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Abstract

A conventional way to discriminate between objects represented by dissimilarities is the nearest neighbor method. A more efficient and
sometimes a more accurate solution is offered by other dissimilarity-based classifiers. They construct a decision rule based on the entire
training set, but they need just a small set of prototypes, the so-called representation set, as a reference for classifying new objects. Such
alternative approaches may be especially advantageous for non-Euclidean or even non-metric dissimilarities.

The choice of a proper representation set for dissimilarity-based classifiers is not yet fully investigated. It appears that a random selection
may work well. In this paper, a number of experiments has been conducted on various metric and non-metric dissimilarity representations
and prototype selection methods. Several procedures, like traditional feature selection methods (here effectively searching for prototypes),
mode seeking and linear programming are compared to the random selection. In general, we find out that systematic approaches lead to
better results than the random selection, especially for a small number of prototypes. Although there is no single winner as it depends on
data characteristics, the k-centres works well, in general. For two-class problems, an important observation is that our dissimilarity-based
discrimination functions relying on significantly reduced prototype sets (3–10% of the training objects) offer a similar or much better
classification accuracy than the best k-NN rule on the entire training set. This may be reached for multi-class data as well, however such
problems are more difficult.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Pattern recognition relies on the description of regularities
in observations of classes of objects. How this knowledge is
extracted and represented is of crucial importance for learn-
ing [1,2]. We think that representations which are alterna-
tive to the feature-based descriptions of objects should be
studied as they may capture different characteristics of the
problem we want to analyze.

Proximity underpins the description of a class as a group
of objects possessing similar characteristics. This implies

� Parts of this article appear in Chap. 9 of ‘The Dissimilarity Represen-
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Pekalska and Robert P.W. Duin, published by World Scientific, 2005.
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that the notion of proximity is more fundamental than the
notion of a feature or of a class. Thereby, it should play a
crucial role in class constitution [3,4]. This proximity should
be possibly modeled such that a class has an efficient and
compact description. Following this principle for a number
of years we have been advocating the learning from dissim-
ilarity representations [1,5–7]. They are derived from pair-
wise object comparisons, where the shared degree of com-
monality between two objects is captured by a dissimilarity
value. Such representations are very general, as they can be
derived in many ways, e.g. from raw (sensor) measurements
such as images, histograms or spectra or from an initial rep-
resentation by features, strings or graphs [8]. The choice of
such representations can also be suggested by an application
or data specification. In fact, in all types of problems refer-
ring to string-, graph-, shape or template-matching, as well
as to all kinds of information retrieval or image retrieval,
the use of (dis)similarities seems to be the most feasible
approach.
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The k-nearest neighbor (k-NN) classifier is commonly
practiced on dissimilarity representations due to its simplic-
ity and good asymptotic behavior (on metric distances). It
has, however, three main disadvantages: large storage re-
quirements, large computational effort for evaluation of new
objects and sensitivity to noisy examples. Prototype opti-
mization techniques can diminish these drawbacks, so re-
search efforts have been devoted to this task; see e.g. [9–12].
From the initial prototypes, such as the objects in the train-
ing set, the prototype optimization chooses or constructs a
small portion of them such that a high classification perfor-
mance of the 1-NN rule is achieved. This might be espe-
cially of interest when the dissimilarity measure is based on
expensive object comparisons.

Although the k-NN rule is mostly applied to metric dis-
tances, many non-metric distances are often designed to re-
spond better to practical requirements. They are naturally
derived when images or shapes are aligned in a template
matching process. For instance, in computer vision, it is
known that in the presence of partially occluded objects,
non-metric measures are preferred [13]. Other examples
are pairwise structural alignments of proteins, variants of
the Hausdorff distance [14] and normalized edit-distances
[8]. By a common-sense reasoning, the principle behind
the voting among the nearest neighbors can be applied to
non-metric dissimilarities. The k-NN rule may also work
well in such cases [15]. It is simply more important that
the measure itself is discriminative for the classes than its
strict metric properties. However, many traditional prototype
optimization methods are not appropriate for non-metric
dissimilarities, especially if no accompanying feature-based
representation is available, as they often rely on the triangle
inequality.

Since all objects in the training set can be initially used in
training, we have suggested to construct classifiers defined
as weighted linear (or quadratic) combinations of the dis-
similarities to a set of selected prototypes. In such a frame-
work the metric requirements are not essential. In our previ-
ous experiments we have found out that a random selection
of prototypes often works well [5–7,16]. Here, we will also
analyze systematic procedures.

The paper is organized as follows. Section 2 introduces
the framework of the dissimilarity-based classification and
briefly describes the previous work on prototype optimiza-
tion for the k-NN rule. Section 3 focuses on random and sys-
tematic prototype selection methods for decision functions
built on dissimilarity representations. Section 4 describes the
metric and non-metric data sets used and the experiments
conducted. The results are presented in Section 5 and the dis-
cussion and overall conclusions are presented in Section 6.

2. Dissimilarity-based classification

Assume a representation set R := {p1, p2, . . . , pn} as
a collection of n prototype objects and a dissimilarity

measure d, computed or derived from the objects directly,
their sensor representations, or some other initial repre-
sentation. To maintain generality, a notation of d(x, z) is
used when objects x and z are quantitatively compared.
d is required to be nonnegative and to obey the reflex-
ivity condition, d(x, x) = 0, but it might be non-metric.
An object x is represented as a vector of the dissimilari-
ties computed between x and the prototypes from R, i.e.
D(x, R) = [d(x, p1), d(x, p2), . . . , d(x, pn)]. For a set T
of N objects, it extends to an N × n dissimilarity matrix
D(T , R), which is a dissimilarity representation we want to
learn from. Given a complete representation D(T , T ), the
question now arises how a small set R should be selected
out of T to guarantee a good tradeoff between the recog-
nition accuracy and the computational complexity when
classifiers are built on D(T , R). This issue will be discussed
in the subsequent sections.

2.1. The k-NN rule: previous work

A direct approach to dissimilarities leads to the k-NN
method [10]. This rule is applied here to D(S, R), such that
the test objects in the set S are classified to the class which
is most frequently occurring among the k nearest neighbors
in R. In a conventional feature space representation, the k-
NN rule relies on the (weighted) Euclidean or city block
distance. For metric distances, the k-NN is known to be
asymptotically optimal in the Bayes sense [17,18]. It can
learn complex boundaries and generalize well, provided that
an increasing set R of representative prototypes is available
and the volumes of the k-neighborhoods becomes arbitrarily
close to zero. However, when the data points of the given R
are sparsely sampled or have variable characteristics over the
space, the classification performance of the k-NN method
may significantly differ from its asymptotic behavior. To
handle such situations, many variants of the NN rule as well
as many distance measures have been invented or adopted for
feature-based representations. They take into account a local
structure of the data or weight the neighbor contributions
appropriately; see e.g. the work of [19–25]. Such approaches
are designed to optimize the k-NN rule.

In the basic setup, the k-NN rule uses the entire training
set as the representation set, hence R = T . Therefore, the
usual criticism points at a space requirement to store the
complete set T and a high computational cost for the evalua-
tion of new objects. The k-NN rule also shows sensitivity to
outliers, i.e. noisy or even erroneously labeled prototypes.
To alleviate these drawbacks, various techniques have been
developed in feature spaces to tackle the problem of pro-
totype optimization. Two main types of algorithms can be
identified: prototype generation and prototype selection. The
first group focuses on merging the initial prototypes (e.g. by
the average operation) into a small set of prototypes such
that the performance of the k-NN rule is optimized. Exam-
ples of such techniques are the k-means algorithm [26,27]
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or a learning vector quantization algorithm [28], or more re-
cently, for instance the work of [29,30]. The second group
of methods aims at the reduction of the initial training set
and/or the increase in the accuracy of the NN predictions.
This leads to various editing or condensing methods. Con-
densing algorithms [10,9,12] try to determine a significantly
reduced set of prototypes such that the performance of the
1-NN rule on this set is close to the one reached on the
complete training set. This is the consistency property [9].
Editing algorithms [31,12] remove noisy instances as well
as close border cases, leaving smoother decision boundaries.
They aim to leave homogeneous clusters in the data. Basi-
cally, they retain all internal points, so they do not reduce
the space as much as other reduction algorithms do.

Since the k-NN method is often applied to metric dis-
tances, to avoid the expensive computation time, there has
been also interest in approximate and fast nearest neighbor
search. Many algorithms have been proposed, usually mak-
ing use of the triangle inequality. Examples can be found in
Refs. [32–38].

2.2. Dissimilarity spaces

Many dissimilarity measures designed in practice are non-
metric, such as the modified Hausdorff measure and its vari-
ants [14], Mahalanobis distance between probability distri-
butions [27,4] or the normalized edit-distance [8,15]. There
are also situations, where the classes are badly sampled due
to the measurement costs or problem characteristics, as oc-
cur in machine or health diagnostics. In such cases, the k-
NN rule, even for a large k and a very large training set will
suffer from noisy examples. Yet, we think that much more
can be gained when other decision functions are constructed
on dissimilarity representations.

In our dissimilarity space approach [5,6], a dissimilar-
ity representation D(T , R) is addressed as a data-dependent
mapping D(·, R) : X → Rn from some initial representa-
tion (or measurements) X to the so-called dissimilarity space,
specified by the set R. In such a space, each dimension corre-
sponds to a dissimilarity to a prototype from R, i.e. D(·, pi).
Since dissimilarities are nonnegative, all the data examples
are projected as points to a nonnegative orthotope of that
vector space. In this way, arbitrary structural or statistical
dissimilarity measures can be used.

A justification for the construction of classifiers in dissim-
ilarity spaces is as follows. The property that a dissimilarity
should be small for similar objects (belonging to the same
class) and large for distinct objects, gives a possibility for
a discrimination. Thereby, a vector D(·, pi) of the dissim-
ilarities to the prototype pi can be interpreted as a feature.
If the measure is metric and the dissimilarity d(pi, pj ) is
small, then d(x, pi) ≈ d(x, pj ) for other objects x, which
is guaranteed by the backward triangle inequality [4]. This
means that in fact either pi or pj can be taken as a pro-
totype for the NN rule. This reasoning does not hold for a
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Fig. 1. Example of a 2D dissimilarity spaces and a linear classifier for
a subset of handwritten NIST digits 3 and 8. The dissimilarity represen-
tation D(T , R) is based on the Euclidean distance between the Gaus-
sian-smoothed binary images. R is randomly chosen and consists of two
examples, one for each digit.

non-metric measure. To handle such situations, the represen-
tation set should be chosen such that for two similar objects
x and y, the vectors D(x, R) and D(y, R) are correlated,
even if for a particular prototype pi the dissimilarity values
d(x, pi) and d(y, pi) differ. Then, the vectors D(x, R) and
D(y, R) lie close in the dissimilarity space. Consequently,
classifiers constructed there should be useful for non-metric
measures. Another important point is that the dimensions of
a dissimilarity space, defined by D(·, pi), convey homoge-
neous type of information. In that sense, the dimensions are
equally important. This is not valid for a general feature-
based representation, where features have different charac-
ters (e.g. related to different physical quantities) and ranges,
as for instance weight or length.

If the dissimilarity measure d is metric, then all vectors
D(x, R) lie in an n-dimensional prism, bounded from be-
low by a hyperplane on which the objects from R are and
bounded from above if the measure is bounded. An exam-
ple of such a 2D metric representation and the correspond-
ing prism is shown in Fig. 1. Note that in vector spaces of
the dimensionality three and higher, the prism is asymmet-
ric and the vertices of its base do not lie on the axes (e.g. in
a 3D space the vertices lie in the xy, yz and xz planes). For a
non-metric measure, D(x, R) will also lie outside the prism.

2.3. Classifiers in dissimilarity spaces

Defining a well-discriminating dissimilarity measure for
a non-trivial learning problem is difficult. Designing such
a measure is equivalent to defining good features in a
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traditional feature-based classification problem. If a good
measure is found and a training set T is representative, then
the k-NN rule based on T is expected to perform well. How-
ever, when a small representation set (or a condensed set) R
is selected, the performance of the k-NN (or 1-NN) rule can
significantly deteriorate.

In the case of small representation sets or non-
representative training sets, a better generalization can be
achieved by a classifier built in a dissimilarity space. Many
traditional decision rules can be applied there [4–7]. For
instance, a linear classifier becomes a weighted linear com-
bination of the dissimilarities d(x, pi) between a given ob-
ject x and the prototypes pi . The weights are optimized on
the training set and large weights (in magnitude) emphasize
objects which play an essential role during the discrimina-
tion. By doing this, a more global classifier can be built,
by which its sensitivity to noisy prototypes is reduced. Our
experience confirms that linear or quadratic classifiers tend
to generalize better than the k-NN rule, especially for small
representation sets [5–7].

In our study [5–7,15,16] we have found out that Bayesian
classifiers, i.e. the linear and quadratic normal density based
classifiers, perform well in dissimilarity spaces. For a two-
class problem, such a linear decision function (BayesNL)
based on the representation set R is given by

f (D(x, R)) = [D(x, R) − 1

2
(m(1) + m(2))]T

× C−1(m(1) − m(2)) + log
P(1)

P(2)

(1)

and the quadratic function (BayesNQ) becomes

f (D(x, R)) =
2∑

i=1

(−1)i (D(x, R) − m(i))
T

× C−1
(i) (D(x, R) − m(i))

+ 2 log
p(1)

p(2)

+ log
|C(1)|
|C(2)| , (2)

where m(1) and m(2) are the mean vectors, C is the sample
covariance matrix and C(1) and C(2) are the estimated class
covariance matrices, all computed in the dissimilarity space
D(T , R). p(1) and p(2) are the class prior probabilities. When
the covariance matrices become singular, they are regular-
ized. In this paper, we make use the following regularization
strategy [39]: C�

reg = (1 − �) C + � diag(C). The regular-
ization term � is expressed relatively to the variances, so it
can be determined more easily. In practice, � equals 0.01
or less. We keep it fixed in multi-class problems, where the
decision is based on the maximum a posterior probability,
estimated according to the assumed normal density models
[39]. For simplicity, all prior probabilities are considered to
be equal, even if the classes are not evenly distributed.

3. Prototype selection and the representation set

The selection of a representation set for the construction
of classifiers in a dissimilarity space serves a similar goal
as the selection of prototypes to be used by the NN rule:
the minimization of the set of dissimilarities to be mea-
sured for the classification of new incoming objects. There
is, however, an important difference with respect to the de-
mands. Once selected, the set of prototypes defines the NN
classifiers independently of the remaining part of the train-
ing set. The selection of the representation set, on the other
hand, is less crucial, as it will define a dissimilarity space
in which the entire training set is used to train a classifier.
For this reason, even a randomly selected representation set
may work well [5]. That is why, the random selection will
serve as a basic procedure for comparing more advanced
techniques.

Similar objects will yield a similar contribution to the
representation. It may, thereby, be worthwhile to avoid the
selection of objects with small dissimilarity values. More-
over, if the data describe a multi-modal problem, it may be
advantageous to select objects related to each of the modes.
Consequently, the use of procedures like vector quantiza-
tion or cluster analysis can be useful for the selection of
prototypes. The following procedures will be compared for
the selection of a representation set: Random, RandomC,
KCentres, ModeSeek, LinProg, FeatSel, KCentres-LP and
EdiCon.

Assume c classes: �1, . . . ,�c. Let T be a training set and
let T�i

describe the training objects of the class �i . Each
method selects K objects for the representation set R. If the
algorithm is applied to each class separately, then k objects
per class are chosen such that ck = K . The approaches are
explained below.
Random. A random selection of K objects from T.
RandomC. A random selection of k objects per class.
KCentres. This technique [39] is applied to each class sep-
arately. For each class �i , it tries to choose k objects such
that they are evenly distributed with respect to the dissim-
ilarity information D(T�i

, T�i
). The algorithm proceeds as

follows:

(1) Select an initial set R�i
:= {p(i)

1 , p
(i)
2 , . . . , p

(i)
k } con-

sisting of k objects, e.g. randomly chosen, from T�i
.

(2) For each x ∈ T�i
find its nearest neighbor in R�i

. Let
Jj , j = 1, 2, . . . , k, be a subset of T�i

consisting of

objects that yield the same nearest neighbor p
(i)
j in R�i

.

This means that T�i
= ∪k

j=1Jj .
(3) For each Jj find its center cj , that is the object for

which the maximum distance to all other objects in Jj

is minimum (this value is called the radius of Jj ).

(4) For each center cj , if cj �= p
(i)
j , then replace p

(i)
j by cj

in R�i
. If any replacement is done, then return to (2),

otherwise STOP. The final representation set R consists
of all setsR�i

.
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Except for step (3), this routine is identical to the k-means
[26] performed in a vector space. The result of the k-centres
procedure heavily depends on the initialization. For that rea-
son we use it with some precautions. To determine the set
R�i

of k objects, we start from a chosen center for the en-
tire set and then more centers are gradually added. At any
point, a group of objects belongs to each center. R�i

is en-
larged by splitting the group of the largest radius into two
and replacing its center by two other members of that group.
This stops, when k centers are determined. The entire pro-
cedure is repeated M = 30 times, resulting in M potential
sets from which the one yielding the minimum of the largest
final subset radius is selected.

ModeSeek. This method [40] focuses on the modes in the
dissimilarity data in the specified neighborhood size s. It is
used in a class-wise way. For each class �i , the algorithm
proceeds as follows:

(1) Set a relative neighborhood size as an integer s > 1.
(2) For each object x ∈ T�i

find the dissimilarity ds−NN(x)

to its sth neighbor.
(3) Find a set R�i

consisting of all objects xj ∈ T�i
for

which ds−NN(xj ) is minimum within its set of s neigh-
bors.

The final representation set R consists of all the sets R�i
.

The objects found in this way are the estimated modes of the
class distribution. The final cardinality of R depends on the
choice of s. The larger s, the smaller R�i

. If a representation
set R of the cardinality K = kc is searched, then for each
class �i , the neighborhood size s is selected such that it
generates the largest set R�i

which is not larger than the
demanded size k.

All these procedures may be called unsupervised, in spite
of the fact that they are used in a class-wise way. They aim at
various heuristics, but they do not consider the quality of the
resulting representation set in terms of the class separability.
A traditional procedure to do that is a feature selection.

FeatSel. The original dissimilarity representation D(T , T )

is reduced to D(T , R) by selecting an optimal set of K fea-
tures D(·, pi), i=1, 2, . . . , K , according to some separabil-
ity measure. Here, we will use the forward feature selection
[41] and the leave-one-out 1-NN error as a selection crite-
rion. The difference to the standard approach is, however,
that the features are judged in a dissimilarity space, but the
1-NN error is computed on the given dissimilarities D(T , T )

directly. The method is thereby fast as it is entirely based on
comparisons and sorting. Ties can easily occur by the same
number of misclassified objects for different representation
sets. They are solved by selecting the set R for which the
sum of dissimilarities is minimum.

LinProg. Here, the selection of prototypes is done au-
tomatically by training a properly formulated separat-
ing hyperplane f (D(x, R)) = ∑n

j=1wj d(x, pj ) + w0 =
wTD(x, R) + w0 in a dissimilarity space D(T , R). R can
be chosen as identical to the training set T, but it can also

be different. Such a linear function is obtained by solving
a linear programming problem, where a sparse solution is
imposed by minimizing the l1-norm of the weight vector
w, ||w||1 = ∑r

j=1|wj |. To formulate such a minimization

task properly, the absolute values |wj | should be eliminated
from the objective function. Therefore, wj are expressed by
non-negative variables �j and �j as wj =�j −�j . When the
pairs (�j , �j ) are determined, then at least one of them is
zero. Nonnegative slack variables �i , accounting for possible
classification errors, and a regularization parameter C are
additionally introduced. For a set of training objects xi ∈ T

with the class labels yi ∈ {1, −1}, the minimization problem
becomes then1 :

Minimize
∑n

i=1
(�i + �i ) + �

∑n

i=1
�i

subject to yi f (D(xi, R))�1 − �i , i = 1, . . . , n

�i , �i , �i �0. (3)

In this approach, a sparse solution w is obtained, which
means that many weights wi become zero. The objects from
the initial set R (R =T , for instance), corresponding to non-
zero weights are the selected prototypes, so the representa-
tion set RLP . Although, the prototypes are found in the op-
timization for a particular separating hyperplane, they can
be used by other discrimination functions as well. We have
found out that the choice of the tradeoff parameter as � = 1
seems to be reasonable for many problems, so we fix it in
our experiments.

This selection of objects described above is similar to
the selection of features by linear programming in a stan-
dard classification task [43]. The important point to realize
is that we do not have a control over the number of se-
lected prototypes. This can be slightly influenced by vary-
ing the constant � (hence influencing the tradeoff between
the classifier norm ‖w‖1 and the training classification er-
rors), but not much. From the computational point of view,
this procedure is advantageous for two-class problems, since
multi-class problems may result in a large set RLP . This oc-
curs since different prototypes are often selected by different
classifiers when a multi-class classifier is derived in the one-
against-all strategy or even more severely in the pairwise
strategy.

KCentres-LP. The KCentres algorithm is applied to
D(T , T ) as described above, preselecting the representation
set RKC . This is then followed by a reduction based on
the linear programming procedure applied to D(T , RKC).
In this way, we can somewhat influence the cardinality of
the resulting prototype set. Still, if RKC is not sufficiently
large, the linear programming will need all the objects.
Consequently, this procedure reduces to the KCentres if
RKC is small.

1 Another more flexible linear programming formulation has been
proposed in Ref. [42], but here we limit ourselves to this case only.
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EdiCon. An editing and condensing algorithm is applied
to an entire dissimilarity representation D(T , T ), resulting
in a final condensed set R. Editing takes care that the noisy
objects are first removed so that the prototypes can be chosen
to guarantee good performance of the 1-NN rule. Similarly
as for the LinProg procedure, the number of prototypes is
determined automatically.

In summary, random, clustering-based unsupervised and
supervised prototype selection procedures are considered in
dissimilarity spaces.

4. Experimental setup

A set of experiments is conducted to compare various
prototype selection methods for classification problems in
dissimilarity spaces. Smaller representation sets are of in-
terest because of a low complexity for both representation
and evaluation of new objects. Both linear (BayesNL) and
quadratic (BayesNQ) classifiers can be considered in dis-
similarity spaces. However, we will present the results only
for the BayesNQ, since it performs mostly better than the
BayesNL, provided that sufficiently large training sets are
available. This holds for two-class classification problems,
which is our main focus point here. Note, however, that in
high dimensional dissimilarity spaces, i.e. for large repre-
sentation sets, the BayesNQ is computationally much more
expensive than the BayesNL.

Prototype selection strategies are compared by the perfor-
mance of a single classifier. As a result, the performance of
the linear programming machine (LinProg) is not used, as
it is incomparable to the performance of the BayesNQ for a
representation set selected by other methods. The LinProg
procedure is only used for the selection of prototypes.

In each experiment, the data sets are divided into a train-
ing set T and a test set S. The BayesNQ is trained on the
dissimilarity representation D(T , R) and tested on D(S, R),
where R ⊂ T is a representation set of K prototypes chosen
according to some specified criteria, as described in Sec-
tion 3. The 1-NN and the k-NN results defined on the en-
tire training set (hence tested on D(S, T )) are provided as a
reference. Also, as a comparison, the k-NN rule is directly
applied to the given dissimilarities D(T , R), when R is se-
lected by the KCentres algorithm and to the k-NN rule ap-
plied to Euclidean distances computed over D(T , R) (which
corresponds to the k-NN rule performed in the dissimilarity
space). The k-NN rule optimizes the parameter k in a leave-
one-out procedure over the training set [39].

Most of our experiments are performed on two-class clas-
sification tasks, since such problems should be understood
first. Although a part of the investigation concerns example
multi-class problems, in fact, a separate study is needed to
find adequate prototype selection procedures. This is left for
further research.

Table 1
Characteristics of the data sets used in experiments

Data # Classes # Objects per class (in total) � per class

Polydisth 2 2 × 2000 0.25
Polydistm 2 2 × 2000 0.25
NIST-38 2 2 × 1000 0.10
Zongker-12 2 2 × 100 0.50
RoadSign 2 2 × 300 0.50
GeoSam 2 2 × 500 0.50
GeoShape 2 2 × 500 0.50
Wine 3 59/71/48 0.60
Ecoli-p1 3 143/77/52 0.60
Ecoli-p08 3 143/77/52 0.60
ProDom 4 878/404/271/1051 0.35
Zongker-all 10 10 × 100 0.50

� stands for the fraction of objects selected for training in each repetition.

4.1. Data sets

In all our experiments the data sets are divided into train-
ing and test sets of various sizes; details can be found in
Table 1. We have chosen a number of problems possessing
various characteristics: defined by both metric (Euclidean
or non-Euclidean) and non-metric dissimilarity measures, as
well as, concerning small and large sample size problems.
Seven data sets are used in our study: randomly generated
polygons, NIST scanned digits, geophysical spectra and road
sign vs. non road sign images, proteins and their localiza-
tion sites and wine types, resulting in 12 dissimilarity rep-
resentations (for some data sets, two different measures are
considered). The data sets refer to two-, three-, four- and
ten-class classification problems.

If a dissimilarity d is Euclidean, then the square N×N dis-
similarity representation D(T , T ) can be perfectly embed-
ded in a Euclidean space. This means that a configuration X
can be found such that the Euclidean distances between the
vectors of X correspond to the original ones. This is equiva-
lent to the statement that the Gram matrix G = − 1

2JD∗2J ,
where D∗2 =(d2

ij ) and J =I − 1
n

11T, is positive semidefinite
i.e. all its eigenvalues are nonnegative. A non-Euclidean rep-
resentation D can be embedded in a pseudo-Euclidean space
[5,44], which is composed of a direct orthogonal sum of two
Euclidean subspaces with an inner product being positive
definite in the first one and negative definite in the other. A
configuration X in a pseudo-Euclidean space is determined

by the eigendecomposition of G=Q�QT, where � is a di-
agonal matrix of decreasing positive eigenvalues followed
by decreasing (in magnitude) negative eigenvalues and then
zeros, and Q is an orthogonal matrix of the corresponding
eigenvectors. X is found as X =Qm|�m|1/2, where m corre-
sponds to the number of non-zero eigenvalues. See [4,5,15]
for details.

Let us denote the eigenvalues by �’s. Hence, the magni-
tudes of negative eigenvalues indicate the amount of devi-
ation from the Euclidean behavior. This is captured by the
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Table 2
Properties of the data sets used in experiments

Data Dissimilarity Property rnE
mm (%) rnE

rel
(%) rnM

tr (%)

Polydisth Hausdorff M, nE 25.1 38.1 0.00
Polydistm Mod. Hausdorff nM 11.0 31.4 0.01
NIST-38 Euclidean E 0.0 0.0 0.00
Zongker-12 Template-match nM 13.3 30.1 0.70
RoadSign Correlation E 0.0 0.0 0.00
GeoSam SAM [47] M,nE 0.1 0.1 0.00
GeoShape Shape l1 M, nE 2.6 7.2 0.00
Wine Euclidean distance E 0.0 0.0 0.00
Ecoli-p1 l1 distance M, nE 9.8 22.0 0.00
Ecoli-p08 l0.8 distance nM 13.4 24.7 3.84
ProDom Structural nM 1.3 0.9 10−5

Zongker-all Template-match nM 38.9 35.0 0.41

The following abbreviations are used: M, metric, E, Euclidean, nM, non-metric, nE, non-Euclidean. The values rnE
mm and rnE

rel
indicate the deviations

from the Euclidean behavior, as defined in formula (4) and rnM
tr describes the percentage of disobeyed triangle inequalities.

following indices:

rnE
mm = |�min|

�max
× 100

rnE
rel =

∑
�i<0|�i |

∑N
j=1|�j |

× 100. (4)

rnE
mm is the ratio of the smallest negative eigenvalue to the

largest positive one, while rnE
rel describes the contribution

of negative eigenvalues. Additionally, an indication of the
non-metric behavior can be expressed by the percentage of
disobeyed triangle inequalities, rnM

tr .
Table 2 provides suitable information on the Euclidean

and metric aspects of the measures considered. The Haus-
dorff representation of the polygon data is strongly non-
Euclidean. The modified Hausdorff representation of the
polygon data, as well as template-matching representation
of the digits data are moderately non-Euclidean and non-
metric. Concerning the geophysical data, the shape dissim-
ilarity representation is slightly non-Euclidean, while the
SAM representation is nearly Euclidean. Both are metric.
For the Ecoli data, two representations are used: the metric,
moderately non-Euclidean l1 distance representation and the
non-metric l0.8 distance representation. ProDom representa-
tion is slightly non-metric and slightly non-Euclidean. The
remaining three data sets: road signs, NIST digits and Wine
have Euclidean representations.

For the purpose of visualization also 2D approximate em-
beddings of dissimilarity representations have been found.
They rely on linear projections from the corresponding Gram
matrices, as described above; see also [4,5,15]. The sum of
the first two largest eigenvalues with respect to the total sum
of all eigenvalue magnitudes indicates how much of the orig-
inal dissimilarities is reflected in the projections. This can
be observed in Figs. 2–8. There we also show all the eigen-
values of the Gram matrices (derived from the dissimilarity
matrices), hence the deviation from the Euclidean behavior

can be visually judged. The number of eigenvalues signifi-
cantly different from zero indicates the intrinsic dimension-
ality of a problem. The study on embeddings is beyond the
scope of this paper; they are treated here for the purpose of
exploratory data analysis. As judged from two-class prob-
lems, Figs. 2–5, the polygon data seems the most complex,
while the Zongker-12 data seems the easiest. On the other
hand, the ten-class Zongker-all data is the most complex.

Polygon data. The data consist of two classes of ran-
domly generated polygons, convex quadrilaterals and ir-
regular heptagons. The classes are represented by 2000
examples. The polygons are first scaled and then the
Hausdorff and modified Hausdorff distances [14] between
their vertices are computed, yielding the Polydisth and
Polydistm data, respectively. Let A and B be two poly-
gons. Then, the Hausdorff distance between them is com-
puted as dH (A, B) = max {d�

H (A, B), d�
H (B, A)}, where

d�
H (A, B) = maxa∈A minb∈Bd(a, b) is a directed Hausdorff

distance and d(a, b) is the Euclidean distance between the
corners of two polygons. The modified Hausdorff distance is
computed as dMH (A, B) = max {d�

avr (A, B), d�
avr (B, A)},

where d�
avr (A, B) = 1

|A|
∑

a∈A minb∈B d(a, b). The Haus-
dorff distance is metric, while the modified Hausdorff
distance is not [4,14]. See also Fig. 9.

NIST digit data. The data describe the scanned digits [45],
originally given as 128 × 128 binary images; see Fig. 10. In
total, there are 10 classes, each represented by 200 examples.
The images are first smoothed with the Gaussian kernel with
� = 8 pixels and then the Euclidean distances between such
blurred images are derived. The smoothing is done to make
the distance representation somewhat robust against tilting or
shifting. Only the digits 3 and 8 were used in our experiments
here, yielding the NIST-38 data. See also Fig. 10.

Zongker and Jain digit data. The data describe the NIST
digits [45], originally given as 128 × 128 binary images.
Here, the similarity measure, based on deformable template
matching, as defined by and Jain Zongker [46], is used. Let
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Fig. 2. Left: approximate 2D embedding of the dissimilarity representations D(T , T ) for the polygon data. Right: all eigenvalues derived in the embedding
process.

S=(sij ) denote the similarities. The off-diagonal symmetric
dissimilarities D = (dij ) are computed as: dij = (sii + sjj −
sij −sji)

1/2 for i �= j , since the data are slightly asymmetric.
D is significantly non-metric. In our experiments, the digits
1 and 2 (the Zongker-12 problem) are used, as well as all
the classes (Zongker-all).

Geophysical spectra. The data set describes two multi-
modal classes. Each class is represented by 500 examples.
The classes are described by high-dimensional wavelength
spectra. Since the data are confidential we cannot pro-
vide more details. The spectra are first normalized to a
unit area and then two dissimilarity representations are
derived. The first one relies on the spectral angle mapper
distance (SAM) [47] defined for the spectra xi and xj as
dSAM(xi , xj )= arccos(xT

i xj /‖xj‖2 ‖xj‖2). The second dis-
similarity is based on the l1 (city block) distance between the
Gaussian smoothed (with � = 2 bins) first order derivatives
of the spectra [7,16]. Since by the use of the first derivative,
the shape of the spectra is somewhat taken into account, we
will refer to this measure as to shape dissimilarity. The data
sets are named GeoSam and GeoShape, respectively.

Road signs. The RoadSign data set consists of gray level
images of circular road signs scaled to 32 × 32 pixel raster.
Some examples are shown in Fig. 11. Three hundred road
sign images (highly multi-modal) and 300 non-road sign
images acquired under general illumination are considered

[48]. The latter images are identified by a sign detector us-
ing a circular template based on local edge orientations.
Since the circular template was used to detect the boards,
this a priori knowledge was used to remove the pixels in
the background. The resulting data set contains 793 of orig-
inal 1024 dimensions (pixels). Normalized cross-correlation
(similarity) is computed between the images. Let sij denote
the similarities. Then, the dissimilarities are computed as
dij = (1 − sij )

1/2.
Wine data. The Wine data come from Machine Learning

Repository [49] and describe three types of wines described
by 13 features. In each experiment, when the data are split
into the training and test sets, the features are standardized
as they have different ranges. A Euclidean distance is chosen
for the representation.

Ecoli data. The data come from Machine Learning Repos-
itory [49] and describe eight protein localization sites. Since
the number of examples in all these classes is not sufficient
for a prototype selection study, three largest localization sites
are selected as a sub-problem. These localization classes are:
cytoplasm (143 examples), inner membrane without signal
sequence (77 examples) and periplasm (52 examples). Since
the features are some type of scores between 0 and 1, they
are not normalized. Five numerical attributes are taken into
account to derive the l1 and l0.8 distance representations,
denoted as Ecoli-p1 and Ecoli-p08, respectively. Remember
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Fig. 3. Left: approximate 2D embedding of the dissimilarity representations D(T , T ) for the NIST data. Right: all eigenvalues derived in the embedding
process.

that the lp distance between two vectors xi and xj is com-
puted dp(xi , xj ) = (

∑m
z=1|xiz − xjz|p)1/p and it is metric

for p�1.
ProDom. ProDom is a comprehensive set of protein do-

main families [50]. A ProDom subset of 2604 protein do-
main sequences from the ProDom set [50] was selected by
Roth [51]. These are chosen based on a high similarity to
at least one sequence contained in the first four folds of
the SCOP database. The pairwise structural alignments are
computed by Roth [51]. Each SCOP sequence belongs to a
group, as labeled by the experts [52]. We use the same four-
class problem in our investigations. Originally, a structural
similarities sij are derived, from which the dissimilarities

are derived as dij = (sii + sjj −2sij )
1/2 for i �= j . D = (dij )

is slightly non-Euclidean and slightly non-metric.

5. Results

The results of our experiments are presented in
Figs. 12–19. They show the generalization errors of the
BayesNQ classifier as a function of the number of pro-
totypes chosen by various selection methods. These error
curves are compared to some variants of the NN rule. Note
that in order to emphasize a small number of prototypes,
the horizontal axis is logarithmic. The prototype selection
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Fig. 4. Left: approximate 2D embedding of the dissimilarity representations D(T , T ) for the geophysical spectra data. Right: all eigenvalues derived in
the embedding process.
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Fig. 5. Left: approximate 2D embedding of the dissimilarity representation D(T , T ) for the road signs data. Right: all eigenvalues derived in the
embedding process.

methods mentioned in the legends are explained in Section
3. Concerning the NN methods, the following abbreviations
are used. The 1-NN-final and the k-NN-final stand for the
NN results obtained by using the entire training set T, hence
such errors are plotted as horizontal lines. They are our ref-
erence. k-NN is the k-NN rule directly applied to D(T , R),
while the k-NN-DS is the Euclidean distance k-NN rule
computed in D(T , R) dissimilarity spaces (this means that
a new Euclidean distance representation is derived from the

vectors D(x, R)). In both cases, the representation set R is
chosen by the KCentres algorithm. EdiCon-1-NN presents
the 1-NN result for the prototypes chosen by the editing and
condensing EdiCon criterion. The optimal parameter k in
all the k-NN rules used is determined by the minimization
of the leave-one-out error on the training set. Sometimes, k
is found to be 1 and sometimes, some other value.

The performances of all procedures mentioned in the leg-
ends, from Random to EdiCon are based on the BayesNQ
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Fig. 6. Left: approximate 2D embedding of the dissimilarity representations D(T , T ) for the Ecoli data. Right: all eigenvalues derived in the embedding
process.
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Fig. 7. Left: approximate 2D embedding of the dissimilarity representation D(T , T ) for the Wine data. Right: all eigenvalues derived in the embedding
process.

classifier in the dissimilarity space defined by the selected
set of prototypes R. So, they need just the computation of
the reduced set of similarities for testing purposes, but they
profit indirectly from the availability of the entire training
set T.

To enhance the interpretability of the results, we used
the following patterns in all plots. The supervised methods
KCentres-LP and FeatSel are plotted by continuous lines,
the unsupervised, clustering selections are plotted by dash-

dotted lines and the random methods are plotted by dashed
lines.

Our experiments are based on M repetitions, that is M
random selections of a training set. M = 10 for the Prodom
and Zongker-all dissimilarity data and M = 25, otherwise.
The remaining part of the data is used for testing. Different
selection procedures used the same collections of the train-
ing and test sets. The averaged test errors are shown in the
figures. We do not present the resulting standard deviations
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Fig. 8. Left: approximate 2D embedding of the dissimilarity representation D(T , T ) for the ProDom data. Right: all eigenvalues derived in the embedding
process.

Quadrilaterals

Irregular heptagons

Fig. 9. Examples of the polygon data.

Fig. 10. Examples of the NIST digits, re-sampled to 16 × 16 pixels.

Fig. 11. Examples of the road signs and non-sign regions. The background
pixels were discarded.

to maintain the clarity of the plots. In general, we found that
the standard deviations are vary between 3% and 7% of the
averaged errors.

5.1. Discussion on experimental results

Here we will discuss some details of Figs. 12–18.
Fig. 12 presents the results for the two dissimilarity mea-
sures derived from the same set of polygons. Remember that
the Polydisth is metric and Polydistm is not. The first strik-
ing observation is that in spite of its non-metric behavior,
the Polydistm results are better: lower NN errors, less proto-
types needed to yield a good result. Just 20 prototypes out of
1000 objects are needed to obtain a better error than found

by the NN rules. In the k-NN classifiers, the average optimal
k appeared to be 127 (Polydisth) or 194 (Polydistm). These
large values correspond to the observation made before in
relation to the scatter plots (Fig. 2) that this is a difficult
data set. Nevertheless, in the case of the Polydistm data, the
linear programming technique finds a small set of 55 proto-
types for which the BayesNQ error is very low (0.4%). The
systematic procedures KCentres (KCentres-LP) and FeatSel
perform significantly better than the other ones. The fea-
ture selection is also optimal for small representation sets.
Notice also the large difference between the two results for
editing and condensing. They are based on the same sets of
prototypes, but the classification error of the 1-NN rule (in
fact a nearest prototype rule), EdiCon-1-NN, is much worse
than of the BayesNQ classifier, EdiCon, which is trained on
D(T , R). This remains true for all the considered problems
as well, as can be observed in other plots.

Fig. 13 shows the results for two of the NIST digit clas-
sification problems. The NIST-38 data set is based on a Eu-
clidean distance measure, while the Zongker-12 relies on
a non-metric shape comparison. The k-NN classifier does
not improve over the 1-NN rule, indicating that the data
set sizes (100 objects per class) are too small to model
the digit variabilities properly. Again, the systematic proce-
dures do well for small representation sets, but they are out-
performed by the KCentres routine for a larger number of
prototypes. The KCentres method distributes the prototypes
evenly over the classes in a spatial way, that is related to the
dissimilarity information. For small training sets (here 100
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Fig. 12. Polygon data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN rule
as a function of the number of selected prototypes.

examples per class), this may be a better than an advanced
optimization.

Fig. 14 presents the results for the two dissimilarity rep-
resentations of the geophysical data sets. From other exper-
iments it is known that they are highly multi-modal, which
may explain the good performance of the ModeSeek for the
GeoShape problem and the KCentres for the GeoSam prob-
lem. Editing and condensing does also relatively well. Fea-
ture selection works also well for a small number of proto-
types. Overall, the linear programming yields good results.
Recall that we take the KCentres results as a start (except

from the final result indicated by the square marker that starts
from the entire training set), so the KCentres curve is for
lower numbers of prototypes underneath it. In this problem
we can hardly improve over the NN performance, but still
need just 5–10% of the training set size for prototypes. In
the next section, however, it is shown that these results can
still be significantly improved by modifying the dissimilarity
measure.

In Fig. 15, the results for the RoadSign problem are shown.
An interesting observation for these Euclidean dissimilar-
ity data is that 5% of the training examples are needed as
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Fig. 13. NIST digit data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN rule
as a function of the number of selected prototypes.

prototypes to allow the BayesNQ to reach the result of the
best k-NN. Moreover, for more prototypes, the NN is sig-
nificantly outperformed by the BayesNQ.

So far, we have focused on two-class problems. In order
to illustrate what may happen in multi-class situations, the
following problems are also considered: the three-class Wine
and Ecoli data, the four-class ProDom data and the ten-digit
Zongker-all data. Although the Wine and Ecoli data are orig-
inally represented by features, their lp distance representa-
tions can be used to show our point. In all the experiments

with the BayesNQ classifier, a small regularization is used
�=0.01 (see Section 2.3). A regularization is necessary since
for large representation sets, the number of training objects
per class is insufficient for a proper estimation of the class
covariance matrices. For instance, 100 training objects per
class are used for the Zongker-all data. The results for more
than 100 prototypes are based on the quadratic BayesNQ
classifier trained in more than 100 dimensions. The peak for
exactly 100 prototypes, see Fig. 19, upper plot, is caused
by a dimension resonance phenomenon that has been fully
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Fig. 14. Geophysical data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN
rule as a function of the number of selected prototypes.

examined for the linear normal density based classifier in
[53]. When a larger regularization is used in this case, the
BayesNQ performs much better, as can be seen in the bot-
tom plot of the same figure.

Fig. 16 shows the results for the Euclidean representation
of the Wine data. The ModeSeek seems to work the best,
however since the number of test objects is small (70 in
total), all the selection procedures behave similarly for more
than 10 prototypes. The latter observation also holds for the
Ecoli-p1 and Ecoli-p08 data, as observed in Fig. 17. The
number of test objects is also small (107 in total). Here,

however, the BayesNQ does not improve over the k-NN on
the complete training set. Still, 20 (or less) prototypes are
needed for the same performance.

Fig. 18 illustrates the study on prototype selection for the
ProDom data. The data are multi-modal, as it can be judged
from the 2D approximate embedding shown in Fig. 8. Some
of the modes in the data seem to be very small, possibly some
outliers. This may cause the ModeSeek procedure to focus
on such examples, and be worse than the class-wise ran-
dom selection. The KCentres and the FeatSel methods per-
form the best. For 100 (an more) prototypes, the BayesNQ
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Fig. 15. Road sign data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN rule
as a function of the number of selected prototypes.
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Fig. 16. Wine data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN rule as a
function of the number of selected prototypes.

reaches the error of the k-NN on a complete training set,
however, it does not improve it. This might be partly caused
by unequal class cardinalities and too-small regularization
parameter.

The Zongker-all data are highly non-Euclidean and non-
metric. When a proper regularization (� = 0.05) is used,
the BayesNQ classifier significantly outperforms the best k-

NN rule. However, when the size of the representation set
is too large (450 prototypes in bottom plot), the BayesNQ
starts to suffer. Only 3% of the training examples allow this
decision rule to reach the same performance as the k-NN
rule on the entire training set. In general, the KCentres works
the best. Edited and condensed set seems to give a good
representation set, as well.
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Fig. 17. Ecoli data. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces as well as of the direct k-NN rule as a
function of the number of selected prototypes.

Some observations are of interest for multi-class prob-
lems. First, in contrast to the two-class problems, a suitable
regularization is necessary, since it can significantly influ-
ence the performance of the BayesNQ. If the regularization
is appropriate, a significant improvement over the k-NN re-
sults on the complete training set may be found by the use
of a regularized BayesNQ. Next, as in the two-class prob-
lems we find that just 3–12% of the training set gives a suf-
ficient number of prototypes for the BayesNQ to reach the
same performance as the k-NN rule. Like before, systematic
selections of prototypes perform best. Finally, the EdiCon
works well and tends to determine less prototypes than the
LinProg.

In summary, we see that systematic selections perform
better than the random selection, but the differences are
sometimes small. The way we have ranked the algorithms
in the legends from Random to KCentres-LP, roughly cor-
responds to the way they globally perform over the set of
conducted experiments.

6. Discussion and conclusions

Prototype selection is an important topic for dissimilarity-
based classification. By using a few, but well chosen
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Fig. 18. Four-class ProDom problem. Average classification error of the BayesNQ* and the k-NN classifiers in dissimilarity spaces, as well as the direct
k-NN as a function of the selected prototypes. The result for the LinProg is not visible, since it finds a representation set of 491 objects.

prototypes, it is possible to achieve a better classification
performance in both speed and accuracy than by using all
the training samples. Usually, prototype selection methods
are investigated in the context of the metric k-NN classifi-
cation considered for feature-based representations. In our
proposal, a dissimilarity representation D(T , T ) is inter-
preted as a vector space, where each dimension corresponds
to a dissimilarity to an object from T. This allows us to con-
struct traditional decision rules, such as linear or quadratic
classifiers on such representations. Hence, the prototype
selection relies on the selection of the representation set
R ⊂ T such that the chosen classifier performs well in
a dissimilarity space D(·, R). Since the classifier is then
trained on D(T , R), a better accuracy can be reached than
by using the k-NN rule defined on the set R.

In this paper, various selection procedures, both random
and systematic, have been empirically investigated for the
normal density based quadratic classifier (BayesNQ) built
in dissimilarity spaces. The k-NN method, defined both on
a complete training set T and a representation set R is used
as a reference.

The following conclusions can be made from our study
with respect to the investigated data sets:

(1) By building the BayesNQ in dissimilarity spaces just
a very small number of prototypes (such as 3–12%
of the training set size) is needed to obtain a similar
performance as the k-NN rule on the entire training
set.

(2) For large representation sets, consisting of, for instance
20% of the training examples, significantly better clas-

sification results are obtained for the BayesNQ than for
the best k-NN. This holds for two-class problems and
not necessarily for multi-class problems, unless a suit-
able regularization parameter is found.

(3) Overall, a systematic selection of prototypes does bet-
ter than a random selection. Concerning the procedures
which have a control over the number of selected
prototypes, the KCentres procedure performs well, in
general. In other cases, the linear programming per-
forms well for two-class problems, while editing and
condensing sets should be preferred for multi-class
problems.

In our investigation, multi-class problems are more diffi-
cult as they need a proper regularization for the BayesNQ
discrimination function. Moreover, this classifier becomes
computationally more expensive. Therefore, there is a need
for a further research to study more suitable classifiers
and other prototype selection techniques for multi-class
problems.
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