for each measure considered, six dissimilarity representations
are combined over various measurement data

? èÅá ë ë ë�á ? r and in the end, all 2� DRs (three
measures and six data sets) are combined, as well.ô Ib or IIb denotes the experiments with the fixed combiners applied to the OCC outputs. The
OCC outputs are first converted to the estimates of posterior probabilities, as described in
section 10.1.1 and then traditional mean, product, min, max and voting rules are used for the
final decision.ô Ic or IIc denotes the experiments with the trained combiners applied to the OCC outputs.
Here, we like to proceed with the exact (proximity-related) OCC outputs. To design a trained
combiner, we focus on the LPDDs as the base classifiers. Let us denote, for convenience, the
dissimilarity representations as Ý � � � , �¤äj2Åá ë ë ë á . Each LPDD is determined by a hyperplane� � � � in a dissimilarity space Ý � � � ÞN� áâà�ã . The distances to the hyperplane are realized by
weighted linear combinations of the form

� � � �P Þ�h � ã¶ä � � ¼s� ¿Å s8 � � � � �� Ý � � � Þ�h � á�ç � ãB$�ó . As a result,
one may construct an Fah á dissimilarity matrix Ý P äi� � � è �P ÞN��ã�á ë ë ë�á � � E �P ÞN��ãµ� expressing the
non-normalized signed distances between the F training objects and á base classifiers. Hence,
again an OCC can be trained on Ý P . This means that an OCC becomes a trained combiner
now, retrained by using the same training set (ideally, an additional validation set should be
used). The LPDD can be used again as a combiner, as well as some other feature-based
OCCs. (Although the values of Ý P become negative for the targets and positive for the
outliers, they are bounded, so the LPDD can be constructed based on the same principles.)
Two other standard data descriptions (OCCs) are used, where a proximity of an object to
the target class relies either on the information to the chosen Û -mean vectors ( Û -means) or
a density estimation by the Parzen kernels [387] (Parzen), respectively. They interpret the
LPDD outputs in a vector space.

The experiment itself (I or II) decides whether single or multiple measurement data are used.
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Table 10.3: Experiment II: AUC measure ( � 2#A�A ), averaged over
f A runs, derived either for the OCCs built on

the combined DRs or for fixed and trained combiners applied to the OCC outputs. The representations and
classifiers are combined over six measurement sets

? þ $ ?(� (related to six excitation wavelengths) and a
fixed dissimilarity representation. ’ALL’ refers to the results on all k¾h f (six wavelengths and three measures)
representations. SO denotes support objects. The standard deviations of the means are given in parenthesis.

IIa. Combined DRs: OCCs trained on ù comb combined over � u Ö ���� ® Å NNDD, ù comb ù u ù deru ù 2deru ALL
ù avr 97.7 (0.2) — 97.6 (0.2) — 96.8 (0.1) — 99.6 (0.0) —ù prod 97.7 (0.2) — 97.7 (0.2) — 96.9 (0.1) — 99.7 (0.0) —ù min 89.7 (0.4) — 89.5 (0.4) — 89.8 (0.3) — 90.4 (0.4) —ù max 96.8 (0.2) — 96.0 (0.2) — 94.4 (0.2) — 97.5 (0.1) —� GMDD, ù comb ù u ù deru ù 2deru ALL
ù avr 97.2 (0.2) — 97.2 (0.2) — 96.0 (0.1) — 99.6 (0.0) —ù prod 97.3 (0.2) — 97.4 (0.2) — 96.3 (0.1) — 99.6 (0.0) —ù min 96.4 (0.2) — 93.5 (0.3) — 90.9 (0.4) — 97.7 (0.2) —ù max 93.7 (0.3) — 93.3 (0.3) — 91.0 (0.3) — 95.3 (0.2) —� LPDD, ù comb ù u � SO ù deru � SO ù 2deru � SO ALL � SO
ù avr 96.6 (0.3) 5.2 97.1 (0.3) 4.2 95.6 (0.2) 3.6 99.5 (0.1) 4.3ù prod 96.9 (0.2) 5.7 97.2 (0.3) 4.0 95.8 (0.2) 3.7 99.6 (0.0) 4.9ù min 95.1 (0.3) 42.2 94.0 (0.3) 33.5 92.0 (0.5) 27.7 96.1 (0.2) 50.0ù max 89.6 (0.6) 11.2 89.8 (0.8) 9.0 85.4 (0.9) 8.9 92.3 (0.4) 11.1� out

LPDD, ù comb ù u � SO ù deru � SO ù 2deru � SO ALL � SO
ù avr 96.7 (0.1) 5.1 97.1 (0.1) 4.0 95.6 (0.1) 3.6 99.5 (0.0) 4.5ù prod 96.8 (0.1) 7.3 97.2 (0.2) 5.8 95.8 (0.1) 5.0 99.6 (0.1) 6.6ù min 95.1 (0.3) 42.7 94.1 (0.2) 34.8 92.2 (0.2) 29.5 96.3 (0.1) 50.4ù max 89.5 (0.2) 11.2 90.8 (0.2) 8.4 86.3 (0.4) 8.0 92.9 (0.1) 10.3

IIb. Fixed combiners applied to the OCC outputs� ® Å NNDD outputs ù u ù deru ù 2deru ALL
Mean 97.8 (0.1) — 98.0 (0.1) — 98.2 (0.2) — 99.6 (0.1) —
Prod 98.6 (0.1) — 98.5 (0.1) — 98.6 (0.1) — 99.6 (0.0) —
Voting 97.6 (0.1) — 98.7 (0.1) — 98.6 (0.1) — 99.8 (0.0) —� GMDD outputs ù u ù deru ù 2deru ALL
Mean 94.3 (0.4) — 94.2 (0.3) — 94.3 (0.3) — 98.3 (0.2) —
Prod 96.0 (0.2) — 96.4 (0.1) — 96.7 (0.1) — 99.7 (0.0) —
Voting 96.7 (0.2) — 97.4 (0.1) — 97.6 (0.1) — 99.6 (0.1) —

Fixed (IIb) and trained (IIc) combiners applied to the � LPDD outputs
Combiner ù u � SO ù deru � SO ù 2deru � SO ALL � SO

Mean 92.7 (0.4) — 92.9 (0.4) — 91.8 (0.3) — 94.5 (0.2) —
Prod 95.7 (0.9) — 95.7 (1.0) — 95.7 (0.5) — 98.7 (0.6) —
Voting 95.7 (0.4) — 96.8 (0.2) — 97.9 (0.1) — 99.3 (0.1) —
LPDD 89.3 (0.4) 5.9 91.5 (0.4) 5.9 94.6 (0.2) 5.9 96.6 (0.3) 13.2ñ -means 90.5 (0.3) — 93.0 (0.3) — 92.7 (0.3) — 97.2 (0.1) —
Parzen 92.1 (0.3) — 94.4 (0.3) — 94.9 (0.3) — 98.2 (0.1) —

Fixed (IIb) and trained (IIc) combiners applied to the � out
LPDD outputs

Combiner ù u � SO ù deru � SO ù 2deru � SO ALL � SO
Mean 93.7 (0.4) — 93.6 (0.5) — 95.6 (0.4) — 98.8 (0.3) —
Prod 95.4 (0.8) — 96.2 (0.9) — 97.2 (0.5) — 99.5 (0.6) —
Voting 96.3 (0.4) — 96.8 (0.2) — 98.0 (0.1) — 99.5 (0.1) —
LPDD 95.7 (0.2) 6.0 96.5 (0.2) 6.0 95.8 (0.2) 6.0 99.1 (0.1) 16.3ñ -means 93.8 (0.3) — 95.1 (0.2) — 94.2 (0.3) — 97.3 (0.1) —
Parzen 95.5 (0.2) — 96.8 (0.2) — 96.2 (0.2) — 98.9 (0.1) —

10.1.3 Results and discussion

The following observations can be made from experiment I; see Table 10.1. Both an OCC trained
on the combined representations (Ia) and a trained or fixed combiner on the OCC outputs (Ib and
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Ic) improve the AUC measure of each single OCC trained on the considered dissimilarity represen-
tations ÝÉèÅáâÝ derè áâÝ 2derè áâÝ SAM and Ý BH. Concerning the combined representations (Ia), the element-
wise average and product combiners perform better than the min and max operators. The

f
-NNDD

seems to give the best results; they are somewhat better than the ones obtained from the GMDD and
the LPDD trained on Ý comb ÞN� áâà�ã . However, in a testing stage, both the

f
-NNDD and the GMDD

rely on computing dissimilarities to all @&2<g objects of the representation set à , while the LPDD is
based on maximum 2!k support objects (see ø�}�� in Table 10.1; the support objects are determined
during training). Hence, the LPDD can be recommended from the computational efficiency point
of view.

The fixed and trained combiners on the OCC outputs perform well. In fact, the best overall results
for the base OCCs considered (the

f
-NNDD, the GMDD and the LPDD) are reached for the fixed

voting combiner. However, combiners require more computations; first individual OCCs are trained
on each representation and then, the final combiner is applied. Yet, if some outliers are available for
training the LPDD V out

LPDD, then the testing stage becomes inexpensive as it relies on the computation
of the dissimilarities to 4�b objects (the sum of the support objects found for each representation
separately).

Concerning the experiment II, where different measurement data set are considered, the following
observations can be made from the analysis of Tables 10.2 and 10.3. Again, both an OCC trained
on the combined representations (IIa) by the average and product, and a fixed (IIb) or trained (IIc)
combiner on the OCC outputs significantly improve the AUC performance (by more than 2#Anm ) of
each single OCC (compare to the results in Table 10.2). Since the spectra derived from various
wavelengths describe different information, an OCC built on their combined representation (where
a single measure is used to derive DRs over six measurement data sets) allows for reaching a some-
what better AUC performance than an OCC built on the combined representation (where various
dissimilarity measures are used to define the DRs) considered for a single wavelength. This consis-
tent behavior can be observed by comparing the results of IIa in Table 10.3 and Ia in Table 10.1.

The fixed voting rule applied to the OCCs outputs (IIb) gives mostly the overall best results (an
exception holds for the dissimilarity representation Ý è and the LPDDs as base classifiers). The
trained combiners (IIc) on the LPDD outputs are somewhat worse (possibly due to overtraining) than
the fixed voting combiner, however, they are similar to the results of the mean combiner. From the
computational point of view, either an LPDD trained on the combined dissimilarity representation
(IIa) or a fixed voting combiner on the LPDD outputs (IIb) should be preferred.

By using all six measurement data sets and three dissimilarity measures (so 2� representations in
total), all the combining procedures yield a nearly perfect performance, i.e. mostly V�V¢ë @:m or more.
Such results are presented in the column denoted as ’ALL’ in Table 10.3.

10.1.4 Summary and conclusions

Here we study approaches of detecting one-class phenomena based on a set of training examples,
performed in an unknown or ill-defined context of alternative phenomena. Since a proximity of
an object to a class is essential for such a detection, dissimilarity representations (DRs) can be
used as the ones which focus on the object-to-target dissimilarities. When considering a number
of different dissimilarity measures, the problem can be described more accurately by combining
various representations. Three different one-class classifiers (OCCs) are used: the NNDD (based
on the nearest neighbor information), the GNMD (a generalized mean classifier in an underlying
pseudo-Euclidean space) and the LPDD (a hyperplane in the corresponding dissimilarity space),
which offers a sparse solution. The additional advantage of using an LPDD is that a sparse solution
is obtained, which means that in a testing stage, dissimilarities to a few objects need to be computed
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to make a decision.

Dissimilarity representations directly encode evidences for objects which lie in close or far neigh-
borhoods of the target objects. Hence, they can naturally be combined (after a proper scaling) into
one representation, e.g. by an element-wise averaging. This is beneficial, since only one OCC can
be trained, ultimately. From our study on the detection of diseased mucosa in oral cavity, it follows
that dissimilarity representations combined either by average or product have a larger discrimina-
tive power than any single one. We also conclude that by combining information of representations
derived for spectra of different excitation wavelengths is somewhat more beneficial than by using
only one fixed wavelength, yet different dissimilarity measures. In the former case, all the OCCs on
the combined representations performed about the same, while in the latter case, the LPDD trained
on the targets seemed to be worse. The fixed OCC combiners have also been applied to the outputs
of single OCCs. The overall best results are reached for the majority voting rule. The trained OCC
combiners, applied to the outputs of single LPDDs, performed well, yet worse than the voting rule.
Concerning the computational issues, either the LPDD built on the combined representations or the
voting combiner applied to the LPDD outputs are recommended. Further studies on new problems
need to be conducted in the future.

10.2 Combining in standard two-class classification problems
Selecting a good dissimilarity measure becomes an issue for the classification problem at hand.
When considering a number of different possibilities for building a dissimilarity representation,
there might be no convincing arguments to prefer one measure over another. Therefore, an inter-
esting question is whether combining dissimilarity representations is beneficial. As in the one-class
classification, two combining possibilities are investigated here. In the first case, the base classifiers
(the NLC or the NN rule) are found on each dissimilarity representation and then combined into one
decision rule. If the representations differ in character, a more powerful decision rule may be con-
structed by their combining. In the second case, instead of combining classifiers, representations are
combined to create a new representation for which only one classifier has to be trained. Our exper-
iments are conducted on a few dissimilarity representations derived for the NIST handwritten digit
set. They demonstrate that when the dissimilarity representations are of different nature, a much
better classification performance can be reached by their combination than by the use of individual
representations only.

10.2.1 Combining strategies

To construct a decision rule on dissimilarities, the training set � of the cardinality Ü and the rep-
resentation set à of the cardinality F will be used. In the learning process, a classifier is built on
the Ü h�F dissimilarity matrix Ý ÞN� áâà�ã . The information on a test set ��+ ; of h new objects is given
by their dissimilarities to à , i.e. as an hÊhiF matrix ÝßÞN��+ ; áâà�ã . Two classifiers are used: the NLC
(normal density based linear classifier) in a dissimilarity space and the 2 -NN rule directly applied
to the dissimilarities.

Assume that we are given the representation set à and á different dissimilarity representationsÝ � è � ÞN� áâà�ã�á�Ý � é � ÞN� áâà�ã�á ë¸ë¸ë¸á�Ý � E � ÞN� áâà�ã . Our idea is to combine base classifiers constructed on dis-
tinct representations. It is important to emphasize that the dissimilarity representations should have
different character, otherwise they convey similar information and not much can be gained by their
fusion.

Two cases are here considered. In the first one, a single NLC is trained in each dissimilarity spaceÝ � � � ÞN�ðáâà�ã , 1 ä 2Åá54¢á ë ë ëwá á separately and then all of them are combined. In the second case, the
2 -NN rule is also included. The 2 -NN rule and the NLC differ in their decision-making process and
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Fig. 10.1: Spearman coefficients (top) and traditional correlation coefficients (bottom) used for pairwise
comparisons of the dissimilarity representations.

their assignments. The 2 -NN method operates on the dissimilarity information in a rank-based way,
while the NLC approaches it in a feature-based way. Although for small representation sets, the
recognition accuracy of the 2 -NN method is often worse than of the NLC in a dissimilarity space
[293, 296, 301], still better results may be obtained when both types of classifiers are included in the
combining scheme. In our approach, we will limit ourselves to the fixed rules operating on posterior
probabilities. For the NLC, the posterior probabilities are based on normal density estimates, while
for the 2 -NN method, they are estimated from distances to the nearest neighbor of each class [111].

Another approach to learning from a number of distinct dissimilarity representations is to combine
them into a new one and then train a single classifier. As a result, a more powerful representa-
tion may be obtained, allowing for a better discrimination. The first method for creating a new
representation relies on building an extended representation Ý ext, in a matrix notation given by:

Ý ext ÞN� áâà�ã�äÄ� Ý � è � ÞN� áâà�ã Ý � é � ÞN� áâà�ã ë ë ë Ý � E � ÞN� áâà�ãµ��ë (10.5)

It means that a single object is now characterized by á F dissimilarities from á various represen-
tations, but still related to the same representation objects. The requirement of having the same
prototypes is not crucial, however, for the sake of simplicity, we will keep à fixed.

In the second method, all distances of different representations are first scaled appropriately by a
non-decreasing functions � � , i.e. Ý � � �H ÞN� áâà�ãoäÞ� � Þ�Ý � � � ÞN� áâà�ãÏã , �òäi2Åá ë ë ë�á á , to guarantee that they all
take values in a similar range. This is necessary, since otherwise the dissimilarity values coming
from different representations could not be directly compared. The combined representation Ý i B �@=
is then created, e.g. by computing their weighted average Ý avr ÞN� áâà�ã�ä � E

� 8 è ( � Ý � � �H ÞN� áâà�ã or any
other way as presented in (10.4). Some other possibilities for building a combined kernel for the
support vector classifier are discussed in [79, 277].

10.2.2 Experiments on the handwritten digit set

To investigate the combining procedure, a two-class classification problem between the NIST hand-
written digits

f
and  [420], originally represented as 2!49�hL2!49 binary images is considered; see also

section A.2. Three dissimilarity measures are used: Hamming, modified-Hausdorff and ’blurred’
Euclidean, resulting in the following representations: Ý P , Ý O�P and Ý Ø

, correspondingly. The
Hamming distance counts the number of pixels which disagree. The non-metric modified-Hausdorff
distance, Def. 5.6, is found useful for template matching purposes [93]; To design Ý Ø

, images are
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first blurred (smoothed) with a Gaussian kernel of the standard deviation of  pixels. Then the Eu-
clidean distance is computed between such blurred versions. Such a smoothing process is meant
to make the distances be more robust against small tilting, shifting and change in thickness. The
resulting distances are called ’blurred’ Euclidean.

Each of the dissimilarity measures uses the image information in a particular way: binary informa-
tion, contours or blurring. From the process of the construction, it follows that our dissimilarity
representations differ in properties. To prove, however, their different characteristics, the Spear-
man rank correlation coefficient is used to rank the distances computed to each prototype. For two
variables � and � , the Spearman rank correlation3 is computed as:

à H Þ ��á���ãêäm2Ó$nk � � Þ�5!��Þ ��ã`$ç5!��Þ���ãÏã éÜjÞ�Ü é $a2�ã á (10.6)

where Ü is the number of values in both variables and à � is the 1 -th rank. Basically, we want to show
that the ranks differ between the representations. Therefore, for each pair of the representations,Ý P - Ý ORP , Ý O�P - Ý Ø

and Ý Ø
- Ý P , the Spearman coefficients between the dissimilarity ranks to all

the representation objects are computed. For instance, for the pair of Ý Ø
and Ý ORP , the Spearman

coefficients are computed between Ý Ø Þ��¸á�ç � ã and Ý ORP Þ��¸á�ç � ã for every ç � /~à . Histograms of their
distributions are shown in Fig. 10.1. The coefficients vary between $ßA±ë A�@ and A±ë g , where most of
them are smaller than A±ë f , which implies that the ranks significantly differ. This suggests that the
2 -NN rule will behave differently on each representation.

The traditional Pearson correlation coefficient is used to check whether the dissimilarity spaces of
the individual representations (and, therefore, linear classifiers built there) are different (high posi-
tive values indicate a linear correlation). Such correlation values are higher than those given by the
Spearman rates, since now the vectors of dissimilarities are considered, which cannot completely
vary from one representation to another. On average, the correlations are found to be (see Fig. 10.1:
A±ë @�k between the blurred and modified Hausdorff distance representations, A±ë f V between the blurred
and Hamming representations and A±ë 49 between the modified Hausdorff and Hamming represen-
tations. In the end, most coefficients are smaller than A±ëvb , thereby, they indicate only weak linear
dependencies. Consequently, we can say that our dissimilarity representations differ in character.

The experiments are performed
f A times and the results are averaged. In a single experiment, the

data, consisting of 2#A�A�A objects per class, are randomly split into two equally-sized sets: the design
set ê and the test set ��+ ; . Both ê and ��+ ; contain @BA�A examples per class (so 2#A�A�A objects in total).
The test set is kept constant, while ê serves for the selection of training sets with various sizes.
These are � è , � é , � � and � � ä ê of the following cardinalities per class: @BA , 2#A�A , f A�A and @BA�A ,
respectively. For each training set, the experiments are conducted for an increasing representation
set à . Here, for simplicity, à is chosen to be a random subset of the training set, where both classes
are equally represented. In each run, every training dissimilarity representation Ý � � � is scaled by the
averaged dissimilarity

�
� , which also serves for scaling the test dissimilarity representation. This is

necessary to guarantee that the dissimilarities express similar values.

10.2.3 Results

Training sets of different sizes are considered to investigate the influence of the training size on our
combining approaches. The results are presented in Fig. 10.2 and 10.3. All plots show curves of the
generalization (test) error averaged over

f A runs. Each error curve is a function of the cardinality

3 In fact, the Spearman rank correlation is the classical Pearson correlation coefficient  ��9ÍL¤µ���*¦ � | á ¼n��� � ¿� á�à # ¼n� ¿ á�à # ¼n� ¿
when the variables are converted to the ranks [229]. A simpler formula is used for the computation.
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Fig. 10.2: Combining for the NIST-38 problem: the averaged classification error (in m ) of the combined NLC
(by product or mean) and of a single NLC on the combined representations ( Ý avr or Ý ext) as a function of
the total number of prototypes. Three dissimilarity representations are combined: Ý�� , Ý�Ð^� and ÝF� . The
results of the NLC trained on single DRs are plotted in dots. If there are less than three such curves in a plot,
it means that the errors are larger than the presented scales. The best performance of the NLC is achieved
for Ý � . The standard deviations of the presented results are: � þ : A±ë 4 f m on average and maximum A±ë @9:m ,� � : A±ëw2!V:m on average and maximum A±ë @�k:m , � � : A±ë 4BAnm on average and maximum A±ë g�g,m and �~� : A±ë A�V:m on
average and maximum A±ë @&2-m . Note the scale differences.

of the representation set à , where à is a random subset of � , not larger than half of the training
size. Since our goal is to improve the performance of the NLC and 2 -NN by combining, all the
results are presented with respect to their performance on the single representations. Considering
single classifiers, it appears that the NLC consistently outperforms the 2 -NN rule for the training
sets �»è - � � . The best results of a single NLC are reached on the blurred Euclidean dissimilarity
representation.

Fig. 10.2 presents the generalization errors for the NLC in dissimilarity spaces. It shows the error
curves obtained for three individual NLCs combined by the mean and product rules and the error
curves of a single NLC operating on a combined dissimilarity representation constructed from Ý Ø

,Ý O�P and Ý P . Two cases are here considered for the latter: an extended representation Ý ext,
(10.5), and the average representation Ý avr with equal weights (other combined representations, as
mentioned in (10.4) give worse results). To keep to total number of prototypes the same, if Ý avr is
defined on N àON objects, the extended representation Ý ext is in fact based on N àON Y f different objects
to guarantee the same total number of prototypes, i.e. the dimensionality of the dissimilarity space.
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Fig. 10.3: Combining for the NIST-38 problem: the averaged classification error (in m ) of the combined
2 -NN rules (by product or mean) and of a single NLC on the combined representations ( Ý avr or Ý ext) as a
function of the total number of prototypes. Three dissimilarity representations are combined: Ý�� , Ý�Ð^� andÝF� . The results of the 2 -NN trained on single DRs are plotted in dots. If there are less than three such curves
in a plot, it means that the errors are larger than the presented scales. The best performance of the 2 -NN is
mostly achieved for Ý � . The standard deviations of the presented results are: � þ : A±ë f :m on average and
maximum 2Åëw2�:m , � � : A±ë f 2-m on average and maximum 2ÅëvbB4:m , � � : A±ë 4&2-m on average and maximum 2Åë A::m
and ��� : A±ëw2!V:m on average and maximum 2Åë 4�4:m . The largest standard deviations appear for the mean and
product combiners. Note the scale differences.

Hence, it is more important for Ý ext than to Ý avr to have good prototypes selected.

From Fig. 10.2, we can conclude that the product combiner is better than the mean combiner. (Other
fixed combiners have been also considered, but they were not better than the product combiner.)
Also for smaller training sets ( �uè and �
é ) and smaller representation sets, the product combiner is
the best. For larger training sets ( � � and � � ) and larger representation sets, a single NLC on Ý avr
performs similarly or better than the product combiner. The performance of the NLC on Ý ext seems
to suffer either from little variability among the prototypes or from not sufficiently discriminative
prototypes when the training set is small. It, however, improves for larger training sets. In the latter
case, for an appropriate number of prototypes, it may be as good as the product combiner.

Fig. 10.3 presents the generalization errors for the 2 -NN rule. obtained for combining three indi-
vidual 2 -NN classifiers by the mean and product rules and the error curves of a single 2 -NN built
on a combined dissimilarity representation. Operating on posterior probabilities is motivated by the
intention of combining both the NLC and the 2 -NN method further on. Although the estimation
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of these probabilities is rather crude for the 2 -NN method, it still allows for an improvement of the
combined rules. In all cases, the combination by the mean, or product operation gives much better
results than each individual 2 -NN rule. The larger, both training and representation sets, the more
indicative gain in accuracy.

When a classifier ensemble consist of three NLCs and three 2 -NN rules trained on Ý Ø
, Ý ORP andÝ P , the product combiner is still somewhat better than the mean combiner for smaller training sets,

however, they behave similarly for larger training sets. The overall results are nearly the same as
presented for the product combiner in Fig. 10.2, therefore, we judge that no new plots are needed.

In summary, the mean and product combining rules perform significantly better than the individual
2 -NN and NLC constructed on dissimilarity representations. In general, the dissimilarity represen-
tations tend to be independent and, therefore, the product rule based on the NLCs is expected to give
better results than the mean rule [386]. Consequently, the product combiner is preferred. For the 2 -
NN rule, the posterior probabilities are very rough estimates from distances to the nearest neighbor
and do not depend on the dimensionality of the problem. Therefore, both combiners perform about
the same.

10.2.4 Conclusions

Combining a number of dissimilarity representations may be of interest when there is no clear pref-
erence for a particular one. It can be beneficial when DRs emphasize different data characteristics.
This is illustrated by a two-class recognition problem between the NIST digits

f
and  for three

dissimilarity representations: Hamming Ý P , modified Hausdorff Ý ORP and blurred Euclidean Ý Ø
.

We have analyzed two possibilities of combining such information, either by combining classifiers
or by combining representations themselves. In the first approach, individual classifiers are found
for each representation separately and then they are combined into one rule. Our experiments show
that the product combining rule works well, especially for larger representation sets (with respect
to the training size). This might be explained by not very high correlations between dissimilarity
spaces (especially for smaller representation sets), hence possible independence between the NLCs
constructed there. Adding the 2 -NN rules to the classifier ensemble improves somewhat the mean
combiner, but not the product combiner.

In the second approach, dissimilarity representations are combined into a new one on which a single
NLC is constructed. They are scaled so that their mean values become equal and then averaged
out, resulting in the representation Ý avr. The NLC on Ý avr significantly outperforms the individual
NLCs. As a reference, the extended representation Ý ext is also considered, (10.5). The NLC on such
a representation reaches a similar performance as on Ý avr, but for larger training sets. In general,
we conclude that for this problem the product combiner of three NLCs is recommended for small
training sets, while the single NLC trained on Ý avr is suggested for larger training sets.

10.3 Classifier projection space - a tool for investigating the
classifier diversity

In this section some standard classifier ensembles designed in feature spaces are considered. The
base classifiers are used to build a conceptual dissimilarity representation describing classifier pair-
wise diversities. Such a representation serves for the construction of a classifier projection space
(CPS), based on an (approximate) embedding of the classifier diversities, which is a tool for analyz-
ing the differences between base classifiers and it can be used as an argument for the selection of
some combining rules. The rationale behind is explained below.

When a classification problem is too complex to be solved by training a single (advanced) classifier,
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the problem may be divided into subproblems. They can be solved one per time by training simpler
base classifiers on subsets or variations of the problem. In the next stage, these base classifiers
are combined. Many strategies are possible for creating subproblems as well as for constructing
combiners [237]. Base classifiers are expected to be different since they should deal with different
subproblems or operate on different variations of the original problem. It is not useful to store
and use sets of classifiers that perform almost identically. If they differ somewhat, as a result of
estimation errors, averaging their outputs may be worthwhile. If they differ considerably, e.g. by
approaching the problem in independent ways, the product of their estimated posterior probabilities
may be a good rule [217]. Having significantly different base classifiers in a collection is important
since this gives raise to essentially different solutions. The concept of diversity is, thereby, crucial
[233]. There are various ways to describe the diversity, usually producing a single number attributed
to the whole collection of base classifiers. Here, we will use it differently.

What we are looking for is a method of combining base classifiers that is not sensitive to their
defects resulting from the way their collection is constituted. We want to use the fact that we deal
with classifiers and not with arbitrary functions of the original features. To achieve that, we propose
to study the collection of classifier pairwise differences, an Fßh¾F conceptual dissimilarity matrix Ý ,
before combining them into an output combiner. The dissimilarity value may be based on one of
the diversity measures [233], like the disagreement [196]. Such a matrix Ý can be embedded into
a space ` � , � ��F , in a (non-)linear way. The classifiers are then represented as a set of F points
in ` � such that their pairwise Euclidean distances preserve the original dissimilarities given by Ý .
It is only possible when Ý is Euclidean, so there might be a need for an approximate embedding,
where a space of a lower, fixed dimensionality is determined for an optimal approximation of Ý .
We call this a Classifier Projection Space (CPS).

If the CPS is two-dimensional, it can be visualized. Then, the collection of base classifiers, various
combiners and, if desired, also other decision rules can be presented in a single 2D plot. Here
we will choose the classical scaling, section 3.3.1 and Sammon mapping } �

, section 3.4.2, as the
methods to construct the CPS. Yet, other techniques described in chapter 6 can be used as well.

10.3.1 Construction and the use of the Classifier Projection Space

Let us assume F classifiers trained on a training set. The CPS will be constructed based on the
evaluation (test) set. For each pair of classifiers, their diversity value is determined, by using an
evaluation set. This gives an Fßh¾F symmetric diversity matrix Ý . To take into account the origi-
nal characteristics of the base classifier outputs, a suitable diversity measure should be chosen to
establish the basic difference between classifiers. Studying the relations between classifiers in the
CPS allows us for gaining a better understanding than by using the mean diversity only. The latter
might be irrelevant e.g. for an ensemble consisting of both similar and diverse classifiers, where
their contributions might average out.

� Å
class 1 class 2

� ¤ class 1 � ¤ Å � ¤ Å
class 2 è ¤ Å È ¤ Å

Fig. 10.4: V � versus V�� : the counters.

The joint output of two classifiers, V{� and V�� can be related by
counting the number of occurrences of correct ( 2 ) or wrong ( A )
classification. Then the counters used for binary features as de-
scribed in section 5.1 can be adopted appropriately such that a
is the number of correct classifications for both V�� and V�� , etc.
This requires the knowledge of correct labels, which might not
be available, e.g. for a test set. This can be avoided when the
classifier assignments are compared. Many known (dis)similarity measures can be used; examples
are given in section 5.1; see also [72, 233]. Here, we will consider a simple diversity measure, the
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Table 10.4: Disagreement values, Ý �<2#A�A , between classifiers built on the morphological features of the
MFEAT set; since Ý is symmetric, only the upper part is presented.

NMSC NLC NUC NQC 1-NN k-NN Parzen SVC-1 SVC-2 DT ANN20 ANN50
NMC 47.1 47.3 43.4 50.3 53.5 30.9 24.1 63.1 71.4 50.4 77.5 72.8
NMSC - 13.7 43.3 30.2 54.0 46.9 46.8 54.7 59.9 21.9 71.5 69.1
NLC - - 48.5 24.1 53.9 49.0 48.4 53.0 58.0 24.3 72.1 69.1
NUC - - - 53.8 64.8 54.5 50.5 55.5 76.8 54.7 72.1 75.2
NQC - - - - 53.8 39.5 39.9 50.3 65.5 31.5 67.5 57.1
1-NN - - - - - 48.5 49.5 65.5 78.7 53.9 77.7 77.0
k-NN - - - - - - 7.5 56.5 75.5 48.0 68.1 72.2
Parzen - - - - - - - 56.7 73.2 48.1 68.8 71.2
SVC-1 - - - - - - - - 79.1 54.2 36.7 89.9
SVC-2 - - - - - - - - - 65.0 84.2 86.7
DT - - - - - - - - - - 70.1 71.4
ANN20 - - - - - - - - - - - 100.0
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Fig. 10.5: Two-dimensional CPS for the MFEAT data: Fourier features (left) and morphological features
(right). Points correspond to the classifiers; numbers refer to their accuracy. The ’perfect’ classifier (true
labels) is marked as TRUE. Remember that the axes cannot be interpreted themselves.

disagreement [196], which for V � and V � and a two-class problem is defined as (see Fig. 10.4):

ÝÎ�v�¾. äyÝßÞNV&�ÏáMV��³ãêä Mu�v� � ;��v�Q ��� � M �v� � ; �v� � � �v� á 1âáµx äm2Åá ë ë ë�áGF�á (10.7)

which is in fact the simple matching; see Table 5.1. Given the complete diversity matrix Ý , reflecting
the relations between classifiers, the CPS is found by an approximate (non-)linear projection, a
variant of Multidimensional Scaling, section 3.4.2.

Below some examples of the use of the CPS are presented.

Fixed combiners. To present a two-dimensional CPS, the ten-class MFEAT digit dataset [269] is
considered; see also section A.2. For our presentation, Fourier (74D) and morphological (6D) fea-
ture sets are chosen with a training set consisting of @BA randomly chosen objects per class. The
following classifiers are considered: the nearest (scaled) mean classifier, the NM(S)C, normal den-
sity based linear (the NLC), uncorrelated quadratic (the NUC) and quadratic (the NQC) classifiers,
the 2 -NN and Û -NN rules, Parzen classifier, linear or quadratic support vector classifier, the SVC-1
or the SVC-2, decision tree, DT and feed-forward neural network with 4BA or @BA hidden units, the
ANN20 or the ANN50. For each feature set, the disagreement matrix between all classifiers and
the two combiners, the mean (MEANC) and the product (PRODC) rules, is derived from formula
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(10.7); see also Table 10.4. This is done for a test set of 2!@BA objects per class. The diversity ma-
trix served then for a construction of a two-dimensional CPS by the MDS procedure, described
in section 3.4.2. Such examples of the CPS can be seen in Fig. 10.5. Remember that the points
correspond to classifiers. The Euclidean distances between them approximate the original pairwise
disagreement values. The hypothetical perfect classifier, i.e. given by the original labels, marked as
TRUE, is also projected. The numbers in the plots indicate the accuracy reached on a test set.

In both cases, we can observe that the mean combiner is better than the product combiner. The latter,
apparently deteriorates with respect to some, although diverse, but very badly performing classifiers.
The mean rule seems to reflect the averaged variability of the most compact cloud (of classifier
points). Note also that diversity might not be always correlated with accuracy. See, for instance, the
right plot in Fig. 10.5, where the NMSC is more similar (less diverse) to the hypothetical classifier
than ANN20, although the accuracy of the latter is higher.

Bagging, boosting and the random subspace method. Many combining techniques can be used to
improve the performance of weak classifiers. Examples are bagging [42], boosting [135] or the
random subspace method (RSM) [196, 367]. They modify the training set by sampling the training
objects (bagging), by weighting them (boosting) or by sampling data features (the RSM). Next, they
build classifiers on these modified training sets and combine them into a final decision. Bagging
is useful for linear classifiers constructed when the training size is about the data dimensionality.
Boosting is effective for classifiers of low-complexity built on large training sets [367]. The RSM
is beneficial for small training sets of a relatively large dimensionality, or for data with redundant
features (where the discrimination power is spread over many features) [367].

To study the relations within these ensembles, the
f g -dimensional, two-class ionosphere data [31] is

considered; see also section A.2. The NMC is used for constructing the ensembles of @BA classifiers.
The training is done on the sets � è and � é consisting of randomly chosen Ü è äâ2#A�A and Ü é äÄ2¹b
objects per class, respectively. This is done to observe a different behavior of base classifiers. The
following combining rules are used: majority voting (maj), weighted majority voting (wmaj), mean,
product (prod), minimum (min), maximum (max), decision templates (dtempl) and naive Bayes
(NB). The test set consists of 2!@&2 objects. For each of the mentioned ensemble, the disagreement
matrix between the base classifiers and the combiners is derived, which serves further for obtaining
the CPS (by the classical scaling). The hypothetical, perfect classifier, representing true labels
(marked as TRUE) has been added, as well; see Fig. 10.6.

To understand better the relation between the diversity and accuracy of the classifiers, while main-
taining the clarity of presentation, another plots have been made; see Fig. 10.7. They show a one-
dimensional CPS (representing the relative difference in diversity) versus classifier accuracy. So,
the differences between classifiers in the horizontal and vertical directions correspond to the change
in diversity and accuracy, respectively.

The following conclusions can be made from the analysis of Fig. 10.6 and 10.7. First of all, in
the CPS, the classifiers obtained by bagging and the RSM are grouped around the single (original)
NMC, creating mostly a compact cloud. The variability relations between the bagged and RSM
classifiers might be very small. On the contrary, the boosted classifiers do not form a single cloud.
In terms of both diversity and accuracy, from the set of @BA classifiers, they are reduced to VL$R2<g
different ones (depending on the training set). A group of @Î$í poor classifiers is then separated
from the others, as well as from the bagged and RSM classifiers. Secondly, for a small training set�
é , Fig. 10.7, right, the RSM and bagging create classifiers that behave similarly in variability, since
the classifier clouds in the one-dimensional CPS are of the same spread. For a larger training set ��è ,
Fig. 10.7, left, the diversity for the RSM classifiers is larger than for the bagging case. Thirdly, the
classifiers in all ensembles, even in boosting, seem to be constructed in a random order with respect
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Fig. 10.6: Two-dimensional CPS for the ionosphere data trained with � þ . The numbers correspond to the
order in which classifiers are created. To maintain the clarity of presentation, only some classifiers are marked.
Note the scale differences.

to the diversity and accuracy.

Concerning the combiners studied here, the minimum rule (equivalent to the maximum rule for a
two-class problem) achieves, in most cases, the highest accuracy. It is even better than the weighted
majority, used for the boosting construction. For a small sample size problem, Fig. 10.7, right plot,
most of the combining rules for bagging and the RSM are alike, both in diversity and accuracy. A
much larger variability is observed for boosting; a collection of diverse both classifiers and com-
biners is here obtained. Finally, a striking observation is that nearly all classifiers, as well as their
combiners, are placed in the CPS at one side (i.e. not around) of the perfect classifier (this was less
apparent for the MFEAT data; compare to Fig. 10.5).

Image categorization problem. In the problem of image database retrieval, images can be repre-
sented by single feature vectors or by clouds of points. Usually, given a query image ÿ , represented
by a vector, images in the database are ranked according to their similarity to ÿ . This similarity
is measured e.g. by the normalized inner product. A cloud of points offers a more flexible repre-
sentation, but it may suffer from the overlap between cloud representations, even for very distinct
images. Recently, a novel approach has been investigated for describing clouds of points based on
the support vector data description (SVDD) [390], which is a boundary descriptor (an OCC) in a
feature space describing the domain of such a cloud. For each image � � in the database, represented
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Fig. 10.7: Accuracy versus one-dimensional CPS for the ionosphere data. The numbers correspond to the
order in which classifiers are created. To maintain the clarity of presentation, only some classifiers are marked.
Note the scale differences.

as a set of points in a feature space, an SVDD V �SVDD is trained. The query image ÿ is represented
as a set of points in the same space. The fraction 5 � Þ�ÿ�ã of the query points rejected by the V �SVDD
is a measure of a dissimilarity between the query image and the descriptor of the image � � . A low
value is expected to indicate that � � is similar to ÿ . The retrieval is based on computing the fractions



268 10 Combining

−9 −7 −5 −3 −1 1 3 5
−6

−4

−2

0

2

4

6
Image projection space

−9 −7 −5 −3 −1 1 3 5
−6

−4

−2

0

2

4

6
SVDD projection space

Fig. 10.8: Spatial representations: image projection space of Ý<� (left) and the the SVDD classifier projection
space of ÝF Mò�ò (right). See text for details. Different marks refer to different classes.5 � Þ�ÿ�ã for all images in the database, ranking them and returning the images corresponding to the
lowest ranks. We have found out that a single SVDD may suffer if the clouds of points between dif-
ferent images are highly overlapping (this happens if the features derived from images are not well
discriminating the classes). However, combining of the SVDD descriptors improves the retrieval
precision; see [236] for details.

In our experiment, performed on a database of texture images, 4 f different images are given. Each
original image is cut into 2!k 2!49oh�2!49 non-overlapping pieces; see also appendix A.2. These
correspond to a single class. Such pieces are mostly homogeneous and represent one type of a
texture. The images are, one by one, considered as queries, and the 2!k best ranked images are taken
into account. The retrieval precision is computed using all Ü ä f k9 images. The details are in [236].

Each image is represented as a combined profile. This means that the image � � is represented
as ç Þ � � ã ä � 5êèÅÞ � � ã,5�é¶Þ � � ã�ë ë ëD5 � Þ � � ãµ� , which is in fact a conceptual dissimilarity representation, such
that 5 ï Þ � �³ã expresses a dissimilarity between an image (a set of points) and a model (a boundary
description of an image). In the standard approach, to retrieve images the most similar to ÿ , one
will find the smallest 5 ï Þ�ÿÇã . In our approach, a dissimilarity between the profile of the query ÿ ,ç Þ�ÿ�ã ä � 5 è Þ�ÿ�ã,5 é Þ�ÿ�ã�ë ë ëD5 � Þ�ÿÇãµ� and the profiles ç Þ � �³ã of other images is considered. For instance,
a Euclidean distance can be chosen. This approach is novel as it combines the image profiles of
image one-class classifiers into a conceptual dissimilarity representation. The retrieval is then based
on ranking the distances

� Þ ç Þ�ÿ�ã�á�ç Þ � � ãÏã and finding the images of the smallest ranks.

In order to see all relations between the images, a distance matrix Ý¢¡ consisting of the Euclidean
distances between the image profiles

� Þ ç Þ � �rã�á�ç Þ � �³ãÏã can be computed. The resulting spatial repre-
sentation of Ý^¡ becomes then an image projection space; see Fig. 10.8, left plot. On the other hand,
we can build the CPS, now based on the differences between the SVDD classifiers. To do that,
one need a SVDD-profile, which for the V �SVDD - the boundary description of image � � is given asç B i«i ÞNV �SVDD ã»ä\� 5u�µÞ � è�ã,5u�µÞ � éÅã�á ë ë ë�áT5u�µÞ � � ãµ� . Then, for instance a Euclidean distance matrix Ý B i«i con-
sisting of the distances between the SVDD profiles

� Þ ç B i«i ÞNV �SVDD ã�á�ç B i«i ÞNV �SVDD ãÏã can be found. A
spatial representation of Ý B i"i is a (one-class) classifier projection space. See Fig. 10.8, right plot.
Remember that in this case, the classifiers correspond directly to the images. Comparing the two
graphs, we see that the image space maintains in this case a better separation, which was confirmed
by our good retrieval precision [236].

A more profound study on combining image representations for image classification and retrieval
can be found in [235].
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10.4 Summary
In this chapter, two different combining approaches to learning from dissimilarity representations
have been investigated for the purpose of novelty detection problems and classification problems.
When dissimilarity representations differ in character, combining either individual classifiers con-
structed on each single of them separately or by creating a new representation can be beneficial.
In our experiments, we have shown that when distinct representations are combined into one rep-
resentation, as a result, a representation possessing a better discriminative power can be obtained.
This does not only improve the classifier, but it is also of interest because of the computational as-
pect. Fixed combiners, such as majority voting, can also be advantageous, especially in the case of
one-class classifiers.

Additionally, a new way of representing classifiers is proposed. The classifier projection space
(CPS), based on (approximate) embedding of the diversities between the classifiers, offers a pos-
sibility to study the classifier differences. This may increase the understanding of the recognition
problem at hand and, thereby, offers an analyst a tool based on which she can decide on the architec-
ture of an entire combining system. The notion of the CPS extends further to a spatial representation
of conceptual dissimilarities (dissimilarities between classifiers or objects and models), which can
be useful for understanding of an image retrieval problem, for instance. Conceptual dissimilarity
representations resulting from combining one-class classifiers or weak models can be useful for
retrieval [235, 236].





11. Conclusions
We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

”FOUR QUARTETS: LITTLE GIDDING”, T.S. ELIOT

The notion of proximity is fundamental in learning from a set of examples. Depending on the
function it serves, a relative proximity or a conceptual proximity can be distinguished. The former
describes a relation between pairs of objects, while the latter relates objects (or concepts) to a
concept, such as a Gaussian model of a class. Objects are often bound together by relative proximity
(quantifying their degree of commonality) to form a class. This is the necessary condition on which
the compactness hypothesis relies, justifying the use of a learning algorithm. In a learning phase,
a concept of a class is modeled. Any decision concerning the assignment of an object to a class is
grounded in the conceptual proximity. This is the basic principle in pattern recognition.

Pattern analysis usually starts from measurements describing a set of objects. Such measurements
are further preprocessed to derive a suitable description. This is a representation that can be built
based on two distinctive principles: statistical or structural. Both make use of some kind of basic
characteristics. In the statistical framework, these are the features, i.e. object attributes encoded as
numerical variables. They are assumed to be discriminative for the object classes. A set of features
constitutes a feature vector space, where each object is represented as a point. Additional structures
such as inner product, norm and Euclidean distance are usually imposed to enrich this vector space.
Learning is then inherently connected to the mathematical methods that can be used in this space.
Although any flexible discrimination function can be designed, it will at most discover what can be
inferred from the statistics of a set of features. The structural organization that an object possesses,
such as connectivity of shape elements, is not incorporated in the representation.

In the structural approach, the basic descriptors are primitives, i.e. structural elements, such as
strokes, corners or stems of words, encoded as syntactic units for the construction of objects. This
approach is advisable for problems with objects which contain an inherent, identifiable, structure or
organization e.g. shapes, spectra, images or texts1. There is some underlying factor in the objects,
such as order, time, hierarchy or functional relationships (as between the words in sentences) that
describes the inter-relationships between the morphological primitives. In the structural approach, it
is assumed that there exists sufficient and suitably formulated problem knowledge, often developed
and encoded with the assistance of an expert, such that a structural description of objects and classes
can be constructed. Learning then relies on defining syntactic grammars or a way of comparing ob-
jects, usually in a matching process. In principle, specific criteria are used for that purpose, so the
whole process is domain-specific.

In summary, the strength of the structural approach lies in encoding domain knowledge and relation-
ships within an object, capturing its internal structural organization. The strength of the statistical
approach lies in a well-developed mathematical theory of vector spaces. These approaches are com-
plementary, hence their integration should compensate for their drawbacks, while conserving their

1 Currently, the majority of learning tasks is concerned with this type of data. So, there is a need for designing good
learning strategies, possibly incorporating both statistical and structural approaches, as they are complementary.
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advantages. Some attempts in this direction have been made. For example one can associate the
statistical information with structural elements to resolve some ambiguities [137]. Other possibili-
ties include the construction of classifiers in both frameworks and combining their decisions. Such
strategies are, however, hybrid. Looking at the properties of both frameworks, the unification should
be reached at the representation level. In a chain of events, first a description based on structural
information is derived, which is then encoded to obtain a numerical representation, which can be
used in statistical learning. A natural candidate is a proximity representation, developed by us. This
is a relative representation, in which each object is described by a set of proximities to so-called rep-
resentation objects. A conceptual proximity representation can also be constructed which measures
proximity of objects to classes or the decision boundaries induced by classifiers.

Proximity representations bridge the gap between the statistical and structural approaches to pat-
tern recognition. This is the central motivation for this work. To limit the scope of the study,
proximity is modeled as a dissimilarity, to focus on the class and object differences. This is not
an essential restriction. Since similarity and dissimilarity are intimately connected, many issues
discussed here can be applied to similarities after suitable adaptations.

The main goal of this thesis is to provide some foundation and to develop (statistical) learning
methodologies for dissimilarity representations. The reason for the statistical framework is the
necessity of establishing a learning framework for a further development of structure-aware dissim-
ilarity measures.

The proposed dissimilarity representation is a dissimilarity matrix ÝßÞN�ðáâà�ã , where à is a set of
representation objects, also called prototypes, and � is a set of training objects. The dissimilarity
measure does not need to be a metric, but not any measure is acceptable. It should be meaningful to
the problem and fulfill at least the compactness hypothesis, stating that similar objects are close in
their representations.

Contributions

To develop learning methodologies, appropriate frameworks for the interpretation of dissimilarity
representations have to be considered. Since dissimilarities quantitatively express the relative differ-
ences between pairs of objects, while learning algorithms usually optimize a kind of an error in the
context of a chosen numerical model, one will deal with numerical representations of the problems.
The numbers have, therefore, a particular meaning within the frame of specified assumptions and
models. Spaces with different characteristics lead to different interpretations of the dissimilarity
data, hence to different learning algorithms.

Chapter 2 briefly introduces topological, (indefinite) inner product, norm and metric spaces. Al-
though most of the material presented there is not new, Kreı̆n spaces are not usually treated in the
standard works. Our major contribution is to present the relations between the spaces and the de-
velopment of the Kreı̆n space, later discussed in the form of a pseudo-Euclidean space of a finite
embedding. The introduction of these spaces prepares the way for a mathematical framework for
handling arbitrary dissimilarity data.

Metric dissimilarities have advantageous properties, since many numerical methods operate in met-
ric spaces, or more specifically in Euclidean spaces. In chapter 3, dissimilarities are further char-
acterized with respect to Euclidean and metric properties. Further on, a linear pseudo-Euclidean
embedding is studied, as well as nonlinear multidimensional scaling. This prepares the ground for
one of the learning approaches defined in chapter 4.

Three main frameworks have been proposed for learning on dissimilarity representations, which
rely on the following interpretation of dissimilarities:
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1. as relations between the objects based on dissimilarity-ball neighborhoods,
2. in an embedded space, where the original dissimilarities are preserved, found by a linear

pseudo-Euclidean embedding,
3. in a dissimilarity space, where each dimension is a dissimilarity to a particular object.

These three approaches are discussed in chapter 4, where the learning strategies are introduced.
A natural question that arises now is how these strategies differ from the standard learning tech-
niques in feature spaces. If one relies on (Euclidean) distances in a feature-based representation,
the methods applied on such distances refer to a topological space. The difference lies in the ac-
companying feature space and the metric distances. The use of embedded and dissimilarity spaces
is novel. However, it might be seen as a generalization framework of the support vector machines
(SVM). An SVM can be seen as a linear classifier in some high-dimensional space defined by the
(conditionally) positive definite kernel. In our approach, a linear classifier in the dissimilarity space
can be interpreted as a quadratic (or linear) classifier in a high-dimensional Kreı̆n space. Since one
deals with finite samples, such a Kreı̆n space simplifies to a finite-dimensional pseudo-Euclidean
embedded space. Basically, the SVM is a mathematically elegant, but specific procedure in our
framework.

Basic dissimilarity measures and a brief overview of measures used in practical applications have
been discussed in chapter 5.

Chapters 6 – 10 constitute the experimental part of this thesis, in which dissimilarity representations
are practically analyzed. A systematic approach is presented to such an analysis, hence the most
basic questions concerning the data understanding are handled first.

Chapter 6 investigates a number of well-known visualization techniques and their usefulness for
dissimilarity data. The conclusion is that multidimensional scaling techniques and Isomap provide
useful insights into the relations in the data.

Chapter 7 focuses further on methods that help in data exploration. Three main issues are in-
vestigated concerning both structure and complexity in the dissimilarity representation: clustering
techniques, intrinsic dimensionality and sampling. A number of clustering methods in the three
interpretation frameworks is presented. Preliminary results of the clustering in dissimilarity spaces
are promising. Additionally, a statistical estimate of the intrinsic dimensionality from a Euclidean
distance representation of a hyper-spherical Gaussian sample is derived. Finally, some criteria are
proposed and examined that can be used in quantifying whether a representation set contains a suf-
ficient number of objects to describe a class. The most useful criteria are the ones based on the
number of most significant eigenvalues in either in PCA-dissimilarity space or pseudo-Euclidean
embedding and the mean relative rank criterion. A more detailed study on the sampling issues has
been performed, where additionally the skewness criterion is found indicative [104].

Chapter 8 moves on to the construction of one-class classifiers (OCCs) on dissimilarity represen-
tations. Currently existing OCCs are built either on features in traditional feature spaces or on
Euclidean distances derived there. Two new OCCs, one in embedded space and one in dissimilarity
space, are proposed and successfully applied to some practical problems. Non-metric dissimilarity
measures seem to work well for noisy data in such domain description problems. Usually, only
metric measures are used.

Chapter 9 is concerned with classification issues. Dissimilarity measures with different proper-
ties (Euclidean, non-Euclidean metric and non-metric) are analyzed for this purpose. Experiments
demonstrate that simple linear or quadratic classifiers constructed in dissimilarity or embedded
spaces may significantly outperform the Û -NN rule for smaller representation sets, irrespective of
whether the dissimilarity is metric or not. We also investigated some ways, as discussed in chapter 3,
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of transforming the dissimilarity measure to make it (more) Euclidean (hence more metric) for the
purpose of discrimination. We have found that the imposed Euclidean behavior cannot guarantee a
better performance. It is more important that the measure itself describes compact classes than its
strict Euclidean or metric properties.

Various prototype selection criteria are proposed and studied for both embedded and dissimilarity
spaces, indicating that systematic procedures (making use of the label information) are beneficial,
especially for a smaller number of prototypes. For very small representation sets a supervised se-
lection based on the cross-validation error of a classifier or a forward feature selection method also
based on the classification error are the best. In general, for all representation set sizes, the Û -centres
clustering finds good prototypes, especially for multi-modal data. In dissimilarity spaces, the rep-
resentation set selected by a sparse linear programming gives a good discrimination. The drawback
is the lack of control over the number of selected prototypes. That is why the Û -centres selection,
followed by the sparse LP may offer a better result. In embedded spaces, except for the Û -centres
procedure, alternatively, the prototypes selected as the ones which yield the average approxima-
tion error can be chosen. Additionally, we have observed that for representation sets consisting of
more than 4BAnm of the training objects, a random selection is beneficial. Some considerations on the
framework of a zero-error recognition have also been shared.

Combining information originating from different sources or combining individual learning strate-
gies can be effective for designing a good pattern recognition system. Some of these issues are
discussed in chapter 10. Combining is a natural way of integrating the statistical and structural
representations into one framework. Some ways are proposed of combining dissimilarity repre-
sentations into a new one on which a single final classifier can be trained. In our experiments on
two-class and one-class classification problems, we found that dissimilarity representations com-
bined by either a (weighted) average or product have a larger discriminative power than any single
one. Classifiers built on such combined representations outperformed the best classifier (of the same
type) constructed on single representations. This is especially useful if the final classifier works in
a reduced dissimilarity space, as offered by the linear programming data description (LPDD) for
one-class classification tasks.

Additionally, we have observed that classifiers, first trained on single representations and then com-
bined, work well. Especially, the product rule combiner seems to be good for small representation
sets in two-class classification problems, while majority voting may be advantageous for one-class
classifiers.

In brief, this thesis develops a general framework for learning from dissimilarity representations.

Open questions

This thesis can serve as a foundation for continuing research into learning from dissimilarity rep-
resentations. The aim is to renew the pattern recognition area by the integration of structural and
statistical approaches. At the fundamental level, the topics of interest are described below.

1. We think that neighborhood-based pretopological spaces are important for a further develop-
ment of pattern recognition. They allow one to use weaker type of relations between objects
(without additional structures of an inner product or a norm), hence novel types of relational
classifiers could be potentially constructed. These should be domain-based, in contrast to
probability-based, decision functions. Although they might not be able (at this time) to com-
pete with the advanced techniques of inner product spaces, they might stimulate new ways of
thinking.

2. It seems that metric or Euclidean properties of a dissimilarity measure are less important
than their discriminative properties; see sections 9.2.3 and 9.4.1. Although some intuition has
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been developed and non-metric and non-Euclidean behavior is characterized, it is important to
study these properties fundamentally in relation to the topological, embedded and dissimilar-
ity spaces. New types of measures could be developed, especially in the structural approach,
and applied in a dissimilarity-based framework, without imposing metric constraints.

3. An understanding is needed of the topological relations between the three spaces: pretopo-
logical, embedded and dissimilarity spaces. Non-decreasing nonlinear transformations of the
dissimilarity measure change the topological properties of the embedded and dissimilarity
spaces, while they do not affect the dissimilarity-ball neighborhoods. Our results suggest that
these concave transformations, like sigmoidal ones, can be beneficial for discrimination, since
they diminish the effect of possible outliers (see section 9.4). A more thorough investigation
is needed.

4. The possibility of zero-error dissimilarity-based classifiers has been introduced. Ultimately,
it is related to the compactness hypothesis and a true representation, section 4.1.1. They both
put constraints on a dissimilarity measure which should be such that not only similar objects
similar are close in their representations, but also the other way around. This issue has to
be studied more theoretically. For instance, for shapes in images, this would include a study
on robustness of a measure against object position and orientation, small perturbations and
occlusions.

5. The design of morphological (structure-aware) dissimilarity measures, both general and spe-
cific for the problem at hand, is an open issue. This would require the definition of a suite
of structure detectors, general enough for the data types such as images, time-signals, spectra
etc. The intriguing question is not only how data type specific detectors should be found,
but more importantly, how a measure can be learned from a given set of examples. Some
inspiration can be found in [153, 160–162].

6. In general, some foundation for learning from dissimilarities has been laid down, but much
more should be done. Research effort should be devoted to the further development of the
proposed framework, aiming at integration of both statistical and structural approaches.

On the methodological level, topics of investigations include the following issues.

1. The use of dissimilarity neighborhoods is very popular in clustering, so many algorithms have
been developed so far. Preliminary results on the use of embedded and dissimilarity spaces
give promising results. Some theoretically well-founded methods can be developed.

2. Given a training set, a number of methods for the selection of a representation set appropri-
ate for learning in dissimilarity and embedded spaces have been proposed (see sections 9.2
and 9.3). The methods should be studied further in a number of applications. The next step
relies on designing new prototypes at the level of measurements. This means that new proto-
types encompassing the information on a number of original objects are created and used for
learning. This would mean that e.g. the information on a set of spectra, where each spectrum
describes a particular case, could be captured by their most representative spectrum, which
becomes a member of the representation set. One could expect that if domain-based ways are
used to derive new prototypes, the resulting representation set can be powerful.

3. We mostly used linear and quadratic classifiers in the embedded and dissimilarity spaces.
They may suffer from the curse of dimensionality [208] if large representation sets create
spaces of a high dimensionality. The use of decision trees, appropriately reformulated for
dissimilarities, might be an alternative in this case. This is open for investigation.

4. In the area of combining, some a priori knowledge, e.g. on labels, could be incorporated in
the combined dissimilarity representation and in the final classifier. Inspiration can be found
in the work of Muñoz and Martin de Diego [79, 277]. It can also be advantageous to combine
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representations derived by employing both statistical and structural approaches.

Another intriguing point of interest is to combine the three learning frameworks, to benefit
from the strength of each of the interpretation spaces. The Û -NN rule is locally sensitive, while
a linear (or nonlinear) classifier in the embedded or dissimilarity spaces is globally sensitive,
as it relies on all representation objects. How to combine such information is a point for
research.

5. This thesis is mostly concerned with inductive learning principles. The next step for an inves-
tigation is transductive learning [403], which might be considered together with the issue of
combining the local and global approaches to the dissimilarities. Additionally, new research
areas are open for study: learning from unlabeled data (partly related to the clustering issue)
and active learning.

6. New applications, especially from structural pattern recognition, should be considered.

In conclusion, the use of proximity representations opens a new possibility for integrating both
statistical and structural approaches to learning from a set of examples.

Practical considerations

In all experiments performed on various dissimilarity data sets, the conclusion is that both dissimi-
larity and embedded spaces defined on dissimilarity representations ÝßÞN�ðáâà�ã offer a good compro-
mise between learning accuracy (precision) and computational effort, often better than the nearest-
neighbor methods directly applied to the dissimilarities. The best approach is problem-dependent.

Practical advice and useful suggestions can be formulated. First of all, one needs to understand the
problem and the data. One may start from the observations of the distribution of the dissimilarities
in the form of a histogram and by deriving simple statistics as the mean, standard deviation, modes,
kurtosis, skewness etc. Visualization techniques, as described in chapter 6 should be used to get
further insight into the dissimilarity data. Low-dimensional spatial maps of dissimilarities offer a
way to inspect the relations between the objects. Classical scaling results and PCA-dissimilarity
space should be studied first. Later on, Sammon mapping } �

and Isomap can be used. To analyze
the hierarchical organization of the objects, an ultrametric dissimilarity tree can be constructed
by single-linkage clustering or a minimum spanning tree. If the examples are labeled, the study
of the intensity image of the dissimilarity relations is recommended to analyze the discrimination
properties between classes, existence of outliers or additional clusters.

Before moving to task-specific suggestions, first some general recommendations are given:

1. If dissimilarity values are very large, e.g. the average dissimilarity is larger than 2#A�A , use
a linear scaling to bound them to a reasonably small interval such as � A±á!2�� or � A±á!2#A
� . This is
necessary to avoid numerical problems.

2. If objects contain an identifiable, structure or organization, make use of a structural approach
to derive the dissimilarity representation.

3. If the classes (or expected clusters) have different spreads (e.g. one is compact, while the
other is widely spread), start your analysis from Ý  é ÞN� áM��ã instead of Ý ÞN� áM��ã . The square
dissimilarities emphasize the class differences even more.

4. If the dissimilarities take only a limited number of different values (the measure is not con-
tinuous), the embedding approach is preferred.

5. If different sources are available (e.g. by using different excitation wavelengths to measure
various sets of respond spectra), make use of them. If a number of dissimilarity measures
different in characteristics can be defined, make use of them as well. Different representations
can be defined and combined later on.
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Clustering. Remember that the clustering task is a subjective one, since the data can be partitioned
differently depending on what is taken into account. Moreover, one cannot discover structures,
which are not encoded in the dissimilarities. For instance, if the dissimilarity measure is poor,
compact clusters will not be found.

Hypothesize £ clusters in the dissimilarity data Ý ÞN� áM��ã . To label the objects, do the following:

1. Analyze a dendogram on the dissimilarity data obtained by a hierarchical clustering method
to detect specific clusters. Cut the dendogram at a specified level to determine £ clusters.

2. Analyze the Û -centers result.
3. Determine the spaces:

(a) Embedded space. Find the dimensionality of the embedded space A based on the number
of most significant eigenvalues in the pseudo-Euclidean embedding of Ý ÞN� áM��ã . If � is
large, select a subset à of � by the Û -centres algorithm, where e.g. Û equals 4BAnm of
the data instances, and use Ý Þ�à~áâà�ã to define the embedding. Project the remaining
examples to A and use all of them.

(b) Dissimilarity space. Select the dimensionality of the PCA-dissimilarity space by the
amount of preserved variance. If � is large, make use of ÝßÞN�ðáâà�ã , where à is a repre-
sentation set chosen by the Û -centres method.

Apply NLC-clustering or NQC-clustering in the embedded and dissimilarity spaces to find £
clusters. Repeat these

?
times with different initializations. Use the goodness-of-clustering

measure - GOC to decide which partitioning is the best.
4. Inspect various clustering results by visual judgment:

(a) Low-dimensional spatial maps obtained by classical scaling or the Sammon map.
(b) Intensity images of Ý ÞN� áM��ã as suggested in section 7.1.2.

Specify a criterion regarding cluster separability and cluster compactness, e.g. by formula (7.1), to
judge the clustering results and select the best one. If the number of clusters is unknown, some
criterion should be defined to evaluate the results for a various number of clusters. In probabilistic
approaches to clustering, likelihood-ratio measures can be used. For hierarchical approaches, a
criterion suggested in [132] can be exploited.

One-class classification. Suggestions for approaching one-class classification problems:

1. Consider an adequate non-metric dissimilarity as a representation of the problem, if the orig-
inal measurements, such as images or spectra, are noisy.

2. Analyze the distribution of all dissimilarities in the target class. If there exists a long tail of
large dissimilarities (the skewness is highly positive), apply a concave and bounding trans-
formation, such as � ü Þ � ãuä � ü , çÎ� 2 , or � sigm Þ � ãêäÞ4�Y±ÞZ2 � [ � ? _ H ã
$O2 , to all the dissimilarities.
Choose the transformation parameters ç or C based on a validation set or by some stability cri-
terion for an OCC [388]. Do not apply such transformations to neighborhood-based OCCs,
since they are not useful.

3. If the target set is small or the computational aspect is not important, use a neighborhood-
based descriptor such as the Û -nearest neighbor data description. If outlier examples are
available, use a linear programming data description (LPDD or LPDD-II) in a dissimilarity
space. Alternatively, if the distance representation is (nearly) Euclidean (all eigenvalues in the
linear embedding are nonnegative), consider a support vector data description on the positive
definite Gaussian kernel £ ä [ �)f | ( _ � ( [386, 390].

4. Use a weak classifier, e.g. a generalized nearest mean data description for poor dissimilarity
representations.
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5. To emphasize a number of properties of the initial representation (such as raw measurements),
define a few suitable different dissimilarity measures and derive representations. Combine
these representations by a weighted average and train a single LPDD or, alternatively, use the
majority voting rule to combine a number of LPDD outputs trained on single representations.

Classification. Before any classification experiment, get insight into the data to learn about possible
outliers, modality of the classes and their spread (e.g. find their average within-class and between-
class dissimilarities). Determine outliers either by using OCC methods or by detecting objects with
very large dissimilarities to other objects. Removing outliers is more important for the embedding
approach than for the dissimilarity space approach. General suggestions are:ô If the chosen dissimilarity measure is based on sums (built from a number of components of

similar variances), use normal density-based linear or quadratic classifiers.ô Estimate � , the number of significant eigenvalues in the linear embedding. If � is large and
the ’eigenvalue curve’ does not approach zero reasonably fast, focus on the Û -NN method and
the dissimilarity space approach. Otherwise, consider all three frameworks.ô If a number of different dissimilarity measures, emphasizing different characteristics in the
initial data (images, spectra, graphs, etc) can be designed for the problem, derive the repre-
sentations, scale them appropriately and combine them by a weighted average.

Assume a single (given, optimized or combined) dissimilarity representation Ý Þ�ê¤á�êÕã , where ê is a
learning set. To find the best pattern recognition approach, perform

?
times, for instance

? äÞ@BA , a
VBAnm - 2#Anm hold-out experiment2, i.e. split randomly all objects from ê into the training set � and the
test set ��+ ; such that � consist of VBAnm of the examples and the remaining 2#Anm are assigned to �E+ ; .
Consider the dissimilarity space and neighborhood-based approaches. In each step:

1. Determine the following representation sets as subsets of � :ô àÆõâö by applying sparse linear programming (LP) to Ý ÞN� áM��ã . Use formulation (4.15)
with UyäR2 or, alternatively, formulation (4.16) with ¦ being a (rough) estimate of the
generalization error (e.g. estimated as the 2 -NN error). The latter formulation should be
more useful, when the classification problem is difficult.ô à � þ by using a 2 -NN editing-condensing algorithm [86] on Ý ÞN� áM��ã .ô à ï�� õñö by using the Û -centres procedure to preselect a set à  of £ objects,
e.g. consisting of 4BAnm of the training examples, and then applying the sparse LP for-
mulation (4.15) to Ý ÞN� áâà  ã .

2. Train NLC, NQC (use regularized versions if needed) and the standard non-sparse LP machine
(4.14) in the dissimilarity spaces ÝßÞN�ðáâà\õñö ã , ÝßÞN� áâà � þ ã and Ý ÞN� áâà ï�� õñö ã . Find the test
classification errors.

3. Make use of the same representations sets as above to compute the 2 -NN error on the test set,
as well as the 2 -NN and the Û -NN error using all training objects (optimize Û on the training
set by the leave-one-out procedure).

4. If � is of small or moderate size or the computational aspect is not important, train the NLC,
the NQC and the standard non-sparse LP machine (4.14) in the PCA-dissimilarity space (per-
form the PCA on ÝßÞN�ðáM��ã and select the dimensionality corresponding e.g. to V�@:m of the
preserved variance). Compute the test errors.

5. Additionally, if ÝßÞN�ðáM��ã is (nearly) Euclidean, consider a support vector machine [74, 352] on
the positive definite Gaussian kernel £ ä [ �)f | ( _ � ( .

In the embedding space approach, in each step:

2 Alternatively, consider a ñ - or ¥u¢ -fold crossvalidation experiment repeated e.g. Ù ¢ times.
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1. Determine the dimensionality � of the approximate linear embedding of Ý ÞN� áM��ã (as the
number of significant eigenvalues).

2. Find the following representation sets of � � 2 objects:ô à  by applying the Û -centers algorithm to Ý ÞN� áM��ã .ô àÆÒ<ö � by selecting prototypes which yield the smallest average approximation error.ô àÆö by selecting pivot object as in the FastMap technique.

Use the same procedures as above to select 4 � � 2 objects. This leads to six representation
sets in total, three sets for � � 2 objects and three sets for 4 � � 2 objects.

3. For each selected representation set à above, use Ý Þ�à~áâà�ã to find the � -dimensional embed-
ded space A . Project the remaining objects �Æ}wà to this space and train a linear or quadratic
classifier there. Project ��+ ; to A and test the classifiers.

4. Determine also the embedding in � -dimensional space based on the complete data ÝßÞN� áM��ã .
Apply the same discrimination functions as above.

Perform the same experiment as above on a sigmoidal transformation of the dissimilarities
� sigm Þ�Ý  é ÞN�ðáM��ãÏã . Average the classification errors of all approaches. Choose a decision rule and
a representation set as a trade-off between performance and computational effort for the evaluation
of new objects. Additionally, if very small representation sets (of few objects) need to be selected,
then, make use of the forward feature selection method with the criterion based on the classification
error.
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A. Data sets
All information is imperfect. We have to treat it with humility.

JACOB BRONOWSKI

To avoid multiple descriptions of the data sets used in our study, they are introduced here. They are exam-
ples of data with different characteristics. Therefore, they should be representative for a number of learning
problems dealing with dissimilarity representations (DR). Some of the dissimilarity data matrices are visu-
alized as intensity images, where each pixel corresponds to a dissimilarity value between a pair of objects.
The darker the pixel, the smaller the dissimilarity, hence the black line on the diagonal describes zero values.
Additionally, the eigenvalues of the pseudo-Euclidean linear embedding, discussed in section 3.3, may be
presented. The usage of the data sets described in this chapter is summarized in Table A.1.

Table A.1: Data sets used in the thesis.

Data Usage
Ringnorm Clustering: chapter 7
Hypercube Visualization: chapter 6
Banana Illustration and visualization: chapters 3, 4 and 6
Polygon Classification: chapter 9
Convex polygon Classification: chapter 9
Ionosphere Combining: chapter 10
Wine Classification: chapter 9
Ecoli Classification: chapter 9
MFEAT Combining: chapter 10
Pump vibration Visualization: chapter 6
Cat-cortex Clustering: chapter 7
Protein Clustering: chapter 7
Ball-bearing One-class classification: chapter 8
Heart disease One-class classification: chapter 8
Diseased mucosa One-class classification and combining: chapters 8 and 10
Geophysical spectra Classification: chapter 9
ProDom Classification: chapter 9
NIST digit Exploration and classification: chapters 7 and 9
NIST-38 digit Classification and combining: chapters 9 and 10
Zongker digit Visualization and classification: chapters 6 and 9
Pen-based digit Classification: chapter 9
Newsgroups Visualization and clustering: chapters 6 and 7
Texture Combining: chapter 10

A.1 Artificial data sets

Fig. A.1: Euclidean DR
for the ringnorm data.

We will consider a number of artificial data sets describing two-class discrimi-
nation problems. Gaussian data refer to normally distributed classes. Studying
artificial data are useful, since we can control their parameters or properties, such
as the initial dimensionality and class overlap. Therefore, some insight can be
gained while different dissimilarity measures are used for the representation.

Ringnorm. This is an implementation of Breiman’s ringnorm example [43], taken
from DELVE [81]. The data consist of two classes in a 4BA -dimensional space.
Each class is drawn from a multivariate normal distribution. The first class has a
zero mean F þ äo� and the covariance matrix of î äog>� � . The second class has
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the mean F � ä\4�YBC»U¬5	h Þ�4BAoã Ú and the identity covariance matrix. Breiman reports the theoretical expected
misclassification rate of 2Åë f m . A Euclidean distance is used for the representation; see also Fig. A.1. This
data set is used in section 7.1.2 for the illustration of clustering approaches.

Fig. A.2: Euclidean
DR for the hypercube
data.

Hypercube data. This data set consists of kBA�A points generated according to a
uniform distribution and equally confined in two hypercubes in a 2#A�A -dimensional
space. The leftmost corner of both hypercubes is set to the origin. The edge lengths
of the hypercubes are A±ë @ and 2 , correspondingly. This means that the first hyper-
cube contains the other one and, in fact, the sampling density in the small hypercube
is larger than outside it. The Euclidean distance representation has been considered
for these data, which will give an indication of a clear cluster corresponding to the
points of the small hypercube. Due to the coarse sampling of the points outside this
hypercube, their distances become relatively larger. Moreover, in such a space, they
tend to lie close to the boundary. Note that this is the well-known effect of the curse-
of-dimensionality. The volume of the small hypercube with respect to the large one
is Þ�A±ë @�Y�2�ã þ ~G~ ã b¶ë Vl��2#A ï � þ . Not surprisingly, the points in the small hypercube
are close, while others are remote. In order to realize that the data points are uniform in both hypercubes,
one would need, 2#A

þ ~G~ sampled points, for instance. This is not feasible, so for any coarse sampling, we
should perceive two clusters: one compact and the other spread out. This fact can also be clearly observed
while studying the corresponding dissimilarity matrix, see Fig. A.2. This data set is used in chapter 6 for
visualization.

Banana data. This data set consists of two banana-shaped classes in a 4 -dimensional space. It is mainly
used for illustration purposes when a number of different dissimilarity measures is considered. See Fig. A.3
for an illustration.

Fig. A.3: Banana data (left) and its Euclidean distance representation.

Polygon data. The data consist of two classes of polygons: convex quadrilaterals and irregular heptagons,
randomly generated. See Fig. A.4 for some examples. The polygons are first scaled and then the metric
Hausdorff distances, Def. 5.3, and non-metric modified Hausdorff distances, Def. 5.6, are computed between
their vertices. In total, 4BA�A�A objects per class are available. The intensity plots of the derived dissimilarity
representations are presented in Fig. A.5. This data set is used in chapter 9 for classification.

Quadrilaterals

Heptagons

Fig. A.4: Polygon data: examples of quadrilaterals convex and irregular heptagons.

Convex polygon data. The data consist of convex pentagons and heptagons. For the generation of a polygon,ç vertices ( @ for pentagons and b for heptagons) are first regularly positioned on the unit circle such that the
Euclidean distances between two consecutive vertices are equal. Next, two-dimensional noise is added to
each vertex to perturb the polygons. Similarly as for the polygon data above, the Hausdorff and modified-
Hausdorff distance representations are considered. Some examples are shown in Fig. A.6. The data set is
used in chapter 9 for building zero-error classifiers.



A.2 Real-world data sets 285

Hausdorff DR Modified-Hausdorff DR

Fig. A.5: Dissimilarity representations for the polygon data.

Pentagons

Heptagons

Fig. A.6: Convex polygon data: examples of pentagons and heptagons.

A.2 Real-world data sets
Our goal is to show the usefulness of dissimilarity representations for novelty detection and classification
problems. To be representative, real data sets will have various characteristics. There are examples, in which
raw data are collected by a sensors and represented in a digitized form by spectra, shapes, or images. There
are also cases, in which the original feature-based data are of mixed types or lie in a high-dimensional space.

Ionosphere data. This radar data, coming from UCI Repository [31], was collected by a system of 2!k high-
frequency antennas with a total transmitted power of about k¢ë g kW in Goose Bay in Labrador. The targets
were free electrons in the ionosphere. Positive examples are those for which the evidence of the structure in
the ionosphere was shown. Negative examples refer to the cases where nothing was returned, thus the signals
went through the ionosphere. The received signals are preprocessed by using an autocorrelation function with
the arguments being the time of a pulse and the pulse number. For 2¹b pulse numbers present, each instance in
this data is described by two attributes per pulse number, corresponding to the complex values obtained from
the complex electromagnetic signal. Hence, the data is described by

f g features. The positive class consists
of 4�4�@ examples and the negative class posses 2!4�k examples, yielding

f @&2 examples, in total. This data set
is used in section 10.3 for the illustration of the classifier projection space being a spatial representation of
classifier diversities in an ensemble of classifiers.

Wine data. The Wine data come from Machine Learning Repository [31] and describe three types of wines
described by 2 f features. In each experiment, when the data are split into the training and test sets, the
features are standardized as they have different ranges. A Euclidean distance is chosen for the representation.

Ecoli data. The data come from Machine Learning Repository [31] and describe eight protein localiza-
tion sites. Since the number of examples in all these classes is not sufficient for a prototype selection
study, three largest localization sites are selected as a sub-problem. These localization classes are: cyto-
plasm ( 2<g f examples), inner membrane without signal sequence ( b�b examples) and perisplasm ( @�4 exam-
ples). Since the features are some type of scores between A and 2 , they are not normalized. Five numer-
ical attributes are taken into account to derive the

ý þ
and

ý ~�ÿ � distance representations, denoted as Ecoli-p1
and Ecoli-p08, respectively. Remember that the

ý¤£
distance between two vectors � � and �>� is computed�p£ ÞX� � áG�>��ãêä Þ � û ¥$¦ þ N W � ¥ $iWJ� ¥ N £ ã þ7§�£ and it is metric for ç ��2 .

MFEAT data. This data set consists of sets of features derived for handwritten numerals ’0’-’9’ extracted
from a collection of Dutch utility maps. 4BA�A patterns per class have been digitized in binary images. The
digits are represented by six feature sets, as used in [210]. Here two feature sets are used: Fourier describing
bBk Fourier coefficients of the character shapes and morphological describing six morphological features; see
[31]. This data set is used in section 10.3 for the illustration of the classifier projection space being a spatial
representation of classifier diversities in an ensemble of classifiers.
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Fig. A.7: City block
DR for the pump data.

Pump vibration data. Pump vibration was measured with three accelerometers
mounted on a submersible pump which operated in three states: normal, presence
of imbalance and presence of bearing failure. Moreover, the bearing failure was
measured at three different operating speeds. The data consist of @BA�A observations
with 4�@�k spectral features of the acceleration spectrum (see [247]). It is known [427]
that the data has a low intrinsic dimensionality and that it probably lies in a nonlin-
ear subspace of a 4�@�k -dimensional space. The city block distance representation has
been considered for this set, as it can be observed in Fig. A.7. The data are used in
chapter 6 for visualization.

Cat-cortex data. The cat-cortex data set is provided as a k�@�hOk�@ dissimilarity matrix describing the connec-
tion strengths between k�@ cortical areas of a cat. It was collected by Scannell [336] and used for clasification
in [172, 173] and for clustering in [85]. The data set is obtained from [84]. The dissimilarity values are
measured on the ordinal scale and take the following values: 2 for a strong and dense connection, 4 for an
intermediate connection,

f
for a weak connection and g for an absent or unreported connection [172]. Con-

cerning the cortex functions, four regions can be distinguished: auditory (A), frontolimbic (F), somatosensory
(S) and visual (V). The class cardinalities are 2#A , 2!V , 2� and 2� , respectively. The above mentioned classes
can be identified in Fig. A.8, left. One may also observe that the classes are not homogeneous and that there
is a confusion between the frontolimbic class and other classes. As indicated by the negative eigenvalues of
the pseudo-Euclidean embedding, Fig. A.8, right, the dissimilarity data are highly non-Euclidean. This data
set is used in section 7.1.2 for the illustration of clustering approaches.

0 10 20 30 40 50 60 70
−20

0

20
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Fig. A.8: Cat cortex dissimilarity matrix (left), where the visible clusters (denoted by rectangles) are presented
in the following order: A, F, S, and V and the eigenvalues in the pseudo-Euclidean embedding (right). See
text for details.

Protein data. The protein data are provided as a 4&2 f ho4&2 f dissimilarity matrix comparing the protein se-
quences based on the concept of an evolutionary distance. It was used for clasification in [172] and for
clustering in [85]. The data set is obtained from [84]. The proteins are originally assigned to four classes of
globins: heterogeneous globin (G), hemoglobin- ( (HA), hemoglobin- s (HB) and myoglobin (M). The class
cardinalities are

f A , bB4 , bB4 and
f V , respectively. The above mentioned classes can be identified in Fig. A.8

(left), however the globin class is very weak. Not surprisingly, the hemoglobin classes are similar, while
the myoglobin class is distinct. One may also observe that the classes are not homogeneous and that there
is a confusion between the frontolimbic class and other classes. As indicated on the right in Fig. A.9, the
dissimilarity data are nearly Euclidean. This data set is used in section 7.1.2 for the clustering approaches.

Ball-bearing data. Fault detection is an important problem in machine diagnostics. A detection of four types
of fault in ball-bearing cages is considered, a data set [124], as used in [53]. Each data item consists of 4BABgn
samples of acceleration taken with a Bruel and Kjaer vibration analyzer. After preprocessing with a discrete
Fast Fourier Transform, each signal is characterized by

f 4 attributes. There are five categories: normal
behavior, NB, corresponding to measurements made from new ball-bearings and four types of anomalies t þ
– t � : the outer race completely broken ( t þ ), broken cage with one loose element ( t � ), damaged cage with
four loose elements ( t � ) and a badly worn ball-bearing with no evident damage ( t � ); see Fig. A.10 for some
examples. The data representation is based on Euclidean, city block and

ý ~�ÿ � distances together with their
power and sigmoidal transformations. This data set is used in chapter 8 for training one-class classifiers.
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Fig. A.9: Protein dissimilarity data (left), where the visible globin clusters (denoted by rectangles) are pre-
sented in the following order: G, HA, HB, and M, and the eigenvalues in the pseudo-Euclidean embedding
(right). See text for details.

Training examples: normal behavior Validation examples: anomaly T1 Validation examples: anomaly T2

Test examples: normal behavior Test examples: anomaly T1 Test examples: anomaly T2

Test examples: anomaly T3 Test examples: anomaly T4

Fig. A.10: Examples of the pre-processed acceleration samples from the ball-bearing data.

Fig. A.11: Gower’s
DR for the heart data.

Heart disease data. The data come from the UCI Machine Learning Repository
[31]. The goal is to detect the presence of heart disease in the patient. There are

f A f
cases, where 2 f V correspond to ill patients. This database contains bB@ attributes, but
all published experiments refer to using a subset of 2 f of them, so we use them as
well. The attributes are: age, sex ( 2¹Y
A ), chest pain type ( 2�$Øg ), resting blood pressure,
serum cholesterol, fasting blood sugar D 120 mg/dl ( 2¹Y
A ), resting electrocardiograph
results, maximum heart rate achieved, exercise induced angina ( 2¹Y
A ), the slope of
the peak exercise ST segment, ST depression induced by exercise relative to rest
( 2�$ f ), number of major vessels colored by fluoroscopy ( A�$ f ) and heart condition
(
f

- normal, k - fixed defect, b - reversable defect). Hence, the data consist of mixed
types: continuous, dichotomous and categorical variables. There are also several missing values. Gower’s
dissimilarity, as defined in (5.5), has been chosen for the representation. See also Fig. A.11. This data set is
used in section 8.3.3 in the one-class classification problem.
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Fig. A.12: Examples of normalized autofluorescence spectra for healthy (left) and diseased (right) patients.

Diseased mucosa in oral cavity. The data consist of the autofluorescence spectra acquired from healthy and
diseased mucosa in the oral cavity; see [368, 406] for details. Autofluorescence spectra were collected from
97 volunteers with no clinically observable lesions of the oral mucosa and 137 patients having lesions in oral
cavity. The measurements were taken at 11 different anatomical locations using seven different excitation
wavelengths

f @BA , f k�@ , f �@ , g�A�@ , g:4BA , g f @ and g:@BA nm. We will, however, concentrate on the wavelength
of
f k�@ nm, since the corresponding spectra have the smallest number of outliers. After preprocessing [406],

each spectrum consists of 2!V�V bins (pixels/wavelengths). In total, �@�b spectra representing healthy tissue
and 2�2!4 spectra representing diseased tissue were obtained. Two normalization techniques have been used
here: identical area, i.e. the bins are scaled such that their sum is 2#A�A , or standard normal variate (SNV)
transformation where each spectrum is standardized to have a zero mean and a unit standard deviation; see
Fig. A.12 for some examples.

A number of dissimilarity measures has been considered for normalized spectra. First, the city block distances
between first order Gaussian-smoothed ( cùä f samples) derivatives of the spectra are computed. The zero-
crossings of the derivatives indicate the peaks and valleys of the spectra, so they are informative. Moreover,
the distances between smoothed derivatives contain some information of the order of bins. In this way, the
property of a continuity of a spectrum is somewhat taken into account. Next, a spherical geodesic distance,
Def. 3.47, is also considered, called also a spectral angle mapper, since it is popular to measure the similarity
between the spectra. The spectra (when properly scaled) can also be treated as histograms-like distributions,
which allows us to compare them by divergence measures, section 5.2. This data set is used in chapters 8 and
10 for training and combining one-class classifiers.

Geophysical spectra. The geophysical spectra data set describes two classes. Both classes are geologically
heterogeneous, hence multi-modal. Each class is represented by @BA�A examples. The objects are described
by large wavelength spectra, since (hyper-)spectra are popular in remote sensing [239]. Since the data are
confidential we cannot provide more details. The spectra are first normalized to a unit area and then two
dissimilarity representations are derived. The first one relies on the spectral angle mapper distance (SAM)
[239] defined for the spectra ¨ � and ¨$� as

� Í:ÏtÐ Þ�¨ � á�¨,��ã ä �	ÕGÖ³Ö0c:×�Þ�¨ª© � �>�¹Y{N N ¨8��N N � N N ¨8�:N N � ã (which is in fact a
spherical distance; see Def. 3.47). The second dissimilarity is based on the

ý5þ
distance between the Gaussian

smoothed (with c ä�4 bins) first order derivatives of the spectra [286, 287]. Since by the use of the first
derivative, the shape of the spectra is somewhat taken into account, we will refer to this measure as to the
shape dissimilarity. Hence, the geophysical data are denoted as GeoSam and GeoShape, respectively.

GeoSam DR GeoShape DR

Fig. A.13: Dissimilarity representations for the geophysical spectra.
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ProDom. ProDom is a comprehensive set of protein domain families [68]. A ProDom subset of 4�kBABg protein
domain sequences from the ProDom set [68] was selected by Roth [319]. These are chosen based on a
high similarity to at least one sequence contained in the first four folds of the SCOP database. The pairwise
structural alignments are computed by Roth [319]. Each SCOP sequence belongs to a group, as labeled by the
experts [279]. We use the same four-class problem in our investigations. Originally, a structural similarities
C � � are derived, from which the dissimilarities are derived as

� � �uä Þ�C � � � C,�7�ß$õ4�C � �wã þ7§ � for 1P=ä§x . Ý ä Þ � � �wã
is slightly non-Euclidean and slightly non-metric.

NIST digit data. This data set describes 4BA�A�A handwritten digits from the NIST database [420], each repre-
sented by 2!49Lho2!49 binary images; see Fig. A.14 for some examples. Each digit class is represented by 4BA�A
examples. Two dissimilarity measures are considered here: Euclidean on the blurred images and modified-
Hausdorff, Def. 5.6 on the digit contours. When needed, the images are blurred by the use of the Gaussian
function with a standard deviation of  pixels. The motivation for such a preprocessing is to avoid sharp
edges of the digits and, thereby, make the distances robust to small tilts or variable thickness. This set is used
in chapter 9 for the classification task.

Fig. A.14: Examples of the NIST digits, resampled to 2!kLho2!k pixels.

Euclidean DR Hamming DR Hausdorff DR Modified-Hausdorff DR

Fig. A.15: Dissimilarity representations for the NIST-38 digit data.

NIST-38 digit data. Within the collection of the NIST digit, a two-class problem is also separately considered,
represented by the digits ’3’ and ’8’. Here, each digit class consists of 2#A�A�A examples. Four dissimilarity
measures are considered: Hamming (section 5.3) Euclidean on the blurred (Gaussian-smoothed) images,
Hausdorff (Def. 5.3) and modified-Hausdorff (Def. 5.6) on the digit contours. This set is used in chapter 9 for
a simulation of a missing value problem and in chapter 10 for combining strategies.

Fig. A.16: Non-metric DR
for the Zongker data.

Zongker digit data. The data describes the NIST digits [420], originally given
as 2!49ÜhÎ2!49 binary images. Here, the similarity measure, based on deformable
template matching, as defined by Zongker and Jain [207], is used. Let }õä Þ�C � ��ã
denote the similarities. The symmetric dissimilarities Ý ä Þ � � ��ã are computed
as follows:

� � �»ä Þ�C � � � C,�«�Õ$iC � �Õ$iC�x�1Ïã þ7§ � for 1Ó=ä x and
� � � äÌA , since the data

are slightly asymmetric. Note that the latter can be obtained in a traditional
way as well, Theorem 3.38, second item, if first the corresponding similarities
C � � and C,� � are averaged out. Since the original } and its averaged out version
}¬�® ü are not positive-definite, then Ý is non-Euclidean. Moreover, Ý is non-
metric, since the triangle inequality does not hold. Since C � � /a� A±á!2�� , in some
other cases, we will also distinguish the dissimilarities derived for the averaged
similarities as Ý ä ÞZ2ß$n}`¬�® ü ã�ë þ7§ � . These are also non-metric.

To have an impression of the non-Euclidean aspect of both dissimilarities, an indication can be given by the
estimated ratio of N p û � ù N Y�p û ¬ m /j� A±ë f 2Åá²A±ë f »� , that is in the pseudo-Euclidean embedding process this is the
ratio of the largest in magnitude negative eigenvalue to the largest positive one. The overall contribution of
negative eigenvalues in terms of the generalized average variance, see section 3.3.4, is about

f @:m . These
numbers imply a significant ’deviation’ from Euclidean behavior. This data set is used in chapter 6 for
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visualization and in chapter 9 for discrimination. Dr Douglas Zongker and prof. Anil Jain are acknowledged
for providing the template-matching dissimilarities on the NIST digits.

Fig. A.17: Examples of the pen-based handwritten digits.

Pen-based handwritten digit data. This data set comes from the UCI Machine Learning Repository [31]
and was created by Alpaydin and Alimoglu. They used a pressure sensitive tablet with an integrated LCD
display and a cordless stylus. Samples hand-written by a number of subjects are described by the W and
� coordinates within @BA�Anh§@BA�A pixel box. Hence, each digit is presented as a sequence of points in a
4 -dimensional space. First, the data are resampled such that the distances between any consecutive pair
of points equal some chosen ¯ . Then, from the transformed sequence C�ä¿ÞXW þ áG� þ ã�ë ë ëwÞXW û áG� û ã , a string��ä±° þ ë ë ë,° û is derived such that ° � is the vector pointing from ÞXW � áG� � ã to ÞXW �¤² þ áG� �¤² þ ã . Each digit is then
represented by a string. The distance between the strings is an edit distance with a fixed insertion and deletion
costs, ; ins ä ; del äS¯ and with some substitution cost ; sub. Two different substitution costs are considered
as an angle between the vectors and the Euclidean distance between the vectors. Different definitions of
; sub lead to different distance measures, hence different dissimilarity representations called Pen-angle and
Pen-dist, respectively; see also [47, 48].

Here, we only consider a part of the pen-digits data, consisting of
f gn9 digit examples originally assigned as

the ’test’ data on the UCI Repository Web-page (actually, all but first samples of each test class are used). The
digits are unevenly represented with the class cardinalities varying between

f�f g and
f k f . For some examples

of original pen-digits data can be seen in Fig. A.17. This data set is used in chapter 9 for classification. We
are grateful to prof. Horst Bunke and Simon Günter for providing the edit-distance data.

Pen-angle DR Pen-dist DR

Fig. A.18: Edit-distance representations for the pen-digit data.

Newsgroups data. This is a small part of the so-called 20Newsgroups data [282], as considered by Roweis
[283]. The original data set is a collection of approximately 4BA�A�A�A messages, partitioned (nearly) evenly
across 4BA different newsgroups. Each newsgroup corresponds to a different topic. Some of the news-
groups are very closely related to each other, while others differ substantially. The full list, partitioned
according to the subject matter is: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey,
sci.crypt, sci.electronics, sci.med, sci.space, misc.forsale, talk.politics.misc, talk.politics.guns, talk.poli-
tics.mideast, talk.religion.misc, alt.atheism and soc.religion.christian. The small subset used here consist
of all the ’comp.*’, ’rec.*’, ’sci.*’ and ’talk.*’ groups combined into four classes. Each message is then
described by an occurrence for 2#A�A words across 2!k�4
g:4 postings. Hence, the messages are described by
occurrence vectors in a 2#A�A -dimensional space.

The non-metric correlation-based dissimilarity measures ÝKò�  ü and Ý�ò	  ü � , defined in Table 5.2 are used to
construct the News-cor and News-cor2 dissimilarity representations, respectively. Since the occurrence vec-
tors can be treated as describing the event only (a particular keyword has appeared or not), they might be
then simplified to binary variables for which some measures can be defined. Also the Jaccard, dice, simple
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matching and Hamman measures were investigated; see Table 5.1. However, since the used keywords are not
representative, these measures were found very poor. Therefore, we skipped them from the analysis. This
data set is used in chapter 6 for visualization and in chapter 7 for illustration of some clustering approaches.

News-cor DR News-cor2 DR

Fig. A.19: Dissimilarity representations for the newsgroup data.

Texture data. These data are created from 4 f large images obtained from MIT Media Lab [394] and used
as illustration for an image database retrieval problem. Each original image is cut into 2!kÌ2!490h 2!49 non-
overlapping pieces. These represent a single class. Therefore, our database consists of 4 f classes and

f k9
images. These images are mostly homogeneous and represent one type of a texture. Each image is described
by the responses (in terms of magnitudes) of ten Gabor filters. They are chosen by a backward feature
selection from a set of gn Gabor filters defined by different smoothing, frequency and direction parameters;
see also [236].
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[82] P. Demartines and J. Hérault. Curvilinear component annalysis: A self-organizing neural network for nonlinear
mapping of data sets. IEEE Transations on Neural Networks, 8(1):148–154, 1997.

[83] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[84] T. Denœux and et al. Belief functions and pattern recognition: Matlab software. http://www.hds.utc.
fr/˜tdenoeux/software.htm.

[85] T. Denoeux and M.-H. Masson. Evclus: Evidential clustering of proximity data. IEEE Transations on Systems,
Man and Cybernetics, 34(1):95–109, 2004.

[86] P.A. Devijver and J. Kittler. Pattern recognition: A statistical approach. Prentice/Hall, London, 1982.
[87] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag, 1996.
[88] M. Deza and M. Laurent. Applications of cut polyhedra. Journal of Computational and Applied Mathematics,

55(2):217 – 247, 1994.
[89] C. Domeniconi, J. Peng, and D. Gunopulos. Locally adaptive metric nearest-neighbor classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(9):1281–1285, 2002.
[90] P. Domingos. A unified bias-variance decomposition and its applications. In International Conference on Ma-

chine Learning, pages 231–238. Morgan Kaufmann, 2000.
[91] P. Domingos. A unified bias-variance decomposition for zero-one and squared loss. In International Conference



296 BIBLIOGRAPHY

on Artificial Intelligence, pages 564–569, Austin, Texas, 2000. AAAI Press.
[92] M.A. Dritschel and J. Rovnyak. Operators on indefinite inner product spaces. Lectures on Operator Theory and

its Applications, Fields Institute Monographs, pages 141–232, 1996.
[93] M.P. Dubuisson and A.K. Jain. Modified Hausdorff distance for object matching. In International Conference

on Pattern Recognition, volume 1, pages 566–568, 1994.
[94] W. Duch. Similarity based methods: a general framework for classification, approximation and association.

Control and Cybernetics, 29(4):937–968, 2000.
[95] W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and pattern completion using neural

similarity based methods. Applied Mathematics and Computer Science, 10(4):101–120, 2000.
[96] W. Duch, A. Naud, and R. Adamczak. A framework for similarity-based methods. In Polish Conference on

Theory and Applications of Artificial Intelligence, pages 33–60, Łód’z, 1998.
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[224] G. Köthe. Topological vector spaces I. Springer-Verlag, Berlin, Heidelberg, New York, 1969.
[225] E. Kreyszig. Introductory Functional Ananlysis with Applications. John Wiley & Sons, New York, 1978.
[226] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,

29:1–27, 1964.
[227] J.B. Kruskal. Multidimensional scaling and other methods for discovering structure. In Statistical methods for

digital computers, pages 296–339. John Wiley & Sons, New York, 1977.
[228] J.B. Kruskal and M. Wish. Multidimensional scaling. Sage Publications, Newbury Park, CA, 1978.
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[271] L. Micó, J. Oncina, and R.C. Carrasco. A fast branch & bound nearest neighbour classifier in metric spaces.

Pattern Recognition Letters, 17(7):731–739, 1996.
[272] M.F. Møler. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525–533,

1993.
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Summary

I woke up and the world outside was dark
all so quiet before the dawn
opened up the door and walked outside
the ground was cold
I walked until I couldn’t walk anymore
to a place I’d never been
there was something stirring in the air
in front of me, I could see
More than this
”MORE THAN THIS”, PETER GABRIEL

In 2004, kernel methods [74, 352] have become popular in statistical learning. Kernels are (con-
ditionally) positive definite (cpd) functions of two variables, which serve to encode similarities
between pairs of objects. Such objects are usually represented in a feature space. In 1995, Vapnik
[403] proposed an elegant formulation of the largest margin classifier. This support vector machine
(SVM) was based on the reproducing property of kernels. Since then, many variants of the SVM
have been applied to a wide range of learning problems.

It was recognised before the start of our project [106, 108, 109] in 1999, that the class of cpd
functions is restricted. It does not accommodate a number of useful proximity measures already
developed in pattern recognition and computer vision. Many existing similarity measures are not
positive definite and many existing dissimilarity measures are not Euclidean1 or even not metric.
Examples are pairwise structural alignments of proteins, variants of the Hausdorff distance and
normalized edit-distances. The major limitation in using such kernels is that the original formulation
of the SVM relies on a quadratic optimization. This problem is guaranteed to be convex for cpd
kernels, and therefore uniquely solvable by standard algorithms. Kernel matrices disobeying these
requirements are usually regularized by adding a suitable constant to their diagonal.

This thesis extends the notion of a kernel to that of a proximity representation, since proximity
underpins the description of a class as a group of similar objects. In such a representation, each
object is described by a set of proximities to the so-called representation set à [301]. If à is chosen
to be the set of training examples, then this proximity representation becomes a generalized kernel.
When a suitable similarity measure is selected, a cpd kernel is obtained as a special case. Using a
proximity representation, learning can be addressed in a more general way than is possible using the
SVM. To focus on class and object differences, in this work proximity is modeled as dissimilarity
rather than similarity. This is, however, not essential.

The main goal of this thesis is to provide a mathematical foundation and to develop learn-
ing methodologies for dissimilarity representations. The thesis is divided into a theoretical part
(chapters 2–5) and an experimental part verifying the proposed methodologies (chapters 6–10).

Chapter 2 briefly describes various spaces such as (pre)topological, normed, metric and inner prod-
uct spaces, as well as their interrelations. Some attention is devoted to Kreĭn spaces as indefinite
inner product spaces. These are later discussed as pseudo-Euclidean spaces of finite embeddings

1 The dissimilarity measure being Euclidean is inherently related to the corresponding kernel being positive definite,
as explained in chapter 3.
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of dissimilarities. The introduction of such spaces prepares a mathematical framework for handling
arbitrary dissimilarity data and the design of learning procedures later on.

Chapter 3 deals with the characterization of Foh7F dissimilarity matrices with respect to Euclidean,ý è and metric properties and some related transformations. It introduces useful tools for checking
metric or Euclidean behavior. In particular, the issue of (approximate) linear and nonlinear embed-
ding into Euclidean spaces, as well as into pseudo-Euclidean spaces, is discussed. This relies on
finding spatial vector representations such that dissimilarities are preserved, which is possible for
any symmetric dissimilarity measure. This lays the foundation for designing learning algorithms on
spatial representations, as described in chapter 4. Next, the city block distance is characterized by
its additivity property. This distance can be perfectly structured by an additive tree model, where
the distance is realized in terms of the shortest path in the tree. Other dissimilarity measures can
also be interpreted via such tree models, though only approximately. Such models of dissimilarity
can help in understanding the organization of objects.

Chapter 4 starts with a brief introduction to feature-based statistical learning. Then, a more detailed
description of dissimilarity representations is given. The (relative) dissimilarity representation is
described by a dissimilarity matrix Ý ÞN� áâà�ã between the set of (training) objects � and the represen-
tation set of prototype objects, à . This chapter further focuses on possible decision functions for
such representations. The three main learning approaches rely on the interpretation of dissimilarities
in different spaces:

1. pretopological spaces, in which dissimilarity values are used directly to describe neighbor-
hood relations between objects;

2. embedded spaces, usually pseudo-Euclidean, which are vector spaces determined by
dissimilarity-preserving projections;

3. dissimilarity spaces, where each dimension corresponds to the dissimilarity to a particular
representation object.

These methods can use any nonnegative dissimilarity measure satisfying the reflexivity condition
(and, additionally, the symmetry condition if the embedded space approach is considered), provided
that it is meaningful for the learning problem. Various non-Euclidean or non-metric statistical or
structural dissimilarity measures already known can be used, or even designed to respond better to
practical requirements. For instance, in computer vision, it is known that in the presence of partially
occluded objects, non-metric measures are preferred for template matching purposes [206].

In chapter 5, various similarity and dissimilarity measures are described, together with their basic
properties. Also, a brief overview of measures used in practical applications is presented.

Chapters 6 and 7 discuss fundamental questions related to exploratory data analysis, i.e. the un-
derstanding of relations within data. Chapter 6 investigates a number of well-known visualization
techniques and their use on dissimilarity data. Multidimensional scaling and Isomap seem to reveal
most of the data structure. Additive tree models are useful for understanding hierarchical or nested
structures in dissimilarity data. However, their interpretation is limited to a moderate number of
objects.

Chapter 7 investigates structure and complexity in dissimilarity representations. Clustering methods
in dissimilarity spaces may be useful for problems in which at least one of the clusters is compact
and others are more wide-spread. The intrinsic dimensionality can be estimated in embedded or
dissimilarity spaces. The number of significant eigenvalues in a linear pseudo-Euclidean embed-
ding, as well as in a principal component analysis applied in a dissimilarity space, give a reasonable
indication. Additionally, some statistics are proposed and experimentally examined which may be
used to quantify whether a representation set contains a sufficient number of objects to describe
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class variability.

A possible approach to outlier detection is analyzed in chapter 8 by constructing a one-class clas-
sifier (OCC). Currently existing OCCs are built either in traditional feature spaces or on Euclidean
distances derived there. Two new OCCs, one in embedded space and one in dissimilarity space, the
so-called linear programming data description (LPDD), are proposed and applied to the problems
of machine monitoring, lesion diagnostics and heart disease diagnostics. When the outliers do not
heavily overlap with target objects, the LPDD may provide the best solution as a trade-off between
performance and computational complexity. Noteworthy is the fact that the best measures in the
considered noisy problems of machine monitoring and lesion diagnostics are non-metric distances.

Chapter 9 discusses classification. Various dissimilarity measures have been analyzed for this pur-
pose. Experiments show that linear or quadratic classifiers, constructed in either dissimilarity spaces
or embedded spaces, often significantly outperform the Û -NN rule for small representation sets,
irrespective of the measure used. Additionally, some transformations have been applied to non-
Euclidean dissimilarity measures to make them (more) Euclidean (as discussed in chapter 3). This
imposed Euclidean behavior is not found to result in better classification performance. It is more
important that the measure itself describes separated and possibly compact classes than that it is
strictly Euclidean or metric.

Various methods for representation set selection have been studied, for both the embedding and
dissimilarity space approaches. When small representation sets are sought, systematic procedures
work best, e.g. optimizing the classification error. For moderate representation set sizes, the Û -
centers algorithm is fast and works well on average. It allows one to control the number of selected
prototypes, and hence the complexity of classifiers to be further constructed. In the dissimilarity
space approach, support objects selected by a sparse linear programing machine form good rep-
resentation sets as well, although their size cannot be influenced (except when Û -centres is used
beforehand). In the embedding approach, the representation set can consist of objects resulting in
the largest approximation error. Finally, when the representation set should be large, random selec-
tion can be used. A randomly selected representation set consisting of 4BAnm (or more) of the training
objects works well in both dissimilarity and embedded spaces.

Some ideas on zero-error recognition are also discussed. Under some constraints (on unambiguous
labeling of objects and on properties of the dissimilarity measure) the Û -NN rule will work perfectly
for very large training sets. As this may be infeasible, an alternative is the use of linear classifiers
in dissimilarity spaces. For these, a small representation set may suffice. However, a zero-error
solution cannot always be found for the test set. This depends on the dissimilarity measure and the
size of the representation set in relation to the classifier chosen.

In chapter 10, it is discussed how combining different sources of information or different learning
strategies may be effective for designing a good pattern recognition system. Combining is a natu-
ral way of merging statistical and structural dissimilarity representations. Methods for combining
dissimilarity representations are proposed and experimentally investigated. Classifiers built on such
combined representations outperform the best classifier (of the same type) constructed on single
representations. Classifiers combined by fixed rules also work well. The product rule combiner
seems to be especially useful for small representation sets in two-class problems, while majority
voting can be applied for one class classifiers. Additionally, a way of representing a group of clas-
sifiers is proposed, in a projection space based on (approximate) embedding of pairwise diversities
between classifiers. Studying classifier differences in this way may increase understanding of the
recognition problem at hand.

Our study on dissimilarity representations applies to all dissimilarities, independently of the way
they have been derived, e.g. from raw data or from an initial representation by features, strings or
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graphs. Expert knowledge on the application can be used to formulate this initial representation and
in the definition of the proximity measure. This makes the dissimilarity representations developed
natural candidates for combining the strengths of structural and statistical approaches in pattern
recognition and machine learning. The advantage of the structural approach lies in encoding both
domain knowledge and the structure of an object. The benefit of the statistical approach lies in a
well-developed mathematical theory of vector spaces. First, a description of objects in the structural
framework can be found. This can then be quantized to capture the dissimilarity relations between
the objects. If necessary, other structurally and statistically derived measures can be designed and
combined. The final dissimilarity representation is then used in statistical learning. The results in
this thesis justify the use and further exploration of dissimilarity information for pattern recognition.



Samenvatting

Perfection is achieved, not when there is nothing more to add, but when there is nothing
left to take away.

ANTOINE DE SAINT-EXUPÉRY

Sinds 2004 zijn kernel methoden [74, 352] populair geworden in het statistisch leren. Kernels
zijn (conditioneel) positief definiete (cpd) functies van twee variabelen, die gebruikt worden om
overeenkomsten tussen paren van objecten te coderen. Meestal worden objecten gerepresenteerd
in een kenmerkruimte. In 1995 heeft Vapnik [403] een elegante formulering voor de largest mar-
gin classifier voorgesteld. Deze support vector machine (SVM) is gebaseerd op de reproductie-
eigenschap van kernels. Sindsdien worden veel varianten van de SVM toegepast op een breed scala
aan leerproblemen.

Al voor de start van ons project [106, 108, 109] in 1999 werd ingezien dat de klasse van cpd
functies beperkt is. Zij mist een aantal bruikbare nabijheidsmaten die al ontwikkeld waren in de pa-
troonherkenning en computer vision. Veel bestaande overeenkomstmaten zijn niet positief definiet
en veel bestaande ongelijkheidsmaten zijn niet Euclidisch2 of zelfs niet metrisch. Voorbeelden
zijn paarsgewijze structurele oplijning van eiwitten, varianten van de Hausdorff afstand en genor-
maliseerde bewerkingsafstanden. De voornaamste beperking in het gebruik van dergelijke kernels
is dat de originele formulering van de SVM een kwadratische optimalisatie vereist. Dit probleem
is gegarandeerd convex voor cpd kernels en daarmee uniek oplosbaar met standaard algorithmen.
Kernel matrices die niet aan deze voorwaarden voldoen worden normaliter geregulariseerd door er
een toepasselijke constante bij hun diagonaal op te tellen.

Dit proefschrift breidt de notie van een kernel uit naar die van een nabijheidsrepresentatie, aangezien
nabijheid de beschrijving van een klasse als groep van gelijkende objecten ondersteund. In
zo’n representatie wordt elk object beschreven door zijn afstanden tot de zogenaamde represen-
tatieset à [301]. Indien à wordt gekozen als de verzameling leervoorbeelden dan wordt de na-
bijheidsrepresentatie een gegeneraliseerde kernel. Als er een toepasselijke overeenkomstmaat is
gekozen, wordt een cpd kernel verkregen als speciaal geval. Gebruikmakend van een nabij-
heidsrepresentatie kan het leren op een algemenere wijze worden benaderd dan mogelijk is met
gebruik van een SVM. Om nadruk te leggen op klasse- en objectverschillen wordt in dit werk na-
bijheid gemodelleerd als verschil, in plaats van overeenkomst. Dit is echter niet essentieel.

Het hoofddoel van dit proefschrift is het leggen van een wiskundige onderbouwing van, en het
ontwikkelen van leermethodologieën voor, verschilrepresentaties. Dit proefschrift is ingedeeld
in een theoretisch deel (hoofstukken 2-5) en een experimenteel deel waarin de voorgestelde method-
ologieën worden geverifieerd (hoofdstukken 6-10).

Hoofdstuk 2 beschrijft kort een aantal ruimten, zoals (pre)topologische, genormeerde, metrische en
inwendig produkt-ruimten, alsook hun onderlinge verhoudingen. Er wordt enige aandacht besteed
aan Kreı̆n ruimten als indefiniete inwendig-produkt ruimten. Deze worden later beschreven als
pseudo-Euclidische ruimten van eindige inbeddingen van ongelijkendheden. De introductie van
dergelijke ruimten is een voorbereiding op een wiskundig raamwerk om met willekeurige verschil
gegevens om te kunnen gaan en het latere ontwerp van leerprocedures.

2 Het Euclidisch zijn van een verschilmaat is inherent aan het positief definiet zijn van de overeenkomstige kernel,
zoals wordt uitgelegd in hoofdstuk 3.
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Hoofdstuk 3 karakteriseert F§hnF verschil matrices voor wat betreft Euclidische,
ý è en metrische

eigenschappen en enkele gerelateerde transformaties. Het introduceert bruikbare gereedschappen
om metrisch of Euclidisch gedrag te controleren. In het bijzonder wordt het geval van (bij be-
nadering) lineaire en niet-lineaire inbedding in Euclidische ruimten, alsook in pseudo-Euclidische
ruimten, besproken. Hiervoor dienen spatiële vector-representaties te worden gevonden zodanig
dat de ongelijkendheden bewaard worden, hetgeen mogelijk is voor elke symmmetrische ver-
schilmaat. Dit legt de basis voor het ontwerpen van leeralgorithmen voor spatiële representaties,
zoals beschreven in hoofdstuk 4. Vervolgens wordt de city block-afstand gekarakteriseerd door haar
additiviteits-eigenschap. Deze afstand kan perfect worden weergegeven met een additief boom-
model, waarin afstand wordt gevonden als het kortste pad in de boom. Ook andere verschilmaten
kunnen met dergelijke boommodellen worden geı̈nterpreteerd, doch alleen bij benadering. Zulke
verschilmodellen kunnen helpen in het begrijpen van de organisatie van objecten.

Hoofdstuk 4 begint met een korte introductie over statistisch leren op basis van kenmerken. Vervol-
gens wordt een gedetailleerdere beschrijving van verschilrepresentaties gegeven. De (relatieve) ver-
schilrepresentatie wordt beschreven door een verschilmatrix ÝßÞN� áâà�ã tussen de verzameling (leer-)
objecten � , en de representatieverzameling met prototype objecten à . Verder richt het hoofdstuk
zich op mogelijke beslissingsfuncties voor zulke representaties. De drie belangrijkste leerbenaderin-
gen hangen af hoe de verschillen in de diverse ruimten worden geı̈nterpreteerd:

1. pretopologische ruimten, waarin verschilwaarden rechtstreeks worden gebruikt om buurre-
laties tussen objecten te beschrijven;

2. ingebedde ruimten, meestal pseudo-Euclidisch, ruimten, dit zijn vectorruimten die gevonden
zijn met verschil-behoudende projecties;

3. verschilruimten, waarin elke dimensie overeenkomt met het verschil met een specifiek
representatie-object.

Deze methoden kunnen gebruik maken van willekeurige niet-negatieve verschilmaten die voldoen
aan de reflexiviteitsvoorwaarde (en de symmetrievoorwaarde als de ingebedde ruimte-benadering
wordt gevolgd), voor zover zij van betekenis zijn voor het leerprobleem. Verschillende bekende
niet-Euclidische of niet-metrische statistische of structurele verschilmaten kunnen worden gebruikt,
of zelfs worden geconstrueerd om beter aan praktische eisen te kunnen voldoen. In computer vision,
bijvoorbeeld, is het bekend dat voor template matching niet-metrische maten de voorkeur verdienen
als gedeeltelijk bedekte objecten aanwezig zijn [206].

In hoofdstuk 5 worden diverse overeenkomst- en verschilmaten, met hun basale eigenschappen
beschreven. Daarnaast wordt een kort overzicht gegeven van maten die in praktische toepassingen
gebruikt worden.

Hoofdstuk 6 en 7 behandelen fundamentele vragen op het gebied van exploratieve data analyse,
zoals het begrip van relaties in data. Hoofdstuk 6 onderzoekt een aantal bekende visualisatietech-
nieken en het gebruik daarvan op verschildata. Meerdimensionale schaling en Isomap lijken het
meest te onthullen over de structuur in de data. Additieve boommodellen zijn nuttig voor het beg-
rijpen van hiërarchische of elkaar omvattende structuren in verschildata. De resultaten van deze
methoden kunnen echter slechts goed worden geı̈nterpreteerd indien het aantal objecten beperkt is.

Hoofdstuk 7 onderzoekt structuur en complexiteit in verschilrepresentaties. Clustermethoden in
verschilruimten kunnen nuttig zijn voor problemen waarin tenminste één van de clusters compact
is en de andere meer verspreid. De intrinsieke dimensionaliteit kan worden geschat in ingebedde
ruimten of verschilruimten. Het aantal significante eigenwaarden in een lineaire pseudo-Euclidische
inbedding, of in een principale componenten analyse toegepast in verschilruimten, geven een rede-
lijke indicatie. Daarnaast worden enkele maten voorgesteld en experimenteel onderzocht, welke
gebruikt kunnen worden om te kwantificeren of een representatieverzameling een voldoende groot
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aantal objecten bevat om klassevariabiliteit te beschrijven.

Een mogelijke benadering van uitbijterdetectie wordt geanalyseerd in hoofdstuk 8, door het on-
twerpen van een één-klasse klassificator, of one-class classifier (OCC). Bestaande OCCs worden
gebouwd in ofwel traditionele kenmerkruimten, ofwel op Euclidische afstanden gevonden in die
ruimten. Twee nieuwe OCCs, één in de ingebedde ruimte en één in de verschilruimte, de zoge-
naamde linear programming data description (LPDD), worden voorgesteld en toegepast op proble-
men in machinebewaking, diagnostiek van verwondingen en diagnostiek van hartafwijkingen. Als
de uitbijters niet zwaar overlappen met de doelobjecten kan de LPDD de beste afweging tussen
prestatie en rekencomplexiteit opleveren. Opmerkelijk is dat voor de ruizige problemen van ma-
chinebewaking en diagnostiek van verwondingen, de beste maten niet-metrische afstanden zijn.

Hoofdstuk 9 behandelt klassificatie. Diverse verschilmaten zijn hiervoor geanalyseerd. Experi-
menten laten zien dat voor kleine representatieverzamelingen lineaire of kwadratische klassifica-
toren, opgebouwd in verschilruimten danwel ingebedde ruimten, vaak significant beter presteren
dan de Û -NN regel, ongeacht de gebruikte maat. Daarnaast worden sommige transformaties
toegepast op niet-Euclidische verschilmaten om ze (meer) Euclidisch te maken (zoals beschreven
in hoofdstuk 3). Dit opgelegde Euclidische gedrag leidt niet tot betere klassificatieprestaties. Het is
belangrijker dat de maat gescheiden en mogelijk compacte klassen goed beschrijft, dan dat zij strikt
Euclidisch of metrisch is.

Verscheidene methoden voor het selecteren van een representatieverzameling zijn bestudeerd, voor
zowel ingebedde ruimten als voor verschilruimten. Als er kleine representatieverzamelingen worden
gezocht, werken systematische procedures, die bijvoorbeeld de klassificatiefout optimaliseren, het
best. Voor iets grotere afmetingen van de representatieverzameling werkt het Û -centers algorithme
snel en presteert gemiddeld goed. Het stelt de gebruiker in staat het aantal geselecteerde prototypen
te beı̈nvloeden, en daarmee de complexiteit van de klassificatoren die verder geconstrueerd wor-
den. In de verschilruimte-aanpak vormen support objecten geselecteerd met behulp van een sparse
linear programming machine ook goede representatieverzamelingen, hoewel hun grootte niet regel-
baar is (tenzij de Û -centres methode tevoren wordt gebruikt). In de ingebedde ruimte-aanpak kan de
representatieverzameling bestaan uit die objecten die de hoogste benaderingsfout geven. Tenslotte,
wanneer de representatieverzameling groot moet zijn, kan willekeurige selectie gebruikt worden.
Een willekeurig geselecteerde representatieverzameling bestaand uit 20% (of meer) van de leerob-
jecten werkt goed in verschilruimten en in ingebedde ruimten.

Bovendien worden enkele ideeën over foutloze herkenning besproken. Onder een paar beperkende
aannamen (over niet-ambigue labeling van objecten en over eigenschappen van de verschilmaat)
werkt de Û -NN regel perfect voor zeer grote leerverzamelingen. Aangezien dit onhaalbaar kan zijn,
kunnen als alternatief lineaire klassificatoren in verschilruimten gebruikt worden. Hiervoor kan
een kleine representatieverzameling voldoende zijn. Een foutloze oplossing kan echter niet altijd
worden gevonden voor de testverzameling. Dit hangt af van de verschilmaat en de grootte van de
representatieverzameling in relatie tot de gekozen klassificator.

In hoofdstuk 10 wordt behandeld hoe het combineren van verschillende informatiebronnen of ver-
schillende leerstrategieën doeltreffend kan zijn voor het ontwerpen van een goed patroonherkennend
systeem. Combineren is een natuurlijke methode om statistische en structurele verschilrepresen-
taties te verenigen. Methoden voor het combineren van verschilrepresentaties worden voorgesteld
en experimenteel onderzocht. Klassificatoren geconstrueerd met dergelijke gecombineerde repre-
sentaties presteren beter dan de beste klassificator (van hetzelfde type) gebouwd op enkelvoudige
representaties. Klassificatoren gecombineerd met vaste regels werken ook goed. De produk-
tregel lijkt bij uitstek van nut voor kleine representatieverzamelingen in twee-klasse-problemen,
terwijl de meerderheidsregel kan worden toegepast op one-class classifiers. Daarnaast wordt een
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manier voorgesteld om een groep klassificatoren te representeren in een projectieruimte, gebaseerd
op een (benaderde) inbedding van paarsgewijze diversiteiten tussen klassificatoren. Het op deze
manier bestuderen van verschillen tussen klassificatoren kan het begrip van het beschouwde herken-
ningsprobleem vergroten.

Onze studie naar verschilrepresentaties is van toepassing op alle verschilmaten, onafhankelijk van
de manier waarop zij afgeleid zijn, bijvoorbeeld van ruwe data of van een oorspronkelijke repre-
sentatie als kenmerken, strings of grafen. Expertkennis over de toepassing kan worden gebruikt om
deze oorspronkelijke representatie te formuleren en een nabijheidsmaat te definiëren. Dit maakt de
ontwikkelde verschilrepresentaties natuurlijke kandidaten voor het combineren van de sterke kan-
ten van structurele en statistische benaderingen in de patroonherkenning en het machineleren. Het
voordeel van de structurele benadering ligt in het coderen van zowel domeinkennis als de structuur
van een object. Het voordeel van de statistische aanpak is de goed ontwikkelde wiskundige the-
orie van vectorruimten. Allereerst kan een beschrijving van objecten in het structurele raamwerk
worden gevonden. Deze kan vervolgens worden gekwantificeerd om de verschilrelaties tussen ob-
jecten weer te geven. Indien nodig kunnen andere maten worden ontworpen en gecombineerd, die
zijn afgeleid uit structurele of statistische aanpak. De uiteindelijke verschilrepresentatie kan dan
gebruikt worden in statistisch leren. De resultaten in dit proefschrift rechtvaardigen het gebruik en
de verdere onderzoek van verschilinformatie in de patroonherkenning.
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[14] E. Pȩkalska, D.M.J. Tax and R.P.W. Duin, One-class LP Classifiers for Dissimilarity Representations,
in: S. Becker, S. Thrun and K. Obermayer (eds), Advances in Neural Information Processing Systems,
vol. 15, MIT Press, Cambridge, MA, 761-768, 2003.
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[17] E. Pȩkalska and R.P.W. Duin, Prototype Selection for Finding Efficient Representations of Dissimi-
larity Data, in: R. Kasturi, D. Laurendeau, C. Suen (eds), Proc. International Conference on Pattern
Recognition (Quebec City, Canada), vol. III, IEEE Computer Society Press, Los Alamitos, 37-40,
2002.



322 Curriculum vitae
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