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Abstract

In this paper we present a combining strategy to cope with the
problem of classification in ill-defined domains. In these cases,
even though a particular target class may be sampled in a rep-
resentative manner, an outlier class may be poorly sampled, or
new outlier classes may occur that have not been considered
during training. This may have a considerable impact on classi-
fication performance. The objective of a classifier in this situa-
tion is to utilise all known information in discriminating, and to
remain as robust as possible to changing conditions. A classifi-
cation scheme is presented that deals with this problem, consist-
ing of a sequential combination of a one-class and multi-class
classifier. We show that it can outperform the traditional clas-
sifier with reject-option scheme, locally selecting/training mod-
els for the purpose of optimising the classification and rejection
performance.

1. Introduction

Consider a problem in which a target class is to be discrim-
inated with respect to an outlier class. In many applications,
both classes are sampled as a set of measurements in order to
construct a training set that represents the class. A classifier can
then be designed, for example, by estimating the class condi-
tional densities for both classes. Good estimates allow for an
optimal tradeoff to be made between the classes. However in
some applications some classes may not be well-defined. In
this paper we assume that the target class is well represented,
but the outlier class is not. This may be due to a variation in
outlier class distribution, such as sensor drift [1], or new outlier
classes may be present that were not represented during train-
ing. Examples of this phenomenon include:

e Diagnostic problems in which the objective of the classi-
fier is to identify abnormal operation (outlier class) from
normal operation (target class) [2]. It is often the case
that a representative training set can be gathered for the
target class, but due to the nature of the problem the out-
lier class cannot be sampled in a representative manner.
For example in machine fault diagnosis [3] a destructive
test for all possible abnormal states may not be feasible.

e Recognition systems often involve a detection and classi-
fication stage. An example is road sign classification, in
which a classifier needs not only to discriminate between
examples of road sign classes, but must also reject non-
sign class examples [4]. Gathering a representative set
of non-signs may not be possible. Similarly face detec-
tion [5], where a classifier must deal with well-defined
face classes, and an ill-defined non-face class, as well as
handwritten digit recognition [6], where non-digit exam-
ples are a serious issue.
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The goal of a classifier in these cases is to obtain a high true pos-
itive rate and low false positive rate, with respect to the target
class. Even though the outlier class is poorly defined, we would
still like to make use of all knowledge that exists for the prob-
lem (to account for known class overlaps). Thus the objective
is to obtain a high classification performance, and robustness
to changes in the outlier class (referred to as rejection perfor-
mance). Formalisation and consequences of this problem are
given in Section 2.

Previous work in this area has typically been the classifier
with reject-option, first proposed by Chow in [7], often called
the ambiguity reject-option. In this reject-option, when the cost
of misclassification is higher than the cost of rejection, the ex-
ample in question should be rejected, based on thresholding of
the posterior probability. This reject-option is applicable for
handling ambiguity between classes (examples close to the tar-
get class), which is not of interest here. In this paper we are
interested in rejecting examples occurring far away from the tar-
get class. Dubuisson and Masson proposed the distance reject-
option in [2]. This rejection scheme was designed to cope with
the condition in which new classes are present that are not rep-
resented during training, introducing a different type of reject
class w.. New examples situated a particular distance (based on
a reject threshold ¢4) from known class centroids are rejected.
A similar procedure can be applied to density-based classifiers,
except here the class conditional density is thresholded. In this
way a closed decision surface is obtained, providing protection
against new unseen classes®. New classes will be rejected if they
fall outside the class description. Thus to minimise the proba-
bility of accepting examples from class w,, assuming they are
uniformly distributed in feature space, the volume of the de-
scription should be minimised. The reject-option is discussed
further in Section 3.

The limitation of the reject-option approach is that a model
chosen for good classification performance does not necessar-
ily imply good rejection performance. The opposite is also true.
Improved performance may result from a practitioner viewpoint
if an adequate evaluation methodology is used. However as will
be discussed later, since the same model is used for classifica-
tion and rejection, we may have to sacrifice the performance of
one for the other. In this paper we present a classification strat-
egy that can in some cases alleviate this situation, consisting of
a sequential combination of one-class and multi-class classifiers
(called SOCMC). The proposed 2-stage scheme allows both re-
jection and classification performance to be explicitly modified
by varying the respective models and representations. Thus a
classifier model can be designed to obtain good performance

1This thresholding of a single class model is equivalent to one-class
classifi cation [8].



on known classes, and a separate classifier model to improve
robustness with respect to unknown classes. The SOCMC is
discussed in Section 4.

A number of experiments are performed to investigate the
SOCMC approach in Section 5. All experiments benchmark
SOCMC results with the distance-based reject option, as well
as with traditional discriminant-based approaches. Experiments
are performed on a number of real datasets, showing the appli-
cability of the new approach. Finally, conclusions are given in
Section 6.

2. lll-defined problems

To formalise this problem, we assume that there is a well de-
fined target class w;, and the outlier class is composed of two
classes w, and w,, where the former consists of known class
information, and the latter of unknown information (called the
reject class). Note that in this setup, we classify examples con-
sidered to be either w, and w, as outlier. Examples of each class
are composed of vectors of measurements x with dimensional-
ity d. It is assumed that x is represented by a feature space
x (later we discuss classifiers that operate on the data in new
feature spaces, consisting of various mappings of the original
space x). The unconditional density p(x) can then be written
as in Equation 1.

p(x) = p(wi)p(X|wt) + p(wo)p(X|wo) + plwr)p(x|wr) (1)

To evaluate classifiers in this situations, two performance mea-
sures are of interest:

1. The classification performance (performance between
known classes/data), denoted perf(w:, w,).

2. The rejection performance (performance between the w:
and w,), denoted perf(ws, wr).

Ideally both perf(w:, w,) and perf(w:, wy) should be high. Note
that estimation of perf(w;, w,) is not straightforward, since this
class is by definition absent during training. In the experimental
Section 5 a methodology is given to provide some estimate of
this. In Figure 1 an example of this problem is shown, demon-
strating the weakness of general discrimination approaches with
respect to this problem. Here a synthetic dataset has been con-
structed in two dimensions. In the left image, the training set
consisting of w; and w, is shown, upon which a Bayes quadratic
classifier is shown. In the right image the testing situation is
shown, in which a new class w,- is present. The classifier is
clearly not robust to these changes in conditions.

Scatter plot

Scatter plot

Figure 1. Illustrating a discrimination classifier applied to the
problem in which a new unseen class is present in testing. The
left plot shows the classifier decision boundary for the training
data, and the right plot for the testing data, in which a new class
wy IS present. A Bayes quadratic classifier is used.

Two classification approaches are utilised in this paper.
The first are multi-class classifiers (sometimes referred to as
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MCC’s/discriminators). In this paper, we deal specifically with
two-class discriminant classifiers, denoted Dyscc. A classi-
fier trained on w; and w, can be defined as in Equation 2, with
p(w|x) representing an estimate of the posterior probability of
class w. These classifiers result in an open decision boundary,
since it is assumed that w; and w, are well represented.

Dyce : {target if pwex) > H(wolx) @

outlier otherwise

The second classification approach used is one-class classifi-
cation (sometimes referred to as OCC’s), denoted Docc [8].
These classifiers are trained on only a single class, resulting in
a closed description of the class density or domain. No assump-
tions about other classes are made, and thus these classifiers do
not make a trade-off between overlapping classes. The decision
boundary is however constrained/closed, i.e. all objects situ-
ated outside the class description are rejected as outliers, pro-
viding protection against new, unseen classes. The OCC de-
scription/model is trained, with some allowance made for out-
liers in the training set by adjusting a decision threshold 6. The
Docc can be written as in Equation 3, classifying all objects
as either target or outlier.

Doce - {target if p(x|we) >0 3

outlier otherwise

3. The classifier with reject-option

As previously mentioned, the original reject option (ambiguity
reject) [7] rejects objects that are considered to be ambiguous,
based on a threshold ¢4. For an incoming test object, the classi-
fier assigns a class label. The relevant posterior of the assigned
class is examined and compared to t,. Examples are either as-
signed to an ACCEPT region Rgccept OF REJECT region
Rreject, @S shown in Equation 4.

Raceepr = {x|maxp(wifx) > ta}, i € {t,0}

{x] m?Xp(w¢|x) <tq}, i €{t, o} *)

§Rreject -

With the distance reject option, the conditional density of the
class of interest is thresholded, resulting in a closed decision
boundary?, providing protection against unseen classes. Again
a two-stage procedure is undertaken. In the first stage an ex-
ample is assigned to a particular class w;, i = t, o, referring to
target and outlier, using Bayes rule. In the second step, if the
example has been assigned to the target class, the conditional
probability p(x|w:) is thresholded via a reject threshold ¢4. Ex-
amples exceeding this threshold are rejected. Examples are ei-
ther assigned to an ACCEPT or REJECT region, Raccept
and Rrejec: as shown in Equation 5.

{x|p(x|wi) > ta}, i € {t, 0}
{x|p(x|w:i) < ta}, i € {t,0}

§Raccept =

§Rv“eject = (5)
The distance reject option is illustrated on a simple example in
Figure 2. The left plot shows a model based on a linear classi-
fier, and the right image a mixture-of-Gaussians classifier with
15 mixtures. It is clear that a closed boundary results, and the

2For classifi ersthat are not density-based such as k-Nearest Neigh-
bour, Dubuisson and Masson proposed to reject based on the mean dis-
tance to the k nearest neighbours. In this case a meaningful threshold
should be chosen based on the scale of the distances.
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Figure 2: Illustrating the distance reject option classifier in a
two-class 2D example, showing a linear classifier model in the
left plot which results in good classification performance, but
poor rejection performance. The right image depicts a more
complex mixture-of-Gaussians classifier, resulting in good re-
jection, but poor classification. The decision boundary indicates
the threshold used for class assignment. Poor models have pur-
posefully been chosen for the sake of illustration to simulate
realistic conditions.

trade-off between known classes is accounted for. We discuss
two situations that could lead to sub-optimal performance.

In the first situation we discuss the practitioner. If the prac-
titioner designs a classifier based on knowledge of the w: and w,
classes only, a situation such as that depicted in the left figure
may result. Here the classifier obtains near optimal classifica-
tion performance, but since the model is not chosen explicitly
to fit the target class distribution, sub-optimal rejection results.
Thus we propose to evaluate classifiers in these situations based
on hoth classification and rejection performance. This may lead
to choosing more appropriate models. For example some clas-
sifiers focus on discrimination only, discarding domain infor-
mation (e.g. support-vector classifier). A better choice would
be to choose models modeling the distribution (e.g. mixture-of-
Gaussians density estimation).

In the second situation we assume the practitioner is aware
of an adequate evaluation methodology. In this case the
practitioner will focus on obtaining the best-possible rejec-
tion/classification performance. In real problems, typical lim-
itations are that the training set size is limited, the input dimen-
sionality high, and computation time limited. In these situa-
tions, choosing a model that results in high classification per-
formance (i.e. focus on known overlapping regions) may be at
the expense of a worse performance in terms of rejection perfor-
mance e.g. the class conditional density may be well estimated
in the overlapping region, but poor in other areas. This is de-
picted in the left plot of Figure 2 where a new outlier example
marked A on the plot will be incorrectly classified as target.
Similarly, the classification performance may be compromised
for the case in which a model is chosen for good rejection per-
formance (right plot). In Section 4 a classification scheme is
presented in which different models can be selected/trained ex-
plicitly for classification and rejection respectively. We argue
that in some cases it is better to choose a local model suitable
to perform the classification, and another for rejection. This
flexibility is lacking in the reject-option case.

4. Sequential combining of a one-class and
multi-class classifier

We present a classification scheme here consisting of the se-
quential combining of one-class and multi-class classifiers
(SOCMC). The rationale is that the class model and represen-
tation used in the first stage (denoted Docc) can be explicitly
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chosen for the purpose of rejection i.e. between w; and w... Ina
similar way the second stage classifier D ;cc can be chosen lo-
cally in the area of known overlap to obtain good classification
performance between known classes, i.e. between w; and ws,.
The SOCMC classifier is depicted in the block diagram in Fig-
ure 3. In the first stage, the one-class classifier Docc attempts

target

X X
DOCC DMCC

outlier
STAGE 2

—

STAGE 1

Figure 3: Block diagram of the SOCMC classifier. The first
stage classifier Do consists of an OCC, trained on the well
defined target class. The second stage classifier Do is a
multi-class discriminant trained on examples considered to be
target by the first stage.

to detect all target examples from p(z), given a test set. A one-
class classifier [8] is appropriate for this stage since it protects
against unseen classes w.-, and capitalises on the knowledge that
the target class is well defined by the training set®. At this stage
it is not important if examples of the class w, are incorrectly ac-
cepted, since we rely on this discrimination in the second stage.
Thus it is assumed that the output of Docc, denoted x will
consist only of examples of class w: and w,, with all w, having
been rejected (as well as w, examples that do not overlap with
the target OCC description.).

Note that both the representation and class description
model can be selected/trained to improve the rejection per-
formance perf(w;,w,). The Docc represents the input data
x, derived from the feature space x, by a new representation
xocc (Docce consists of both a representation and classifica-
tion stage). The classifier can thus be written as Docc (xocc),
defined as in Equation 3 for class w:. The output x is then
shown in Equation 6.

X = {X|DOCC(XOCC) = target} (6)
The output % is then applied to the second stage classifier
Dec. Note that Docc is used to select objects for the second
stage. We still have the opportunity to optimise the representa-
tion and model selection used in the second stage. Thus % is
used by Dasce in the original representation x. The Dasce
classifier is trained on the data x, which is assumed to be a mix-
ture of data from w; and w, only, which are represented by the
training set. A discriminator is thus trained, with the objective
of obtaining an optimal trade-off in terms of class overlap. As
with the Doc ¢, the representation and classification model can
be chosen, but in this case for the purpose of optimising the
classification performance perf(w:, w,). A model is trained fo-

cused on the local region, specified by a training dataset (x)z.
The input data x that is represented by x is now mapped to
a new representation space xarcc, resulting in the classifier
Darcce(xaicce), defined as in Equation 2 between classes wy
and w,. The final SOCMC classifier, denoted Dsoc e is de-

3New classes will be rejected if they fall outside the class descrip-
tion. Thus to minimise the probability of accepting examplesfrom class
wy, assuming they are uniformly distributed, the volume of the descrip-
tion should be minimised.



fined in Equation 7.

Dyice (iMCC) otherwise

U]
We illustrate the operation of the SOCMC classifier in the same
situation as in Section 3, in Figure 4. We noticed that the clas-
sifier D1 in the left plot of Figure 2 resulted in high classifica-
tion performance, and low rejection performance. The opposite
was true for the classifier D2 in the right plot. In the SOCMC
classifier, we select/train specific local models for the purposes
of classification and rejection respectively, illustrating that the
SOCMC can in some cases improve performance. In this exam-
ple the model used for D1 is chosen for the Dascc Stage (i.e. a
linear classifier), and the D2 model is used for the Docc stage
(Mixture-of-Gaussians with 6 mixtures). This classifier results
in a good classification and rejection performance. A number of

Dsocye(x|Docc, Ducc) = {

Scatter plot

+ outlier
+ target
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Figure 4: lllustrating the SOCMC classifier. A linear model has
been chosen locally in the area of overlap for good classification
performance, and a Gaussian-mixture model with 15 mixtures
is used for rejection, showing that example A is correctly clas-
sified.

training considerations need to be made for the SOCMC classi-
fier:

e Training set size for Dascc: Ifatraining set x, is used,
only a subset %+, will be available for the Docc. If x¢r
is small, or X, < x¢,, there may not be sufficient sam-
ples to train Dyscc. This may limit the complexity of
the model/representation used. Alternatively the entire
x4 could be used to train the Dyrcc.

e Training technique: The SOCMC classifier is analogous
to the trained combiner used in classifier combining, as
discussed in [9]. If the same training set x., is used to
train both Docc and D e, the Dsocare could over-
fit to the noise in the training set. An alternative training
strategy could be to split x;, into two independent train-
ing sets x¢,1 and x:,2, with the first used to train Docc,
and the second used to train Dascc. This may gener-
alise better, but may actually be worse than the former
strategy when the training set size is small.

5. Experiments
5.1. Evaluation

Since the exact nature of the outlier conditional distribution
cannot be predicted in advance, estimating perf(w;,w,) is not
straight forward. We propose an evaluation method to provide
some confidence as to the robustness of the classifier, and to
compare classifiers. The evaluation assumes a uniform outlier
distribution. This test allows a classifier to be evaluated assum-
ing that outlier examples can occur anywhere in feature space

outlier if Docc(x) = outlier

60

around the target class. It provides a measure for how well
the classifier protects the target class (in the respective feature
space) from changing conditions. However for real high dimen-
sional problems, the number of artificial examples to be gen-
erated may be computationally prohibitive, so two methods of
artificial data generation are used in real experiments to attempt
to overcome this problem:

1. In the first method, called perf,; (w¢,wr), a number of
outlier examples are artificially generated uniformly in a
sphere around a subspace of the target class [10]. Here
examples are generated within a PCA (Principal Com-
ponent Analysis) subspace. The original data is scaled
to unit variance, and the artificial data is then generated
within this space with a radius of 1.1 of the covariance of
the target class. These can be mapped into the original
space by an inverse of the PCA mapping.

2. Similar to the previous analysis, except data is generated
in the original representation, following a Gaussian dis-
tribution. Here examples are generated around the target
class, using an enlarged covariance matrix of the target
class. The covariance matrix is enlarged by a fraction of
1.5 (this is simply a multiplication of the covariance ma-
trix to spread the new generated examples further). The
test is called perf ., (we, wy).

The perf(w:, w,) measure relates to the known classes w; and
wo. This performance is approximated using standard tech-
niques. For all experiments a 20-fold cross-validation proce-
dure is carried out, and the primary performance measure used
is the AUC' (Area under the Receiver-Operator Curve). The
variance of the estimates is depicted in terms of the standard
deviation. To summarise, the following performance measures
are computed for each experiment:

e perf(ws,w,), estimated using cross-validation with 20-
folds, computing the respective AUC.

e perf,; (w¢,w,), estimated using 20-fold cross-validation
procedure. In testing, for each fold an independent target
portion of x is used, together with the generated artificial
outlier data that was not used for training. Again the
AUC is computed.

o perf ,(we,w,), estimated as per perf,; (we, wr).

5.2. Dataset description

A number of real-world datasets are used in the experimenta-
tion. These datasets have been selected based on their relevance
to this problem. The following datasets are used:

1. Face-amsterdam (Face): This dataset consists of a face
class w¢, and non-face class w,, and is described in
[5], and downloaded at [11]. Each face is stored as a
20 x 20 image. Only the first 1000 faces from the face
database, and the first 1000 non-faces from the non-face
test database are used. This dataset is used because it can
be argued that finding a representative set of non-face ex-
amples may be infeasible.

2. Mfeat-Fou Digit4 (Mfeat): This is a dataset consisting of
examples of ten handwritten digits, which can be found
in [12]. In this dataset, Fourier components have been
extracted from the original images, resulting in a 76-
dimensional representation of each digit. 200 examples
of each digit are available. In these experiments, digit 4
is used as the target class, and all the others as outlier.



3. Geophysical (Geo): A multi-modal dataset, in which a
target and outlier class are represented by spectra. In this
problem, new outlier classes may appear during testing.
3982 target examples exist, and 3675 outlier examples.

5.3. Results

The results for a number of experiments on the real-world
datasets are now presented. The objective of the experiments
is to assess the SOCMC classifiers on the real-world problems
to ascertain whether they do in fact outperform conventional
discriminant-based classifiers. This paper also shows that the
SOCMC classifiers can result in higher performance than the
distance-based reject-option classifiers. In each experiment,
SOCMC results are shown benchmarked against discriminant
and reject-option classifiers. For a fair comparison, the same
model and representation used for the discriminant classifier is
used in the reject-option classifier, and also in the multi-class
stage Dy of the SOCMC. A number of different Doce
models are then chosen to attempt to improve the rejection per-
formance perf(w:,w:), with only the best results shown for
brevity (there are examples where SOCMC classifiers do not
work — some optimisation is required is to select appropriate
models). The reject threshold for the reject-option and one-
class classifiers is fixed to reject 5.00% of target examples for
the given training set. As a starting point for the comparison, it
is important to note that the SOCMC classifier results in a sim-
ilar performance to the reject-option classifier when the same
model (i.e. same representation and data model) is used for both
the Docc and Dycc results. Small differences in results are
attributed to the fact that only a subset of x is used to train the
Dec. These results are not included due to space constraints.

In Table 1 details of each experiment are shown. The first
column indicates the dataset used, and the second column the
model used for the discriminant classifier M, the reject-option
classifier R and the D¢ stage of the SOCMC classifier S.
The last column shows the representation and classifier used
for the Docc of the SOCMC. For each classifier, three per-
formance results are shown (in terms of mean AUC* over 20-
folds with standard deviations shown). These consist of the
perf(we, w, ), perf; (we, wo) and perf, (we, w,) measures, de-
noted ¢l f, rj1, and r52 respectively. ldeally, all three perfor-
mances should approach 1.00.

First we discuss the face results in Figure 5. In the first
experiment face A, it can be seen that the discriminant classi-
fier MA has a rejection performance (r;1 and r;2) that is much
lower than the classification performance cl f. This is attributed
to the fact that the target decision space is unconstrained, pro-
viding little protection against changing conditions. The reject-
option classifier RA then shows a marked improvement in rejec-
tion performance in terms of test r51, with a small decrease in
clf. This sacrifice of classification performance for improved
rejection performance alludes to a tradeoff between these two
measures. The poor performance on rj2 was unexpected at
first, but on closer inspection of the model used (QDC), which
assumes unimodality, and the fact that data generated in the
rj2 test is also distributed in a uniform manner only in the re-
gion of the target class, may provide an adequate explanation.
These results only show marginal (but significant at times) im-
provements of the SOCMC classifier over the reject-option. It
is suspected that this dataset is largely unimodal, and close to
Gaussian-distributed (and the outliers in 752 are generated in a

4where an ideal performance in a separable problem would result in
an AUC score of 1.
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Dataset | Basealgorithm SOCMC Docc model
Face A PCA 0.99 QDC PCA 0.99 Gauss

Face B | Fisher-map QDC PCA 0.99 MoG-8
FaceC | PCA0.99LDC PCA 0.99 Gauss

Mfeat A | Nearest-mean Gauss

Geo A PCA 0.9 QDC PCA 0.9 MoG-5

Geo B PCA 0.999 QDC PCA 0.999 MoG-5
Geo C PCA 0.9 MoG-5/class | PCA 0.999 MoG-5

Table 1: Description of experiments. The first column shows
the dataset used. In the second column the algorithm used for
the discriminant classifier M, the reject-option classifier R and
the Dascc stage of the SOCMC classifier S is given. The
last column shows the representation and classifier used for the
Docc of the SOCMC. PCA is a principal component analy-
sis mapping, followed by the percentage of retained variance.
Gauss is a Gaussian model. MoG-N is a Mixture-of-Gaussians
model with N mixtures. LDC and QDC are Bayes linear and
quadratic classifiers respectively.

similar fashion). In the first experiment, the SA performances
in terms of ¢l f and r31 are slightly better than RA. In the sec-
ond experiment face B, SB results in a much higher rejection
performance than RB, but with some loss in classification per-
formance. Again we observe a trade-off between classification
and rejection performance. The third experiment once again
shows small improvements over the reject-option with respect
to SC.

In the left-most plot of Figure 6, the results of the mfeat-
fou digit4 experiments are shown. Here a nearest-mean clas-
sifier has been used, resulting in a 92.44% AUC classification
performance for MA. The rejection performances are however
around 50.00%. The reject-option classifier RA is not signifi-
cantly better than M A at rejection. In this case a large number
the outliers generated were accepted by a clearly sub-optimal
rejection model, even though the classification performance is
high. However the SOCMC classifier performs much better
here. Even though a nearest-mean classifier is used for clas-
sification, the Gaussian model is much better at rejection. Low
performances on 752 suggest again that the target data is uni-
modal, with most generated outlier examples falling within the
domain of the target class.

In the three right-most plots in Figure 6, the results of the
geophysical experiments are shown, showing considerable im-
provements achieved by the SOCMC scheme. In Geo A it can
be seen that both RA and SA improve in terms of ;1 perfor-
mance. However the SOCMC is much better at rj2 perfor-
mance. In this case, the Docc model used was a Mixture-
of-Gaussians, that could model the apparent multi-modality of
the target class, and thus provide better protection against the
outlier examples generated in rj2. The reject-option rejection
model was constrained to the unimodal QDC. In the second ex-
periment Geo B, a good example of the SOCMC approach is
shown (see RB and SB), with a clear performance improve-
ment over the reject option. The third experiment shows that the
SOCMC and reject option classifiers result in a similar perfor-
mance, with a slightly better r;2 performance achieved by the
SOCMC. We conclude that a strong classification model (fit-
ting the data well) will result in optimal classification and reject
performance. It was observed that a discriminator can indeed
obtain high classification performance, but a model chosen for
good classification performance can be at the expense of rejec-
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tion performance. The SOCMC results showed that this clas-
sifier can improve upon the reject-option, with separate models
trained locally for the purposes of classification and rejection
respectively.

6. Conclusions

In this paper classification strategies for ill-defined problems
was discussed. It was assumed that a well defined target
class is to be discriminated from an ill-defined outlier class.
First the implications on performance with respect to stan-
dard discrimination approaches was discussed, showing that a
closed/constrained decision space around the target class is nec-
essary for robustness to changing conditions. The state-of-the
art classifier suited to this task is the distance-based reject op-
tion. It was pointed out that a practitioner should make use of an
adequate evaluation methodology in selecting a classifier, con-
sidering both classification and rejection performance. A new
classification strategy was proposed for these types of problems,
involving the sequential combination of one-class and multi-
class classifiers. These classifiers allow a model to be explic-
itly selected/trained in local regions of known overlap to em-
phasise either classification or rejection performance. Experi-
mentation on a number of real-world datasets showed that in
some cases the SOCMC classifier does indeed outperform the
distance-based reject-option approach. An observation made
during experimentation is that an inherent trade-off occurs be-
tween classification and rejection. Optimising this will be a fo-
cus of future research.
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