
On Neyman-Pearson optimisation for multiclass classifiers

Thomas Landgrebe, and Robert P.W. Duin

Elect. Eng., Maths and Comp. Sc.,
Delft University of Technology, The Netherlands
{t.c.w.landgrebe, r.p.w.duin}@ewi.tudelft.nl

Abstract

Typically two procedures are used in optimising clas-
sifiers. The first is cost-sensitive optimisation, in
which given priors and costs, the optimal classifier
weights/thresholds are specified corresponding to min-
imum loss, followed by model comparison. This pro-
cedure extends naturally to the multiclass case. The
second is Neyman-Pearson optimisation, in which costs
may not be certain, and the problem involves specifica-
tion of one of the class errors, which subsequently fixes
the corresponding error (in the two class case), followed
by comparisons between different models. This optimi-
sation is well understood in the two-class case, but less
so in the multiclass case. In this paper we study the
extension of Neyman-Pearson optimisation to the mul-
ticlass case, involving specifying various classification
errors, and minimising the others. It is shown empiri-
cally that the optimisation can indeed be useful for the
multiclass case, but obtaining a viable solution is only
guaranteed if a single error is specified. Specifying more
than one error may result in a solution depending on the
data and classifier, which is determined via a multiclass
ROC analysis framework.

1. Introduction

In statistical pattern recognition, a typical design pro-
cedure involves gathering representative data for each
class, and estimating model parameters to derive a dis-
crimination function (e.g. density estimation, support
vector classification), as well as a suitable representa-
tion (e.g. feature extraction, feature selection [1]). Once
a suitable model is found, the next step is to optimise the
various classification weights/thresholds. This optimisa-
tion is defined by the nature of the problem at hand. In
some situations, the optimisation can be posed as a loss-
minimisation problem. In this case classification costs
are known, and the respective loss can be computed for
different classification weights by summing confusion

matrix errors, weighted by the respective costs and pri-
ors. This is commonly known as cost-sensitive optimi-
sation [1], [2].

In other situations, referring specifically to the 2-
class case, precise costs may be unknown, and a differ-
ent optimisation strategy needs to be taken. Two types
of classification errors occur in the 2-class case, namely
the false negative rate (FNr), consisting of class 1 er-
rors misclassified as class 2, and the false positive rate
(FPr) in the opposite case. In this situation, it is of-
ten desirable to specify a fixed FNr or FPr , and select
a model with the corresponding lowest FPr or FNr .
This is referred to as Neyman-Pearson optimisation1.
The optimisation is in selecting the best model. A well-
known classifier analysis approach that is useful in this
context is receiver operator characteristic (ROC) anal-
ysis [4], consisting of a graph representing all possible
classification conditions as the classification weights are
varied. It is important to note that in the 2-class case,
any FNr or FPr specification can be achieved, and a
corresponding weight obtained. This Neyman-Pearson
design is useful in a number of areas such as detection
problems, and medical decision making.

In the multiclass case, several possible classification
outputs result, with C2 − C interclass errors, and C in-
traclass correct classifications, in a C-class problem. In
this situation, it has been shown that both cost-sensitive
optimisation and Neyman-Pearson optimisation extend
theoretically [5], involving the use of multiclass ROC
hypersurfaces. In the case of Neyman-Pearson optimi-
sation, it has thus been shown that specifying a partic-
ular classification error in a C-class problem is achiev-
able, with the subsequent objective to minimise all other
C2−C classification errors. However, a practical situa-
tion may demand the specification of a number of classi-
fication errors, and subsequent minimisation of remain-
ing classification errors. This type of optimisation could

1A more fundamental formalisation and derivation of
Neyman-Pearson theory in a detection context can be found in
[3], with application in a classification sense in [1].

be applicable to areas such as medical decision making
involving multiple diseases, or remote sensing, in which
the objective is to identify various types of terrain, and
minimise the false positive rates with respect to the de-
sired classes of all other terrain types. This type of anal-
ysis has not yet (to our knowledge) been studied. In this
paper we formalise multiclass ROC analysis, allowing
for an implementation of a multiclass Neyman-Pearson
optimisation procedure. Extendibility and limitations
are identified, primarily discussing the fact that a feasi-
ble point on the ROC hypersurface is only guaranteed if
just one interclass classification error is specified. How-
ever, some experiments show that in practical situations,
specifying a number of classification outputs does result
in a feasible solution. This is a very interesting result,
which may have a large potential for Neyman-Pearson
type problems in the multiclass case.

The paper is structured as follows: Section 2 for-
malises multiclass classification, allowing for derivation
of the various inter- and intra-class outputs inherent to
multiclass classifiers. The foundation of the Neyman-
Pearson optimisation is a multiclass ROC framework,
defined in Section 3. Neyman-Pearson optimisation us-
ing ROC analysis is then discussed in Section 4, with
some experiments to demonstrate the optimisation in re-
alistic situations in Section 5. A final discussion and
conclusions are given in Section 6.

2. Formalisation of multiclass
classification

Consider a multiclass problem with C classes,
ω1, ω2, . . . , ωC , with input data x, and d dimensions.
The objective of a multiclass classifier f(x) is to dis-
criminate between the various classes as well as possi-
ble, according to the requirements of the problem. The
classifier is usually trained based on independent train-
ing data. Many strategies are possible, but the outcome
is typically a vector of continuous values, with higher
values supporting higher confidence (e.g. probability,
distance to a decision boundary, support vector etc.)
in particular classes. For class i, the classifier output
is written as f(ωi|x). In the density-based case, this
would be the posterior estimate for the respective class.
Irrespective of the classification type, the class assign-
ment is typically:

argmax
C
i=1f(ωi|x) (1)

For example in Figure 1, a scatterplot is shown of a 5-
class synthetic example, together with the multiclass de-
cision boundary of a Bayes quadratic classifier.

An observation that can be made is that there are a
number of Degrees Of Freedom (DOF) that can be used

−2 0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4

5

6

Feature 1

F
ea

tu
re

 2

Scatter plot

PSfrag replacements

ω1
ω2
ω3
ω4
ω5

Figure 1: Scatter plots of a synthetic 5-class problem,
illustrating the decision boundaries (degrees of freedom)
for one operating point.

to adjust the classifier (analogous to thresholds). In fact,
there are C − 1 degrees of freedom in a C−class prob-
lem. Thus in the 2-class case, there is only one DOF,
and in the 10-class case, there are 9 DOF to optimise the
classifier.

When evaluating a classifier, both intraclass out-
puts (correct classifications), and interclass classifica-
tions (between-class errors) are of interest. These are
specified by a confusion matrix CM , with a size C2.
Thus the number of errors increases quadratically with
increasing C. The CM is typically constructed by ap-
plying an independent test set to a trained classifier. In
the 2-class case, only 2 interclass errors occur, namely
the familiar False Negative rate (FNr) and False Posi-
tive rate (FPr), with respect to one of the classes. ROC
analysis involves inspecting the interplay between these
two errors as a function of the single weight/threshold.
The CM is defined in Table 1. The output between
class i and j is denoted cmi,j . CM outputs are usu-

estimated
ω1 ω2 . . . ωC

ω1 cm1,1 cm1,2 . . . cm1,C N1

true
ω2 cm2,1 cm2,2 . . . cm2,C N2

. . .

ωC cmC,1 cmC,2 . . . cmC,C NC

Table 1: A multi-class confusion matrix.

ally normalised by the absolute number of objects Ni

per class ωi, N = [N1, N2, . . . , NC]T , resulting in

the normalised confusion matrix Ξ, where each ele-
ment is now referenced as ξi,j , and ξi,j =

cmi,j

N(i)
. We

now consider the computation of each element in Ξ via
an example. Consider the class-conditional distribu-
tions in Figure 2, consisting of five Gaussian-distributed
classes ω1, ω2, . . . , ω5, with means occurring at µ1 =
−6, µ2 = −3, µ3 = 0, µ4 = 6, µ5 = 9, and unit vari-
ance. The respective priors are assumed to be equal. The
class-conditional density of class i is denoted p(x|ωi),
and the prior p(ωi).

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Conditional densities

Feature value

P
ro

ba
bi

lit
y

PSfrag replacements

ω1 ω2 ω3 ω4 ω5

Figure 2: Probability density functions for the 5-class
example with known distributions.

This example results in a 5 × 5 element confusion
matrix. In order to compute each confusion ξi,j (the
percentage of of ωi misclassified as ωj), the following
integration is performed:

ξi,j(x) = p(ωi)

Z

p(x|ωi)Iij(x)dx (2)

The indicator function Iij(x) specifies the relevant do-
main:

Iij(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if p(ωj |x) > p(ωk|x) ∀k,

k 6= j, i 6= j

1 if p(ωi|x) > p(ωk|x) ∀k,

k 6= i, i = j

0 otherwise

(3)

Equation 2 allows any confusion matrix output to be
computed, generalised for both diagonal elements (per-
formances), and off-diagonal elements (errors).

3. Multiclass ROC analysis

Referring again to Figure 1, the plot shows only a single
operating point, corresponding to a single weight set-
ting. In fact, any combination of weightings results in

a different operating point (the challenge in multiclass
optimisation is in understanding the relation between a
weight modification and the corresponding alteration of
the confusion matrix). Application of this weighting Φ
involves modification of Equation 1, in which the class
assignment is now based on each output f(ωi|x), mul-
tiplied by a corresponding weight, denoted φi, resulting
in:

argmax
C
i=1φif(ωi|x) (4)

The concept of classifier optimisation can be formalised
as the process by which the optimal set of weights
is found to suit the problem at hand. ROC anal-
ysis involves generation of a hypersurface consist-
ing of all possible combinations of Φ, where Φ =
[φ1, φ2, . . . , φC−1, 1− φ1]. A multiclass ROC consists
of C2 − C dimensions (diagonal elements are superflu-
ous), which can be constructed using a similar equation
to 2. In this case, each output between class i and j is
weighted by φi as follows:

ξi,j(x|Φ) = φip(ωi)

Z

p(x|ωi)Iij(x|Φ)dx (5)

The indicator function Iij(x|Φ) is as in 3, except
each posterior is multiplied by the corresponding class
weight. Note that there are only C−1 weights, and thus
φC = 1 − φ1.

Consider the 2-class case between ω1, and ω2, in
which a weighting φ is applied to obtain the most ap-
propriate threshold. In this case, the classifier output
can be written as:

p(x|φ) = [φp(ω1|x) (1 − φ)p(ω2|x)] (6)

For 0 ≤ φ ≤ 1, ξ1,2 and ξ2,1 vary across all possible
combinations, resulting in the ROC plot. In the multi-
class case (C > 2), Equation 5 can be used to construct
a multiclass ROC, resulting in a C2−C dimensional sur-
face. For example, in the 5-class Gaussian example, a 4-
D grid of weights was computed (C−1 DOF), and a step
resolution of 30 was chosen, resulting in 8.1e5 weight
combinations. Application of Equation 5 resulted in a
20 dimensional surface. Even though this surface can-
not be visualised, for demonstration purposes, Figure 3
shows the ROC between the dimensions ξ1,2, ξ2,1, and
ξ2,3.

4. Neyman-Pearson optimisation

Classifier optimisation in a Bayesian framework in-
volves estimates (or given) class conditional densities
(pdf’s), denoted f(x|ωi), ∀i, prior estimates πi, ∀i,
and misclassification costs corresponding to each off-
diagonal output of the confusion matrix CM , denoted

0

0.2

0.4

0.6

0.8

10 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ROC plot

PSfrag replacements

ξ1,2

ξ2,1

ξ
2

,
3

Figure 3: Plotting ξ1,2, ξ2,1, and ξ2,3 for the example in
Figure 2 as a function of Φ.

cij , i 6= j. The optimisation involves deriving the opti-
mal weight vector Φ such that the overall system loss is
minimised, where the loss is computed via:

L =
C

X

i=1

φiπi

Ni

(
C

X

j=1,i6=j

cmi,jcij) (7)

In some problems (such as detection problems and med-
ical decision making), respective costs cannot be de-
fined, and the cost-sensitive optimisation procedure can-
not be taken. However, it is assumed that the individual
classes can be modelled in some way, e.g. pdf estimates
f(x|ωi), ∀i. In the 2-class case, this implies that an
ROC curve can be estimated between ξ1,2 and ξ2,1 (re-
ferring to the previous example), the false negative, and
false positive rates respectively, written as a function of
the weight φ as (with population priors πi ∀i estimated):

ξ1,2(x|φ) = φπ1

R

f(x|ω1)I12(x|φ)dx

ξ2,1(x|φ) = φπ2

R

f(x|ω2)I21(x|φ)dx
(8)

In Neyman-Pearson optimisation, either ξ1,2 or ξ2,1 is
fixed at a specified value α. The optimisation then in-
volves computing a value for the weighting φ such that
the specification holds, and the dependent variable is ob-
tained. In the 2-class case, optimisation occurs only
across models. This is illustrated on the ROC plot in
Figure 4 (plotting the false negative rate against false
positive rate). In this example, ξ1,2 is fixed at 10.00%.
The ROC curve is a useful tool in this case, immedi-
ately resulting in the corresponding ξ2,1, which is ap-
proximately 26%. The φ resulting in this point can
then be used as the optimal Neyman-Pearson threshold
(Note that each point on the ROC plot corresponds to
some φ value, and in the multiclass ROC, each point on
the ROC hypersurface corresponds to a C dimensional
weight vector Φ).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC plot

false positive rate

fa
ls

e
ne

ga
tiv

e
ra

te

Figure 4: ROC plot example illustrating Neyman-
Pearson design. In this case the false negative rate has
been specified at 10.00%.

The Neyman-Pearson optimisation is well studied
and extensively used in 2-class problems, but this is
not the case in the multiclass context. A practical im-
plementation involves the use of multiclass ROC anal-
ysis which is also a relatively new research area (see
some recent works in [6],[7], [5]). This was also for-
malised in Section 3. Recently, the theoretical extension
of Neyman-Pearson optimisation to multiclass optimi-
sation was proven in [5], with applicability to multiple-
diagnosis in medical decision making. This showed that
by fixing a single classification error in the confusion
matrix, a solution is guaranteed. Thus the first step in-
volves specifying some classification error, and subse-
quently to return a Φ corresponding to a minimisation of
all other C2 − C − 1 classification errors in Ξ. Section
5 demonstrates this optimisation in a few experiments.

In this paper, we also wish to generalise the optimi-
sation procedure such that multiple errors in Ξ can be
specified, followed by a subsequent minimisation of re-
maining errors. It is obvious that when specifying more
than one error, a solution is not guaranteed (multiple de-
pendencies). However, we argue that in many practical
situations, it may still be feasible to specify a number of
outputs, and obtain a solution. The usefulness is, how-
ever, data and problem dependent. Next, an algorithm is
developed that is generalised in the sense that the origi-
nal Neyman-Pearson optimisation holds (specifying one
error), and can also be used to specify multiple errors.

The proposed optimisation algorithm is imple-
mented by the introduction of two C × C matrices,
namely MI and Me (many other implementations are
possible). The elements of these correspond to confu-
sion matrix outputs, allowing for a direct input of re-
quired specifications. The MI matrix is a binary indica-
tor matrix specifying which errors are to be specified. A

Algorithm 1: Multiclass Neyman-Pearson optimisation
Inputs: ROC resolution step, C classes, trained
classifier D, error specification matrix Me, specification
index matrix MI , independent test set xts

Outputs: Optimal weights Φopt

1) Construct weight matrix Φ, with resolution step
2) Compute C × C multiclass ROC E, using Equation 5, with
step resolution, applying xts to D, for all Φ
3) m = 0
For each row of E i, and column j (i 6= j):
If (MI(i, j) = 1 and Me(i, j) > 0)

ind(m) = E(i, j, k) ≤ Me(i, j) ∀k)
Increment m

End
4) Find hypersurface regions that fulfil Me specifications:

indcom = ind(1) ∩ ind(2) ∩ . . . ind(m)

If size of indcom = 0, no solution - specifications not met
5) Minimise all other non-specified errors
m = 0
For each row i, and column j of E (i 6= j):
If (MI(i, j) = 0)

err(m) =
P

(
PC

i=1

PC
j=1(E(i, j, k) ∀k) i 6= j)

Increment m
End
Index corresponding to minimum error:
indmin = index(min(err(m))), ∀m
Final classifier weights: Φopt = Φ(indmin)
Return: Φopt, or no solution

1 at position MI(i, j) indicates that ξi,j is to be speci-
fied, and a 0 at position MI(k, l) indicates that ξk,l is to
be minimised. Working in conjunction with MI is Me, a
matrix used to specify the respective errors as specified
in MI . For example, requiring an error rate lower or
equal to 5.00% for ξ3,1 would require a MI(3, 1) = 1
and Me(3, 1) = 0.05.

Algorithm 1 presents a practical procedure that can
be used to perform a multiclass Neyman-Pearson opti-
misation2.

In step 2, the multi-class ROC is computed, denoted
E using a matrix of weights with C − 1 columns, as per
step 1 (we assume dense sampling). It is convenient to
store this matrix in a similar form to the confusion ma-
trix, resulting in a C × C × stepC−1 dimensional ma-
trix. The diagonal elements are ignored, and need not be
computed. In step 3, all ROC dimensions corresponding
to error specifications are inspected, and the portion of
the surface (in that dimension m) fulfilling the specifi-
cation is stored. The range corresponding to dimension
m is stored in ind(m). Note that the leq operator is used
here since the ROC is discretised. The next step 4 in-
volves intersecting each of these ranges, and identify-
ing common indices (denoted indcom). If no intersec-
tion occurs, this implies that the specifications cannot be
met (no point on the ROC hypersurface fulfils specifica-
tions). If a solution does exist, step 5 involves minimi-

2This algorithm can easily be adapted for the case in which
the distributions are known. We focus here on the practical
situation in which the true distributions are unknown, and data
samples are assumed to originate from the true distribution.

sation of all non-specified errors. This is achieved by
summing all non-specified errors for each Φ weighting
corresponding to indices indcom. The weighting result-
ing in the lowest error sum is then chosen as Φopt.

5. Experiments
To demonstrate the optimisation in a practical situation,
the Satellite dataset is considered3. This dataset con-
sists of 6435 multi-spectral values of a satellite image,
with 36 dimensions (4 spectral bands in a 9 pixel neigh-
bourhood). Six classes have been identified to charac-
terise the topography. These consist of red soil, cotton
crop, grey soil, damp grey soil, soil with vegetable stub-
ble, and very damp grey soil classes. In experiments,
all the grey soil classes are grouped together, resulting
in a 4 class problem. As per dataset recommendations,
the first 4435 spectra are used as a training set, and the
remaining data as the test set.

The first experiment involves training a base
classifier on the data. The first 17 principal compo-
nents are used to represent the spectra, and a Bayes
linear discriminant classifier is then trained on this
representation. The following normalised confusion
results following application of the independent test set:

| red cotton veget grey
------|--------------------------------------
red | 0.9491 0.0000 0.0081 0.0428
cotton| 0.0047 0.8826 0.0986 0.0141
veget | 0.0553 0.0046 0.7051 0.2350
grey | 0.0009 0.0000 0.0037 0.9954

Following classical Neyman Pearson, we now ex-
periment by only specifying single classification errors,
and minimising all others. Two experiments are demon-
strated. In the first experiment, εveget,grey = 8.00%,
and in the second, εcotton,veget = 5.00%, resulting
in the following two normalised confusion matrices:

| red cotton veget grey
------|--------------------------------------
red | 0.9572 0.0000 0.0204 0.0224
cotton| 0.0047 0.8826 0.1127 0.0000
veget | 0.0461 0.0046 0.8756 0.0737
grey | 0.0009 0.0000 0.0454 0.9537

| red cotton veget grey
------|--------------------------------------
red | 0.9552 0.0000 0.0000 0.0448
cotton| 0.0047 0.9061 0.0469 0.0423
veget | 0.0599 0.0046 0.4516 0.4839
grey | 0.0009 0.0000 0.0009 0.9981

As expected, these result in a solution. Compar-
ing with the original normalised confusion matrix, it can
clearly be seen that this new operating point has resulted

3UCI repository of machine learning databases,
ftp://ftp.ics.uci.edu/pub/machine-learning-databasesx.

in different compromises between the various classes
(which may or may not be acceptable). In the next ex-
periments, we attempt to specify a number of interclass
errors, and minimise the remaining ones. Three experi-
ments are undertaken with the following specifications:

1. Specify εveget,red = 5.00%, εred,grey =
5.00%, and εveget,grey = 5.00%.

2. Specify εveget,red = 5.00%, εcotton,veget =
15.00%, and εveget,grey = 5.00%.

3. Specify εveget,red = 5.00%, εcotton,veget =
10.00%, and εveget,grey = 5.00%.

The optimisation is successful in the first two ex-
periments, but fails in the third. This implies that
the specifications cannot be achieved by the clas-
sifier in this case. The first two cases result in the
following respective normalised confusion matrices:

| red cotton veget grey
------|--------------------------------------
red | 0.9593 0.0000 0.0224 0.0183
cotton| 0.0047 0.8826 0.1127 0.0000
veget | 0.0461 0.0046 0.9171 0.0323
grey | 0.0009 0.0000 0.1186 0.8804

| red cotton veget grey
------|--------------------------------------
red | 0.9593 0.0000 0.0224 0.0183
cotton| 0.0047 0.8592 0.1362 0.0000
veget | 0.0461 0.0046 0.9171 0.0323
grey | 0.0009 0.0000 0.1186 0.8804

These normalised confusion matrices should be
compared to the original one. It can be seen in the
first case that the output ξveget,veget has improved from
around 70% to over 90%, but ξgrey,grey is around 11%
lower. Note that many solutions are often possible.
These specifications were also not met in the first ex-
amples, in which single errors were specified. These ex-
periments (which are limited due to space constraints)
demonstrate the potential and practicality of the pro-
posed approach. Once a multiclass ROC has been com-
puted, a practitioner can quickly and easily enter and
modify a specification via the matrices MI and Me.

6. Conclusion

This paper considered the applicability of Neyman-
Pearson optimisation to multiclass problems. This is a
well-studied and extensively used technique in 2-class
problems (stemming from detection applications), ap-
plicable in situations where costs cannot be defined, and
it is more practical to specify a fixed true- or false- pos-
itive rate. ROC analysis is a tool facilitating this optimi-
sation, allowing for a direct query of the corresponding
classification threshold/weight. In the multiclass case,

several possible classification outputs result. Work per-
formed in [5] showed that Neyman-Pearson optimisa-
tion does hold in the multiclass case, in which case a
single output/error is specified. A more practical multi-
class scenario may involve the necessity to specify mul-
tiple error rates. This paper investigated this empirically,
with results showing that this is possible, but a solution
is not guaranteed. Since the optimisation hinges on ROC
analysis, a multiclass ROC framework was developed,
and an algorithm designed to perform the optimisation.
The algorithm attempts to find regions on the ROC hy-
persurface that meets the specifications, and then sub-
sequently minimises all other classification errors. The
algorithm terminates in the case that a solution cannot
be found. Some real experiments demonstrated the po-
tential of this approach. On-going research is focused
on obtaining efficient representations of the ROC hyper-
surface for large C problems, which remains a signifi-
cant challenge to multiclass design.

Acknowledgements: This research is/was sup-
ported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme
of the Ministry of Economic Affairs, The Netherlands.

References
[1] R. Duda, P. Hart, and D. Stork, Pattern Classifica-

tion, Wiley - Interscience, second edition, 2001.

[2] F. Provost and T. Fawcett, “Robust classification for
imprecise environments,” Machine Learning, vol.
42, pp. 203–231, 2001.

[3] D. Kazakos and P. Papantoni-Kazakos, Detection
and Estimation, ISBN 0-7167-8181-6, Computer
Science Press, 1st edition, 1990.

[4] C. Metz, “Basic principles of ROC analysis,” Sem-
inars in Nuclear Medicine, vol. 3, no. 4, 1978.

[5] D.C. Edwards, C.E. Metz, and M.A. Kupinski,
“Ideal observers and optimal ROC hypersurfaces in
N-class classification,” IEEE Transactions on Med-
ical Imaging, vol. 23, no. 7, pp. 891–895, July 2004.

[6] C. Ferri, J. Hernandez-Orallo, and M.A. Salido,
“Volume under the roc surface for multi-class prob-
lems,” Proc. of 14th European Conference on Ma-
chine Learning, pp. 108–120, 2003.

[7] N. Lachiche and P. Flach, “Improving accuracy
and cost of two-class and multi-class probabilistic
classifiers using ROC curves,” Proc. 20th Inter-
national Conference on Machine Learning (ICML-
2003), Washington DC, pp. 416–423, 2003.

	 Introduction
	 Formalisation of multiclass classification
	 Multiclass ROC analysis
	 Neyman-Pearson optimisation
	 Experiments
	 Conclusion

