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Abstract
This paper aims at characterizing classification problems to find
the main features that determine the differences in performance
by different classifiers. It is known that, using the disagreements
between the classifiers, a distance measure between datasets can
be defined. The datasets can then be embedded and visualized
in a 2-D scatterplot. This embedding thus reveals the structure
of the set of problems. In this paper we focus on a specific
pattern recognition problem, the problem of outlier detection
or one-class classification, where classifiers have to detect if a
new object resembles the training data or not. For this problem
the outputs of many classifiers on many datasets are available.
By inspecting the scatterplot of the datasets, two main features
appear to characteristize the datasets; (1) their effective sample
size and (2) the class overlap. By generating artificial datasets
for which these variables are varied, these observations are con-
firmed experimentally.

1. Introduction
In pattern recognition we try to solve classification problems by
using classifier models that are fitted to training data. All classi-
fiers have a particular bias that make them suitable for specific
datasets, and less for others. In practice we are forced to apply
all the classifiers from our limited toolbox to find the best one.
Except for artificial data we are never certain which classifier
will perform best on a specific dataset. It is therefore not only of
academic interest to find out what are the main characteristics
in datasets which causes the classifiers to perform differently.
These characteristics may point to specific approaches to solve
an classification problem.

Many attempts has been made to characterize datasets using
simple measures to predict which classifier works well [9, 12].
Indeed some conclusions concerning the domains of compe-
tence for some classifiers, were drawn. But the main conclu-
sion was that real world datasets “reveal intricate relationships
among the factors affecting the difficulty of the problem”. The
problem is far from solved.

In this paper we approach the problem from the other side.
We start with a large set of classifiers and a large set of real
world datasets and we try to find the structure of the datasets
by comparing the output labels of the classifiers1. For this we
use the classifier disagreements, indicating how often classifiers
disagree [7]. The structure might point to the important charac-
teristics of datasets, thus suggesting features on which classi-
fiers can specialize.

1Most of the classifiers and datasets are also discussed in an
overview paper on one-class classification that is submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence.

The results are given for a special type of classification
problem, the one-class classification or the novelty detection
problem [17, 10]. This considers a two-class classificationprob-
lems in which one of the classes cannot be sampled reliably.
This happens for instance when one tries to perform machine
condition monitoring. Here a well operating machine shouldbe
distinguished from a machine that is breaking down. It is possi-
ble to sample from all normal operation conditions, but there are
many different ways in which a machine can fail. Not only is it
very hard to sample the space of all breaking machines, it is also
very expensive. The ill-sampled class is called theoutlier class,
and this class should be distinguished from a well-sampled class
which is called thetargetclass.

In section 2 we first define and discuss the classifier dis-
agreements. In section 3 we describe the classifiers and (very
shortly, due to space constraints) the datasets that are used in
this paper. In section 4 the results of the projected datasets is
shown, together with an indication of the two main parameters
characterizing the variation in the datasets. Extra experiments
are performed to confirm that this indication is true.

2. The distance between datasets
Assume a training setX tr containingN d-dimensional training
objectsxi, i = 1...N, x ∈ R

d. For the one-class classification
problem, only training data of the target class are available, and
therefore all labels are+1. A one-class classifierf consists of
two parts. The first part is the proximity of an object to the
target data, and the second part is a threshold function (with
thresholdθ) over this proximity to obtain a classification label.
The definition of the proximity measure depends on the classi-
fier. In general, the proximity measure can be constructed from
a density estimatioñp

f(x) = 1(p̃(x) ≥ θ) (1)

or from some distance to a modeld̃:

f(x) = 1(d̃(x) ≤ θ) (2)

where1(A) is the indicator function, returning1 is A is true,
and0 otherwise. The thresholdθ is determined by specifying
the error on the target training dataεt.

Assume that a classifierfi is trained on the training setX tr

and it gives the output labellik after evaluating objectxk from
an independent test setX

lik = fi(xk), xk ∈ X (3)

The disagreement between classifiersfi andfj is defined as:

DX (fi, fj) =
1

N

N
X

k=1

1 (lik 6= ljk) (4)
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Note that this forms anC×C disagreement matrixD, whereC
is the number of classifiers. Classifiers that perfectly agree have
zero distanceDX (fi, fj) = 0, while classifiers that always dis-
agree have a maximal distance ofDX (fi, fj) = 1.

Using these disagreements, we can define a distance mea-
sure betweendatasetsXm andXn, consisting of the average
difference between the disagreements [7]:

G(Xm
,Xn) =

1

C2

C
X

i,j

|DXm (fi, fj) − DXn (fi, fj)| (5)

This forms anM × M distance matrixG between datasets,
where M is the number of datasets under consideration. It
therefore uses the agreement and disagreement pattern for defin-
ing the similarity between datasets. Given the distances be-
tween the datasets, they can be visualized in 2D by applying
Multi-dimensional scaling [5]. This locatesM points such that
the distances between these points reproduces as well as possi-
ble the distances between the datasets [7]. A new datasetX can
be mapped onto this projection by computing first the classifier
disagreements (equation (4)), next the distances to the ‘training’
datasetsXn using (5), and finally finding a location such that
these distances are preserved as well as possible. This proce-
dure is not limited to 2D projections, although for visualization
it is the most common approach.

3. Experimental setup
We train the one-class classifiers on the one-class dataset using
5 times 10-fold stratified crossvalidation. The thresholdθ is set
such that10% of the training target data is classified as outlier,
εt = 0.1. The output labels generated by the classifiers are
stored. When the classifiers fail to supply output labels, due to
training/convergence problems or numerical problems, thecor-
responding term in equation (5) is disregarded (or equivalently,
set to zero).

3.1. The one-class classifiers

All the classifiers used in this paper are defined in the Matlab
toolboxdd tools [18]. The following classifiers are defined:

Gaussian It models the target data with a unimodal Gaussian
density, with the standard maximum likelihood estimates
for the mean and covariance matrix:

p̃G(x) =
1

(2π)d/2|Σ|1/2
exp



−
1

2
(x − µ)T Σ−1(x − µ)

ff

(6)
For high dimensional datasets the covariance matrix is
regularized:Σ′ = Σ + λI, with λ = 0.01, andI is the
identity matrix.

MCD Gaussian The standard Gaussian model lacks robust-
ness; outliers in the training set can severely influence
the Σ. Therefore a robust version of the Gaussian, the
Minimum Covariance Determinant is used. It selects a
subset of the data for which the determinent of the co-
variance matrix is minimal [15]. The current implemen-
tation works uptop = 50.

Mixture of Gaussians To make the unimodal Gaussian distri-
bution more flexible, the Mixture of Gaussians is also
used. The means and the covariance matrices are op-
timized using the standard Expectation-Maximization
procedure [2]. In the experiments three clusters are used,

with the same regularization for the individual covari-
ance matrices.

Parzen The Parzen density estimator [13] is a mixture of,
most often, Gaussian kernels centered on the individual
training objects, but with a simplified covariance matrix:
Σ = hI. The width of the kernelh is found by optimiz-
ing the likelihood on the training set using a leave-one-
out procedure [6].

Naive Parzen The Naive Parzen is a simplification of the
Parzen density estimator, inspired by the Naive Bayes
approach. A Parzen density is estimated in each fea-
ture dimension separately, and the probabilities are mul-
tiplied to give the final target probability.

1-nearest neigbor This method uses the distance to the first
nearest neighbor in the training set as proximity mea-
sure. Although this method is sensitive to outliers in the
training set, no hyper parameters have to be optimized.

k-nearest neigbor Here the kth nearest neighbor is used,
wherek is optimized using a leave-one-out density es-
timation on the training data [8].

AUC-optimized k-NN This is thek-nearest neighbor data de-
scription wherek is determined by optimizing the Area
under the ROC curve [4, 20].

nearest neigbor distance ratio This method is the same as the
1 nearest neighbor, but the distance is normalized by the
distance of the nearest object toits nearest neighbor in
the training set.

PCA The principal component analysis classifier assumes that
the data is located in a linear subspace. It finds a lower
dimensional subspace, spanned by the basis vectorsW.
It uses the reconstruction error, the distance between the
original object and the mapped object, as the proximity
measure.

autoencoder neural network This is a neural network ap-
proach to learn a low dimensional non-linear represen-
tation of the data [1, 16]. A standard feedforward neural
network is trained to reproduce the input patternsx at its
output layer. One of their hidden layers contains a small
number of hidden units which works like an information
bottleneck. The difference between the inputx and out-
putx′ defines the proximity.

Support Vector Data Description The SVDD is a geometry-
based model that fits a sphere around the data with the
minimum volume, by optimizing the sphere center. The
standard Euclidean distance can be rewritten in terms of
inner products, making the “kernel trick” possible [19].
The RBF kernel is used with a fixed width ofσ = 1.

L1 ball This is a simplified version of the SVDD, where the
Euclidean distance is replaced by theL1 norm. The cen-
ter of the sphere is fixed to the mean of the dataset, but
the original features are rescaled such that all training
data falls within the sphere.

k-centers This is a variant of thek-means clustering algorithm,
but here the cluster centers are restricted to be one of
the training objects. The proximity is the distance to the
nearest cluster center.

Minimax Probability Machine This is a linear classifier that
is placed such that the probability that a target object falls
on the incorrect side of the decision boundary is bounded
by a user-supplied valueεt [11]. This method can also be
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phrased in terms of inner products, and therefore also the
kernel trick can be applied. The RBF kernel withσ = 1
is used in this paper.

Linear Programming dissimilarity The LPDD is a linear
classifier that operates on distances between new objects
and training target objects [14]. Objects with large dis-
tances to the target data are likely outlier objects. The
LPDD therefore aims to place the decision boundary as
close as possible to the origin in the distance space.

3.2. The datasets

In total 101 datasets are considered, mainly taken from
the UCI repository [3]. An overview of the dataset
with the dimensionalities and sample sizes, together
with the classification performance, can be found at
http://ict.ewi.tudelft.nl/˜davidt/occ/ .
When the dataset is a multiclass classification problem, each of
the classes is designated target class once, and the other classes
are used as outlier. Objects with missing values are removed.
In table 1 a small subset of the datasets is given, together with

Table 1: A listing of a subset of the 101 datasets. These datasets
are explicitly mentioned somewhere in this paper.

nr Dataset name, target class obj/dim.
501 Iris, setosa 50/4
504 Beast cancer Wisconsin, malignant 458/9
505 Beast cancer Wisconsin, benign 241/9
506 Heart Cleveland, disease present 139/13
507 Heart Cleveland, disease absent 164/13
511 Biomed, healthy 127/4
512 Biomed, ill 67/4
515 Arrythmia, abnormal 237/278
519 Ecoli 52/7

530-539 Concordia, digit 0-9 400/256
571 Colon 2 40/1908
572 Leukemia 1 25/3571
585 Glass 5 13/9
591 Liver 2 200/6

601-611 Vowel 0-10 48/10
617 Survival,< 5 years 81/3
620 Page blocks 4913/10

their training set size and their dimensionality. Notice that
for some datasets two or more versions exist. In these cases a
multiclass problem is split into several one-class classification
problems by designating each individual class to the target
class once. Notice that the sample size ranges from 13 to 4913,
and the dimensionality from 3 to 3571.

4. Experiments
4.1. The two main directions in the projection

Applying Multi-dimensional Scaling on the averaged differ-
ences in disagreements (5), results in a 2D position for each
dataset. In the left subplot of figure 1 all the datasets are shown.
The numbers in the plot are the identifiers of the datasets. After
inspection of the datasets it appears that the two main directions
in the plot indicate the effective sample size, which is the ratio
between the number of training objects over the dimensionality:

SSX =
# training objects
dimensionality

(7)

and the average AUC performance:

perf
X

=
1

M

M
X

i=1

AUC(fi,X ) (8)

whereAUC(fi,X ) is the Area under the ROC curve [4] of
classifierfi on datasetX .

In the right of figure 1 the average AUC performance and
the sample size is plotted2. Indeed, the dataset on the bot-
tom of the graph have far higher sample sizes (Liver dataset,
nr 591, has 200 objects in 6D) than the dataset on the top
(Leukemia dataset, nr 572, with 25 objects in 3571D). Further-
more, datasets on the (lower) right have a far lower average
performance (Arrythmia, nr 515, has an average AUC of 0.33,
worse than random!), while datasets in the upper right are very
well separable (Concordia handwritten digit 0, nr 530, has an
average AUC of more than 0.96). This gives the first indication
that these are the main variables in the dataset differences.

In the next sections we manipulate these two features of
some of the datasets to check if the directions suggested in the
figures correspond to these features. The procedure is that first,
for each of the manipulated datsets, the classifiers from section
3.1 are trained. The classifier disagreements are computed and
the disagreement differences (5) are mapped into the 2D space.

4.2. Sample size
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Figure 2: Traces of a few datasets for which the sample size is
reduced.

To manipulate the sample size of a classification problem
is simple: we start with a well sampled dataset, and reduce the
number of training samples. Some results are shown in figure 2.
From left to right five traces of datasets are shown. The traces
start at the bottom with the star and move up via the circles.
First trace on the left is the Liver dataset (nr 591, with 200,
100, 50, 25 and 15 objects in 6D), second the Biomed dataset
(nr 511, with 127, 100, 60, 30 and 15 objects in 4D), next the
Breast cancer Wisconsin (nr 504 with 458, 200, 100, 50, 25
and 15 objects in 9D), next the Vowel 1 dataset (nr 602 with
48, 24, 12, 6 and 3 objects in 10D) and in the extreme right
corner the Vowel 2 dataset (nr 603, with also 48, 24, 12, 6 and
3 objects). Although the traces are a bit noisy (in particular
for small sample sizes) they follow the of the reduced sample
direction as it was suggested in figure 1.

2The values are rescaled for a clear visual presentation in gray scale.
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Figure 1: A 2D scatterplot of all the datasets based on the average disagreement between the classifiers. For all classifiers εt = 0.1.
In the left plot the datasets are numbered according tohttp://ict.ewi.tudelft.nl/ d̃avidt/occ/ . The right plots show
(top) the effective sample size and (bottom) the average performance of these datasets. The values are rescaled to improve the visual
presentation using a grey-level colour coding.

4.3. Class overlap

To check the interpretation of the class overlap direction is less
straightforward. This requires that the distributions themselves
are manipulated such that the overlap in the target and outlier
class is varied. In this paper three possibilities are considered:

1. reduce the dimensionality of well separable classes. By
reducing the dimensionality it is hoped that the separa-
bility decreases and the class overlap increases.

2. shift the means of the target and outlier class. We start
with poorly separable datasets and computing the dif-
ference vector between the means of the two classes.
The outlier class is now shifted by a few multiples of
the difference vector. Notice that only the outlier data is
changed, and it is not necessary to retrain the classifiers.

3. flip labels of the target and outlier data. By starting with
very well separable data and randomly flipping labels
from target to outlier, and vise versa, the class overlap
is increased.

Next we discuss the results by the three methods.
In figure 3 the traces of dataset for which randomly fea-

tures are removed. Again the traces start with the star. The
top dataset is the Concordia handwritten digit 3 (nr 533, 400
objects in 256-, 200-, 150-, 100- and 50D, left next to it Ecoli
(nr 519, 52 objects in 7-, 6-, 5-, 4-, and 2D), the dataset right
of that is Concordia digit 0 (nr 530, 400 objects in 256-, 200-,
150-, 100- and 50D), the extreme right dataset is the Vowel 3
dataset (nr 604, 48 objects in 10-, 8-, 6- and 4D) and the bottom
dataset is Breast cancer (nr 504, 458 objects in 9-, 7-, 5- and
3D). The traces are not completely “clean”, and it appears that
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Figure 3: Traces of a few datasets for which features are ran-
domly removed.

reducing the number of features has a more complicated effect
on the dataset complexity. For some datasets class overlap de-
creases, while the sample size is not heavily affected (the Con-
cordia datasets and the Vowel dataset). For these datasets most
of the features seem to be informative, and removing them hurts
the average performance. For the Breast and Ecoli dataset the
class overlap actually seems to improve. Apparently, in these
datasets many features are not very informative, and the classi-
fies improve when features are randomly removed.

In figure 4 the traces of datasets are shown for which the
class means are moved apart. From top to bottom we have the
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Figure 4: Traces of a few datasets for which randomly the
means of the two classes are moved apart.

Breast cancer (target benign, nr505, 241 objects in 9D), Heart
Cleveland (nr 506, 139 objects in 13D), Survival (< 5 years, nr
617, 81 objects in 3D) and Biomed (nr 512, 67 objects in 4D).
In all the cases the difference in the class mean is multiplied by
0.5, 1, 2, 3 and 4. The traces of these datasets are more consis-
tent, but they fail to cover the complete range from very poor
performance to very good performance. In other words, they
never reach the far right end of the plot. Their curved trajecto-
ries actually suggest that the class overlap characteristic is not
linear in this plot. It shows that by simplifying the classification
problem by separating the two classes, the actual sample size
increases. Less samples are required to make a good classifier,
pushing the dataset not only in the direction of higher averaged
accuracy, but also down, in the direction of higher sample sizes.
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Figure 5: Traces of a few datasets for which randomly labels
are flipped.

In figure 5 the traces of dataset are shown for which the
class labels are flipped. For these experiments well-sampled
dataset are used, therefore the traces start from datasets located
at the right side of the graph. The dataset on the top tight is Con-
cordia digit 0 (nr 530, 400 objects in 256D, flipping 25, 50, 100,
200 and 300 labels), on the bottom right the Vowel 2 dataset (nr
603, 48 objects in 10D, flipping 5, 10, 20 and 30 labels), next to
the Vowel is the Iris Setosa dataset (501, 50 objects in 4D, also
flipping 5, 10, 20 and 30 labels) and finally the Breast cancer
Wisconsin (nr 504, 458 objects in 9D, flipping 50, 100, 200 and

300 labels). These datasets show a very clear tendency to move
to the high class overlap area and indeed almost reach the left
end of the graph. This very clearly suggests that the second high
variance direction from right to left indicates the class overlap
in the dataset. The curved traces here also indicate that this is a
non-linear structure in this projection.

4.4. Individual classifier performances
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Figure 6: The AUC performance of the Minimum Covariance
Determinant classifier encoded in grey scale.

It is now possible to investigate the the datasets for which
each classifier performs well or not. Most classifier follow
roughly the pattern as it is shown in the bottom right picture
of figure 1, some classifiers have a more specific focus. In fig-
ure 6 the performance is shown for the Minimum covariance
determinant classifier. Here a clear band of classifiers is clas-
sified well by this classifier. For higher dimensional datasets
(mainly in the top of the figure) the procedure fails; the method
is only implemented ford < 50. But also for datasets where
the classes overlap or where the two classes are near and a com-
plicated decision boundary is required (bottom left), the model
performs poor.

4.5. The other variabilities in the data
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Figure 7: MDS scatterplot of the datasets using the second and
third features, showing two clusters of datasets. The grey-level
colour coding indicates the dimensionality, suggesting that the
two clusters are the high and low dimensionality problems.
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In figure 7 the second and the third dimensions of the MDS
plot are shown. Here a clustering in the datasets is visible.The
third dimension seems to encode data dimensionality, but itis
not very clear (there are two outlier datasets in the lower cluster;
the glass datasets with 13 and 29 objects in 9D). The lower right
cluster contains the datasets in the very high dimensional spaces
(dimensionalities larger than 1000), the other cluster contains
the datasets upto 256D. The gap suggest that the set of datasets
is not covering all dimensionalities, and that datasets with di-
mensionalities around 500-600 are lacking.

5. Conclusions
For the specific problem of one-class classification or novelty
detection we investigated the main variables that determine the
variability in the classification of objects by different classifiers.
Using the classifier disagreements a similarity between datasets
is defined allowing for the visualization of the datasets in a(2D)
projection space using MDS. In this paper the outputs of 19
classifiers on 101 datasets are used. It appears that the effec-
tive sample size (the ratio beteen the number of objects and the
dimensionality) and the average performance are the main vari-
ables that describe the variance in real world one-class datasets.
Given these datasets, the scatterplot using the first two features
shows a reasonably well sampled space; the classifiers almost
uniformly fill the space.

This observation is verified and confirmed by varying the
sample size and average performance of an artificial datasets
and check where these datasets are mapped onto the 2D projec-
tion. The sample size direction can easily be confirmed, but to
vary the class overlap is more complicated. Three approaches
have been tried, moving the means of the datasets, randomly
swapping the labels and reducing the dimensionality. All three
approaches indeed change the class overlap, but it appears that
it also influences the effective sample size, resuling in heavily
curved trajectories in the projection.

These two main features of the one-class datasets suggest
that one should develop a set of classifiers that cover the wide
ranges of sample size and class overlap. First one can focus on
classifiers that can exploit high sample sizes, or very low sample
sizes. Second, one should construct classifiers that are capable
of utilizing objects from the outlier class when the class overlap
is not very large. When the class overlap is large, one has to
focus on classifiers that are robust against outliers, or be sure
that the training set does not contain outlier objects.

Further features become increasingly harder to interpret.
This is probably caused by the fact that it is not clear what the
main characteristics are, and are really not named yet. The third
feature probably indicates the dimensionality of the datasets.
When it is added, two clusters of datasets appear. This suggest
that the sampling of the datasets is not sufficient in this direction
and that datasets with dimensionality around 500 are lacking.
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