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Abstract
Industrial applications of spectral imaging introduce novel
types of problems where generally applied assumption of class
unimodality does not hold anymore. Object sorting problems,
for example, become multi-modal as soon as the terminal high-
level classes are defined as ad-hoc collections of material types.
This paper discusses design of model-based multi-modal clas-
sifiers in problems, where the class modes are apriori known
during training.

We consider derivation of data representation and classi-
fier design as connected issues. Several designs simplifying the
full Gaussian mixture-based model using diverse representation
building strategies and regularization are discussed. Apart of
model-based algorithms employing mode descriptors such as
Gaussian mixtures or multi-modal SIMCA, also an alternative
method based on inter-mode discriminants is considered.

A set of experiments is conducted on an artificial dataset
modeling some aspects of multi-modal spectral classification
problems and two real-world datasets from industrial object-
sorting application. The behaviour of different model-based
methods is studied using learning curves. The main conclu-
sion of this paper is that incorporation of supervised informa-
tion significantly improves classification performance, reduces
the complexity of the final system and speeds-up its execution.

1. Introduction
Industrial applications employing spectroscopy or spectral
imaging often deal with inherently multi-modal pattern recog-
nition problems. An example is an object sorting into high-
level classes defined as ad-hoc collections of materials. The
motivation of this research is derivation of high-accuracy clas-
sifiers for multi-modal problems capable of effective execution
and thereby applicable in on-line processing.

In this study, we consider construction of data representa-
tion and model building as connected issues. We aim at under-
standing of the interplay between both stages and its impact on
model-complexity, classifier performance, and execution speed.
Although a model-based classifier may be built directly on the
original spectra, such model is very complex due to high dimen-
sionality. Model simplification may yield significant improve-
ments of classification performance given the same amount of
training examples.

The paper discusses several approaches to simplification
of model-based classifiers, such as regularization, derivation
of a simpler representation for the complete problem or for
each mode separately and supervised feature extraction. An
alternative model-based classification strategy, proposed by us

in [7], is also studied reducing the model complexity even fur-
ther by building a multi-modal classifier from inter-mode dis-
criminants, rather than by modeling the entire mode domain.
Our motivation here is to understand if this decomposition-
based multi-modal discriminant (DMMD) may be beneficial
compared to model-based descriptors.

In order to compare behaviours of different model-
simplification strategies, the learning curves are employed esti-
mating the generalization performance of a model-based classi-
fier as a function of the training set size. Two types of problems
are considered. The first is an artificial dataset constructed in or-
der to simulate some aspects of spectral classification problems
such as large variability in directions uninformative for classi-
fication, large number of uninformative features or strong fea-
ture correlation. Furthermore, two datasets originating from the
real-world sorting application illustrate multi-modal problems
of different levels of difficulty. The computational complexity
in execution is eventually discussed in relation to the classifier
performance.

2. Multi-modal pattern recognition
problem

Let us define a multi-modal pattern recognition problem as an
allocation of observations into high-level classes, defined as col-
lections of lower-level concepts. Formally, aD-dimensional
feature vector~x ∈ RD as assigned into one class from the
setΩ = {ω : ω = 1, 2, ..., C} of C pre-defined high-level
classes. Each classω ∈ Ω is defined as a collection of con-
cepts{mω

j : j = 1, . . . , Mω}, whereMω denotes the num-
ber of concepts in the high-level classω. (In other words,
each classω ∈ Ω is divided intoMω subclasses denoted by
mω

j , j = 1, . . . , Mω, M =
P

ω Mω). Each observation~x
belongs to a single conceptmω

j and thereby also to a single
high-level classω.

We assume that both the information on the low-level con-
cepts and on high-level classes is available during training. In
a typical sorting problem, the low-level concepts often repre-
sent types of material and the high-level classes the sorting cat-
egories. The discussed approaches are valid also in situations
where such prior knowledge is missing. In such cases, the map-
ping of observations into modes needs to be extracted by cluster
analysis [7].

In the following, we refer to the concepts, constituting the
high-level classes asmodes. Note that our definition of mode
differs from the statistical viewpoint where mode usually rep-
resents a unimodal peak of the probability density function.
Modes of a sorting system such as material types may, however,
exhibit internal statistical multi-modality.
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3. Model-based classification strategies for
multi-modal problems

In this analysis, we consider a full Gaussian mixture model de-
rived on the raw spectral data as a base method. The mixture-
model may be generally viewed as adecomposition-based de-
scriptor. The decomposition is performed by defining the class
modes which are then described by a suitable model. The Sec-
tion 4 describes the Gaussian mixture model and several ap-
proaches for its simplification.

In [7], we proposed an alternative strategy for the classifi-
cation of multi-modal data, called thedecomposition-based dis-
criminant. Here the decomposition yields a set classification
sub-problems discriminating between individual modes. The
eventual multi-modal classifier is built as a combination of dis-
criminants, derived on these sub-problems. This strategy is de-
scribed further in Section 5.

4. Gaussian mixture model
A finite mixture model is a probabilistic model of the form:

p(~x|Θ) =

KX
k=1

wkp(~x|θk), ~x ∈ RD (1)

whereK denotes the number of mixture components,wk are
the mixing weights (wk ≥ 0,

PK
k=1 wk = 1), andp(~x|θk)

represent component densities specified by a parameter vector
θk. Θ denotes the set of parameters{w1, ..., wK , θ1, ..., θK}.
In the following, we consider a Gaussian model with a mean
vector and a covariance matrix parametersθk = {µk, Σk}.

In general, the membership of observations to the mixture
components is unknown and is estimated from the training set
using the Expectation-Maximization (EM) algorithm. The re-
sult of training is the estimated soft allocation of the training
examples into components together with estimates of the per-
component parametersθk.

However, in case of the multi-modal problem defined in
Section 2, the mixture model may take advantage of the known
mode membership of the training examples. Considering the
known low-level conceptsmk in the multi-modal problem as
components of a mixture model, we simplify the mixture train-
ing to estimation of the components parametersθk only from
the observations apriori-known to originate from the low-level
conceptmk. Similarly, the mixing weights are estimated by
apparent mode-priors.

We consider the following strategies simplifying the full
Gaussian mixture model.
Regularization Regularization is a widely used strategy for
model simplification stabilizing the model parameters and
hence restricting the group of admissible classifiers. We con-
sider the regularization of the covariance estimates by adding
a small value to its diagonal elements (variances). Due to large
data dependency, the regularization parameter needs to be tuned
for the particular situation.
Unsupervised dimensionality reduction. Instead of stabiliz-
ing a model in a high-dimensional representation, a simpler
model may be built in a lower-dimensional space. Because
spectra represent high-dimensional measurements with low in-
trinsic dimensionality, dimensionality reduction is a basic tool
for simplifying the model-based classifiers [1]. Principal Com-
ponent Analysis (PCA) represents a classical unsupervised di-
mensionality reduction technique. The data is projected to the
linear subspace preserving a pre-defined fraction of the overall

variance. The approach may, however, yield entirely uninfor-
mative data representation is situations where the dataset con-
tains directions uninformative for the sake of class separation
yet exhibiting large variance.
Mode-specific dimensionality reductionIn order to leverage
the dimensionality reduction approach in a supervised problem,
this may be performed individually for each class. This ap-
proach, originating from the chemometric community, is known
as SIMCA [10]. For each class separately, a PCA subspace-
model is derived. New examples are classified on the basis of
a distance measure combining the Mahalanobis distance of the
projected observation to the model and the Euclidean distance
of the observation to the model subspace.

In order to apply SIMCA classifier to the multi-modal data,
we built separate subspace models on individual modes. Due to
the use of the Mahalanobis in-model distance the SIMCA clas-
sifier trained on modes closely resembles the Gaussian mixture
model.
Supervised feature extractionNaturally, the mixture model
may be built in a feature space, derived by a supervised fea-
ture extraction. Although the number of spectra-specific fea-
ture extractors have been proposed [6, 5, 8], most of the ap-
proaches leverage linear projections. We have illustrated in [7],
that building a linear discriminant on the complete spectra often
results in better classification performance than building clas-
sifiers on sets of linear features, derived on separate groups of
wavelengths. Based on this observation, we adopt here the lin-
ear discriminant analysis (LDA) as a prototypical feature ex-
traction technique [3].

The LDA maps the input data intoC−1 dimensional linear
subspace, whereC represents the number of classes. Because
this would produce only 1D representation in a typical two-
class sorting problem, we leverage the apriori-known modes as
classes in the LDA mapping. The Gaussian mixture model is
built in the projected feature space.

5. Decomposition-based multi-modal
discriminant

The decomposition-based multi-modal discriminant (DMMD)
was motivated by the following two observations. Firstly, we re-
alized that if the final objective is the separation of the high-level
classes, the full statistical description of the individual modes
is unnecessary. Modeling the full domain of the data, the de-
scriptors also requires more evidence than the discriminants [9].
Therefore, we proposed to build a multi-modal classifier on the
basis of the inter-mode discriminants.

Our second observation was, that multi-modal classifiers
are currently designed analogously to any simple classifier sys-
tem i.e. in two sequential stages separating the data representa-
tion building from the design of a single classifier. Because both
steps optimize the full multi-modal problem at once, the result-
ing algorithms must inevitably become complex. Our proposal
was to limit the complexity of representations and classifiers by
problem decomposition. We decompose the complicated prob-
lem into a set of simpler sub-problems, tackle these indepen-
dently (by building the inter-mode discriminants) and combine
their decisions into the eventual high-level class assignment.

The training and execution of the DMMD algorithm is de-
scribed by Algorithm 1.
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Algorithm 1: Decomposition-based multi-modal discriminant.

Training:

1. sub-problem creation. A sub-problem is a two-class dataset
where the classes correspond to pairs of modes originat-
ing from different high-level classes. There is(M2 −P

ω(Mω)2)/2 sub-problems.

2. derivation of sub-problem classifiers. For each sub-problem
derive the specific data representation (feature extraction,
dissimilarities,...) and construct the sub-problem classifier.

3. collecting the sub-problem classifier outputs. Execute the
trained sub-problem extractors and classifiers on the com-
plete training set and collect their outputs. Apply the nor-
malization mapping on the outputs (optional). Construct the
second-stage dataset from the collected outputs. Each train-
ing example retains its high-level label.

4. combiner training. Train the second-stage classifier on the
second-stage dataset.

Execution:

1. execution of sub-problem classifiers. Execute the stored
representation-building procedures and trained classifiers on
the input data.

2. output normalization. If applicable, normalize the classifier
outputs appropriately.

3. collecting the sub-problem classifier outputs. Collect the
outputs of the sub-problem classifiers in the identical order
as during training.

4. combiner application. Apply the trained combiner to the col-
lected outputs and assign the observations into the high-level
classes.

Note although the normalization of sub-problem classifier
outputs is not necessary for the sake of building a trainable
combiner it is a beneficial strategy for incorporation of the non-
linearity into otherwise fully linear system.

sub-problems

two-class
problem A vs B

classifier

outputs

A1-B1

feature 
extraction

classifier

A1-B2

feature 
extraction

classifier

A2-B1
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extraction

classifier

A2-B2
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collated outputs
relabeled as 
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Figure 1: A schematic view of DMMD training in a two-class,
two-mode situation. A and B denote classes, A1 denotes the
first mode of class A.

6. Experiments
6.1. Algorithms

The following algorithms are considered in the study:

MOGC Gaussian mixture model on full spectra. The mean
and the full covariance matrix are estimated for each
mode.

reg-MOGC Regularized Gaussian mixture model on full spec-
tra. The regularization is performed by adding aλ-
fraction of the mean of variance-elements of the covari-
ance matrix to its diagonal. For a given problem the frac-
tion λ is optimized using the validation set approach.
Available training dataset is split into two parts (80/20
ratio). The large part is used for training of mixture
models regularized with the five logarithmically-scaled
λ-fractions. The mean classification error rate on the
smaller (validation) set is employed as the selection cri-
terion to choose the bestλ-fraction.

PCA-MOGC Gaussian mixture model in the PCA-reduced
space.99.99% of total variance is preserved.

mode-SIMCA Three versions were considered:

• preserving 99.99% of mode variance, using both
in-model and out-of-model distances

• preserving 99% of mode variance, using both in-
model and out-of-model distances

• preserving 99% of mode variance, using only in-
model distance

LDA-MOGC Gaussian mixture model in feature space de-
rived by supervised extraction.Training data, labeled by
the available mode-labels are used to construct an LDA
mapping to theM − 1 dimensional subspace, where a
mixture model is built.

DMMD Decomposition-based multi-modal discriminant.
Without prior feature extraction, FLD is trained at the
sub-problem level. The outputs of the sub-problem
classifiers are normalized using sigmoid mapping [2].
The sigmoid parameter is optimized on the sub-problem
training set. FLD is also employed as the eventual
combiner.

For the sake of comparison, the Fisher linear discriminant
(FLD), trained on high-level class labels is also provided for
comparison.

6.2. Artificial dataset

In order to investigate behaviour of the above-mentioned
model-based algorithms, we constructed an artificial prob-
lem reflecting issues generally present in real-world spectral
datasets:

Multiple modes within classes This may be a direct conse-
quence of the ad-hoc definition of the high-level classes
as collections of material types. We consider a configu-
ration of modes which is not linearly separable.

Highly correlated features. High correlation of features is
typically present for neighboring bands in spectral data.

Large overall data variance unrelated to the class separation.
This may be observed in situations where spectral mea-
surements of objects vary due to object inhomogeneity
or biological diversity. Another possible culprit may
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be the acquisition system where the three-dimensional
macroscopic objects are imaged by means of surface
reflectance. The variability due to reflectance changes
may outweigh the differences between materials to be
classified.

Large number of uninformative features. Spectral measure-
ments typical comprise tens or hundreds of readings in
narrow spectral bands. As the most of this information
may be unrelated to the classification problem, the large
number of dimensions may be considered noisy.

The artificial dataset comprises two classes, each with two
modes. The modes are modeled by Gaussian distributions.
Only two first features bear information capable of class dis-
crimination. Remaining features are modeled by zero-centered
Gaussian with unit variance for all modes.

−10 −5 0 5 10 15 20 25 30

−10

−5

0

5

10

15

20

25

Feature 1

Fe
at

ur
e 

2

Figure 2: Scatter plot of the two informative features in the ar-
tificial dataset.

Let us investigate two situations, differing in the number of
uninformative features present in the dataset. The datasetA con-
tains 10 dimensions (two informative and eight uninformative)
and the datasetB 100 dimensions. For each dataset, the design
and the test sets were independently generated, each with 1000
data samples per mode.

For each of the investigated algorithms, the learning curve
was estimated varying the training set size. The training set of
a given size was randomly drawn from the design set (random
draw was performed per mode). The algorithm, trained on this
training set was executed on the independent test set. The pro-
cedure was repeated 20 times averaging the results. The results
are presented in Figures 3 and 4 as mean error rates per class
and the standard deviations of error rates.
Discussion on Figure 3:

• Poor performance of the FLD on both problems illus-
trates that non-linear classifier is needed.

• On the 10D datasetA, the LDA-MOGC approach yields
worse performance than remaining non-linear classifiers
suggesting that linear feature extraction over complete
problem is not sufficient.

• The discriminant-based DMMD yields significantly bet-
ter performance than mixture models for very small sam-
ple sizes (<50). Being a simpler model, it also exhibits
asymptotically higher error than more complex mixture-
based approaches.

Discussion on Figure 4:

• The 100D datasetB appears to be a significantly harder
problem than the 10D datasetA.

• The performance of a MOGC classifier almost entirely
coincides with the performance of PCA-MOGC method.
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Figure 3: Learning curves for the 10D artificial datasetA.
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Figure 4: Learning curves for the 100D artificial datasetB.

• The extraction of the features using a supervised method
(LDA-MOGC) appears to be more beneficial than unsu-
pervised approach (PCA-MOGC) or the use of full spec-
tra (reg-MOGC), the difference however vanishes with
growing number of training examples.

• The proposed DMMD method is significantly better than
all other approaches. We have included a learning curve
of the DMMD algorithm without non-linear mapping
of sub-problem classifier outputs i.e. fully linear sys-
tem. Note that even the fully linear DMMD classifier
improves over the simple FLD. We assume the reason
lays in its use of the prior knowledge on modes and in
combination of multiple linear discriminants.

The distinct peak at 50 examples per mode is caused by
the sub-problem FLDs, trained using 100 examples in
100D feature space. This, so calledpeaking phenomenon
is caused by numerically problematic estimation of co-
variance matrices from datasets where sample size nears
or equals the dimensionality [4]. Note that classifiers are
built also for problems with less examples than dimen-
sions. Here the pseudo inverse in employed.

6.3. Industrial object sorting dataset

The second investigated dataset originates from the real-world
object-sorting problem based on spectral imaging [7]. Hyper-
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Figure 5: Learning curves for thetwo-modedataset.
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Figure 6: Learning curves for thethree-modedataset.

spectral images of objects on the conveyor belt were acquired
by an imaging spectrograph. The spectra, consisting of 128 nar-
row spectral bands, were normalized using the black and white
reference images. The objects originate from two high-level
classes to be distinguished. Each object is entirely composed of
a single material and the material type is known in training.

The original object-sorting problem comprises four levels,
namely individual pixels/spectra, objects, material types and
high-level classes. For the sake of this study, we omit the ob-
ject level and simplify the problem into classification of spectra
with known material types and high-level classes.

Two real-world datasets were constructed based on this
problem. The first one comprises two modes per class, and
the second three modes per class. We refer to these datasets
astwo-modeandthree-modedataset, respectively. Similarly to
the artificial dataset, the respective design sets and independent
test sets were constructed. In both cases the designs sets con-
tain 1500 examples per mode, and the test sets 800 examples
per mode.

The spectra in the test sets are drawn from entirely different
sets of original objects than spectra in the design sets. This is
necessary in order to avoid performance estimation bias caused
by the presence of neighboring and thereby almost identical
spectra in both algorithm training and evaluation.

Following the identical 20-fold cross-validation methodol-
ogy as explained in Section 6.2, the learning curves were esti-

mated. The results are presented in Figures 5 and 6.
Discussion on Figure 5:

• The overall excellent performance of FLD on thetwo-
modeand even better result of the LDA-MOGC algo-
rithm suggests the problem is slightly non-linearly sep-
arable. This is a practical illustration of the fact, that
multi-modality of the dataset does not necessarily trans-
lates into (heavy) non-linearity of the classification prob-
lem. We can also observe the peaking phenomenon at 30
examples per mode (i.e. 120 examples in a four-mode
problem) due to close match with the spectra dimension-
ality (128).

• The performance of the MOGC trained on full spectra
may be significantly improved by regularization. Regu-
larization is especially beneficial for small sample sizes
where it reaches performance the full mixture model at-
tains only for over three-times more training examples.

• The trends of the full mixture model (MOGC) and the
of mixture model built in PCA-reduced space (PCA-
MOGC) suggest MOGC will needvery large training
sets to attain similar performance.

• The DMMD method exhibits a peaking phenomenon
around 70 examples per mode caused by the the sub-
problem FLD classifiers (140 examples in 128D space).

Discussion on Figure 6:

• The performance of FLD compared to other, non-
linear discriminants suggests that the problem with three
modes per class ceased to be linearly separable.

• The peak at the DMMD curve keeps position because
it is related to the sub-problem size, not the number of
modes.

• Interestingly, the linear feature extraction (LDA-MOGC)
results in a low-dimensional representation where mix-
ture model significantly outperforms even the DMMD
classifier over the whole range of training set sizes.

• For bothtwo-modeandthree-modedatasets, the DMMD
method again outperforms the mixture-based classifiers
for very small sample sizes. This suggests the benefits of
the use of discriminants instead of descriptors.

6.4. Note on the mode-SIMCA performance

The results of mode-SIMCA algorithms were not included into
the plots for the sake of brevity. On the artificial datasetA,
the mode-SIMCA classifiers provides analogous performance
to other mixture-based methods. Also on the datasetB, the
mode-SIMCA algorithm preserving 99.99% of variance per
mode copies the trend of other mixture-based approaches. This
is understandable as no dimensionality reduction was effec-
tively performed. However, the algorithm preserving only 99%
of variance per mode (≈ 96D models) exhibit significant er-
ror increase even above the FLD performance. Interestingly,
the mode-SIMCA classifier built in the same subspace, but con-
sidering only the in-model distance and neglecting the out-of-
model component brings the performance back to the trend of
other mixture models. We conclude that in very noisy situa-
tions, the mode-SIMCA algorithm needs careful tuning because
even few out-of-model directions may lead to its failure. The
mode-SIMCA error on the real datasets does not fall under 25%
error for the simplertwo-modedataset and under 32% on the
three-modedataset.
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6.5. Computational complexity in execution

Table 1 illustrates relation between classification performance
of the discussed algorithms and their computational complexity
in execution. The theoretical number of operations, required for
execution of each algorithm on a single spectrum was estimated
by assuming that all quantities that can be precomputed were
precomputed. The trained algorithms for thethree-modeprob-
lem, 500 examples per class were used in Table 1. The dimen-
sionalities of feature spaces used for building the models are
also provided. Note the broad range of computational complex-
ities of mixture models build in different representations. The
best-performing method is also the fastest one (LDA-MOGC),
building the Gaussian models in 5D space.

algorithm approx.dim error (std) [%] ops./spec.

MOGC 128 21.16 (0.63) 198 156
reg-MOGC 128 18.76 (0.76) 198 924
PCA-MOGC ≈ 26 18.57 (1.34) 15 996

mode-SIMCA
99.99% ≈ 26 32.44 (1.21) 42 318
99% ≈ 4 32.21 (0.63) 7 344
99%, in-model ≈ 4 37.71 (1.21) 5 704
LDA-MOGC 5 14.28 (0.75) 1 396
DMMD 128 16.15 (0.63) 4 772
FLD 128 25.00 (0.63) 514

Table 1: Computational complexity versus mean generalization
error for the three-mode dataset. Complexity is given in number
of operations per spectrum. Dimensionality where the model is
built is provided (approx.dim.)

7. Conclusions
In this paper, we investigated behaviour of several model-based
algorithms in multi-modal problems where samples are apriori
known to originate from sub-classes of the high-level classes.
This study aimed at building the understanding of the effects of
various approaches on simplification of the model-based classi-
fiers.

An artificial dataset was constructed simulating several con-
ditions found in multi-modal spectral classification problems
such as large data variance in uninformative directions, non-
linear separability, and large number of uninformative features.
Studying the learning curves revealed that mixture models and
SIMCA are severely affected by the presence of large number
of noisy features trying to model uninformative directions in the
data. The discriminant-based DMMD algorithm is significantly
more robust in such situations.

Two real-world datasets were also studied. Both datasets
illustrated less severe conditions where regularized mixture or
dimensionality reduction significantly improved mixture appli-
cability to smaller sample size problems. The best result is at-
tained by the mixture model, trained in LDA-derived space us-
ing prior knowledge on modes.

For very small sample sizes or in presence of severe noise,
the DMMD method may provide simpler and thereby poten-
tially better solutions than mixture models. However, in sit-
uations where small and informative representation may be de-
rived, mixtures appear to yield better performance. Using super-
vised information appears to be overall better strategy than the
use on unsupervised dimensionality reduction. The estimated
computational complexity in execution illustrates that the use

of supervised feature extraction and prior information also sig-
nificantly increases execution speed.

Some aspects of the artificial and real datasets differ result-
ing in the deviations between the observed behaviours of the
DMMD and LDA-MOGC classifiers. We hypothesize that this
may be related to informativeness of features in artificial and
real datasets. While the artificial dataset contained only two in-
formative features, the discriminatory information in real spec-
tra is probably distributed over groups of bands. That might
explain poor performance of the LDA-MOGC method on the
datasetB compared to the DMMD classifier.
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